Emerging Immunotherapy Approaches for Treating Prostate Cancer
Abstract
:1. Introduction
2. Immune Checkpoint Inhibitors
2.1. Background on CTLA-4, PD-1/PD-L1 Pathways
2.2. Key Clinical Trials of Immune Checkpoint Inhibitors in Prostate Cancer
NCT Number | Trial Name | Phase | Patients | Description | Results |
---|---|---|---|---|---|
NCT00861614 | CA184-043 | 3 | 988 | Ipilimumab + RT vs. placebo + RT in mCRPC | Median OS with ipilimumab was 11.2 months (95% CI 9.5–12.7) compared to 10.0 months (95% CI 8.3–11) on placebo. The HR was 0.85 (95% CI 0.72–1.00) with a p-value of 0.053 [36]. |
NCT01057810 | CA184-095 | 3 | 837 | Ipilimumab vs. placebo in mCRPC | Median OS with ipilimumab was 28.7 months (95% CI 24.5–32.5) compared to 29.7 months (95% CI 26.1–34.2) on placebo. The HR was 1.11 (95.87% CI 0.88–1.39) with a p-value of 0.3667 [55]. |
NCT03834493 | KEYNOTE-641 | 3 | 1244 | Pembrolizumab + enzalutamide vs. placebo + enzalutamide in mCRPC | Primary endpoints were not met [56]. |
NCT03834519 | KEYNOTE-010 | 3 | 793 | Pembrolizumab + olaparib vs. NHA in mCRPC | Median OS with Pembrolizumab + Olaparib was 15.8 months (95% CI 14.6–17.0) compared to 14.6 months (95% CI 12.6–17.3) in the control arm. The HR was 0.94 (95% CI 0.77–1.14) with a p-value of 0.26 [42]. |
NCT03834506 | Keynote-921 | 3 | 1030 | Pembrolizumab + docetaxel vs. docetaxel in mCRPC | Median OS with Pembrolizumab + Docetaxel was 19.6 months (95% CI: 18.2 to 20.9) compared to 19.0 months (95% CI: 17.9 to 20.9) with Docetaxel alone. The HR was 0.92 (95% CI 0.78–1.09) with a p-value of 0.1677 [57]. |
NCT03016312 | IMbassador250 | 3 | 772 | Atezolizumab + enzalutamide vs. placebo + enzalutamide in mCRPC | Median OS with atezolizumab + enzalutamide was 15.2 months (95% CI 14.0–17.0) compared to 16.6 months (95% CI 14.7–18.4) in the control group. The HR was 1.12 (95% CI 0.91–1.37) with a p-value of 0.28 [58]. |
NCT04100018 | CheckMate -7DX | 3 | 984 | Nivolumab + docetaxel vs. Placebo + docetaxel in mCRPC | Primary endpoints were not met [59]. |
2.3. Ongoing Clinical Trials with Immune Checkpoint Inhibitors in Prostate Cancer
3. Bispecific Antibodies Targeting T Cell Costimulatory Receptors
3.1. Background on Bispecific Antibodies
3.2. BiTEs Underdevelopment in Prostate Cancer
4. Chimeric Antigen Receptor (CAR) T Cell Therapy
4.1. Background on CAR-T Cell Approach
4.2. Preclinical Studies of CAR-T in Prostate Cancer
4.3. Ongoing Clinical Trials of CAR-T Cell Therapy in Prostate Cancer
5. Other Immune-Based Therapies
5.1. Vaccines
5.2. Cytokines
5.3. Immunotherapeutic Combinations
- Checkpoint inhibitors plus CAR T cells: CAR T cell function can be hampered by immunosuppressive factors in the tumor microenvironment [170]. Adding PD-1/PD-L1 checkpoint blockade aims to augment CAR T cell activation, proliferation, and persistence. Preliminary studies lend support to the notion that this approach can enhance efficacy [171].
6. Challenges and Future Directions for Immunotherapy in Prostate Cancer
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADT | Androgen Deprivation Therapy |
APCs | Antigen-Presenting Cells |
BCL2 | B-Cell Lymphoma 2 |
BiTE | Bispecific T-Cell Engager |
BiTEs/TriTEs | Bi/Tri-specific T Cell-Engagers |
CAR | Chimeric Antigen Receptor |
CCL19 | Chemokine (C-C motif) ligand 19 |
CD | Cluster of Differentiation |
CRS | Cytokine Release Syndrome |
CTLA-4 | Cytotoxic T-Lymphocyte-Associated Protein 4 |
D-145 | Daudi Lymphoblastoid Cell Line-145 |
DART | Dual-Affinity Retargeting |
DC-CIK | Dendritic Cell-Cytokine-Induced Killer |
DLL3 | Delta-Like Ligand 3 |
EpCAM | Epithelial Cell Adhesion Molecule |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
IL-10 | Interleukin-10 |
IL-2 | Interleukin-2 |
KLK2 | Kallikrein 2 |
LAG-3 | Lymphocyte Activation Gene 3 |
mCRPC | Metastatic Castration-Resistant Prostate Cancer |
NSCLC | Non-Small Cell Lung Cancer |
OS | Overall Survival |
PAP | Prostatic Acid Phosphatase |
PC3 | Prostate Adenocarcinoma Cell Line 3 |
PCSC | Prostate Cancer Stem Cell |
PD-1 | Programmed Cell Death Protein 1 |
PSA | Prostate-Specific Antigen |
PSCA | Prostate Stem Cell Antigen |
PSMA | Prostate-Specific Membrane Antigen |
pTVG-AR | Plasmid DNA Vaccine Encoding Human Androgen Receptor |
pTVG-HP | Plasmid DNA Vaccine Encoding Human PAP |
RCC | Renal Cell Carcinoma |
RhoC | Ras Homolog Gene Family Member C |
scFv | Single Chain Variable Fragment |
STEAP1 | Six-Transmembrane Epithelial Antigen of the Prostate 1 |
TAAs | Tumor-Associated Antigens |
taFv | Tandem Single-Chain Variable Fragments |
TGFβ | Transforming Growth Factor Beta |
TIM-3 | T-cell Immunoglobulin and Mucin-Domain Containing-3 |
TMB | Tumor Mutational Burden |
TSAs | Tumor-Specific Antigens |
VEGF | Vascular Endothelial Growth Factor |
VISTA | V-Domain Ig Suppressor of T Cell Activation |
References
- Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023, 10, 451. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.S. Molecular states underlying androgen receptor activation: A framework for therapeutics targeting androgen signaling in prostate cancer. J. Clin. Oncol. 2012, 30, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.; Kyle, J.A. An Overview of Prostate Cancer. US Pharm. 2023, 48, 40–45. [Google Scholar]
- Fradet, Y.; Meyer, F.; Bairati, I.; Shadmani, R.; Moore, L. Dietary fat and prostate cancer progression and survival. Eur. Urol. 1999, 35, 388–391. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non–small cell lung cancer treated with nivolumab. JAMA Oncol. 2019, 5, 1411–1420. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Kwon, J.T.W.; Bryant, R.J.; Parkes, E.E. The tumor microenvironment and immune responses in prostate cancer patients. Endocr. Relat. Cancer 2021, 28, T95–T107. [Google Scholar] [CrossRef]
- Subudhi, S.K.; Vence, L.; Zhao, H.; Blando, J.; Yadav, S.S.; Xiong, Q.; Reuben, A.; Aparicio, A.; Corn, P.G.; Chapin, B.F. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Sci. Transl. Med. 2020, 12, eaaz3577. [Google Scholar] [CrossRef]
- Gross, S.; Walden, P. Immunosuppressive mechanisms in human tumors: Why we still cannot cure cancer. Immunol. Lett. 2008, 116, 7–14. [Google Scholar] [CrossRef]
- Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [Google Scholar] [CrossRef] [PubMed]
- Shariat, S.F.; Shalev, M.; Menesses-Diaz, A.; Kim, I.Y.; Kattan, M.W.; Wheeler, T.M.; Slawin, K.M. Preoperative plasma levels of transforming growth factor beta1 (TGF-β1) strongly predict progression in patients undergoing radical prostatectomy. J. Clin. Oncol. 2001, 19, 2856–2864. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Subudhi, S.K.; Aparicio, A.; Ge, Z.; Guan, B.; Miura, Y.; Sharma, P. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 2019, 179, 1177–1190.e13. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Sun, X.; Lv, L. New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer. Mol. Ther. Oncolytics 2023, 29, 91–106. [Google Scholar] [CrossRef]
- Rehman, L.U.; Nisar, M.H.; Fatima, W.; Sarfraz, A.; Azeem, N.; Sarfraz, Z.; Robles-Velasco, K.; Cherrez-Ojeda, I. Immunotherapy for Prostate Cancer: A Current Systematic Review and Patient Centric Perspectives. J. Clin. Med. 2023, 12, 1446. [Google Scholar] [CrossRef]
- Farhangnia, P.; Ghomi, S.M.; Akbarpour, M.; Delbandi, A.-A. Bispecific antibodies targeting CTLA-4: Game-changer troopers in cancer immunotherapy. Front. Immunol. 2023, 14, 1155778. [Google Scholar] [CrossRef]
- Isaacsson Velho, P.; Antonarakis, E.S. PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev. Clin. Pharmacol. 2018, 11, 475–486. [Google Scholar] [CrossRef]
- Xu, Y.; Song, G.; Xie, S.; Jiang, W.; Chen, X.; Chu, M.; Hu, X.; Wang, Z.-W. The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer. Mol. Ther. 2021, 29, 1958–1969. [Google Scholar] [CrossRef]
- Hossen, M.M.; Ma, Y.; Yin, Z.; Xia, Y.; Du, J.; Huang, J.Y.; Huang, J.J.; Zou, L.; Ye, Z.; Huang, Z. Current understanding of CTLA-4: From mechanism to autoimmune diseases. Front. Immunol. 2023, 14, 1198365. [Google Scholar] [CrossRef]
- Leng, C.; Li, Y.; Qin, J.; Ma, J.; Liu, X.; Cui, Y.; Sun, H.; Wang, Z.; Hua, X.; Yu, Y. Relationship between expression of PD-L1 and PD-L2 on esophageal squamous cell carcinoma and the antitumor effects of CD8+ T cells. Oncol. Rep. 2016, 35, 699–708. [Google Scholar] [CrossRef]
- Salmaninejad, A.; Valilou, S.F.; Shabgah, A.G.; Aslani, S.; Alimardani, M.; Pasdar, A.; Sahebkar, A. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J. Cell. Physiol. 2019, 234, 16824–16837. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Lotfinejad, P.; Kazemi, T.; Mokhtarzadeh, A.; Shanehbandi, D.; Niaragh, F.J.; Safaei, S.; Asadi, M.; Baradaran, B. PD-1/PD-L1 axis importance and tumor microenvironment immune cells. Life Sci. 2020, 259, 118297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dai, Z.; Wu, W.; Wang, Z.; Zhang, N.; Zhang, L.; Zeng, W.-J.; Liu, Z.; Cheng, Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J. Exp. Clin. Cancer Res. 2021, 40, 184. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-J.; Lu, J.-C.; Zeng, H.-Y.; Zhou, R.; Sun, Q.-M.; Yang, G.-H.; Pei, Y.-Z.; Meng, X.-L.; Shen, Y.-H.; Zhang, P.-F. CTLA-4 synergizes with PD1/PD-L1 in the inhibitory tumor microenvironment of intrahepatic cholangiocarcinoma. Front. Immunol. 2021, 12, 705378. [Google Scholar] [CrossRef]
- Camacho, L.H. CTLA-4 blockade with ipilimumab: Biology, safety, efficacy, and future considerations. Cancer Med. 2015, 4, 661–672. [Google Scholar] [CrossRef]
- Wolchok, J.D. PD-1 blockers. Cell 2015, 162, 937. [Google Scholar] [CrossRef]
- Kähler, K.C.; Hauschild, A. Treatment and side effect management of CTLA-4 antibody therapy in metastatic melanoma. J. Der Dtsch. Dermatol. Ges. 2011, 9, 277–286. [Google Scholar] [CrossRef]
- Lipson, E.J.; Drake, C.G. Ipilimumab: An anti-CTLA-4 antibody for metastatic melanoma. Clin. Cancer Res. 2011, 17, 6958–6962. [Google Scholar] [CrossRef]
- Mahoney, K.M.; Freeman, G.J.; McDermott, D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther. 2015, 37, 764–782. [Google Scholar] [CrossRef]
- Salvi, S.; Fontana, V.; Boccardo, S.; Merlo, D.F.; Margallo, E.; Laurent, S.; Morabito, A.; Rijavec, E.; Dal Bello, M.G.; Mora, M. Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 2012, 61, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Santini, F.C.; Hellmann, M.D. PD-1/PD-L1 axis in lung cancer. Cancer J. 2018, 24, 15. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.A.; Kim, T.-M.; Frenel, J.-S.; Santoro, A.; Lopez, J.; Subramaniam, D.S.; Siu, L.L.; Rodon, J.; Tamura, K.; Saraf, S. ATIM-35. Results of the Phase IB KEYNOTE-028 Multi-Cohort Trial of Pembrolizumab Monotherapy in Patients with Recurrent PD-L1-Positive Glioblastoma Multiforme (GBM). Neuro-Oncology 2016, 18, vi25–vi26. [Google Scholar] [CrossRef]
- Antonarakis, E.; Piulats, J.; Gross-Goupil, M.; Goh, J.; Vaishampayan, U.; De Wit, R.; Alanko, T.; Fukasawa, S.; Tabata, K.; Feyerabend, S. 611P Pembrolizumab (pembro) monotherapy for docetaxel-pretreated metastatic castration-resistant prostate cancer (mCRPC): Updated analyses with 4 years of follow-up from cohorts 1-3 of the KEYNOTE-199 study. Ann. Oncol. 2021, 32, S651–S652. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: Multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 2020, 38, 395. [Google Scholar] [CrossRef]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; Van den Eertwegh, A.J.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef]
- Beer, T.M.; Logothetis, C.; Sharma, P.; Bossi, A.; McHenry, B.; Fairchild, J.P.; Gagnier, P.; Chin, K.M.; Cuillerot, J.-M.; Fizazi, K. CA184-095: A Randomized, Double-Blind, Phase III Trial to Compare the Efficacy of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients (pts) with Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer (CRPC). J. Clin. Oncol. 2012, 30, TPS4691. [Google Scholar] [CrossRef]
- Beer, T.M.; Logothetis, C.; Sharma, P.; Loriot, Y.; Fizazi, K.; Bossi, A.; Kwon, E.D.; McHenry, B.; Gagnier, P.; Gerritsen, W.R. CA184-095: A Randomized, Double-Blind, Phase III Trial to Compare the Efficacy Of Ipilimumab (Ipi) Versus Placebo In Asymptomatic or Minimally Symptomatic Patients (pts) with Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer (CRPC). J. Clin. Oncol. 2013, 31, tps5093. [Google Scholar] [CrossRef]
- Long, X.; Hou, H.; Wang, X.; Liu, S.; Diao, T.; Lai, S.; Hu, M.; Zhang, S.; Liu, M.; Zhang, H. Immune signature driven by ADT-induced immune microenvironment remodeling in prostate cancer is correlated with recurrence-free survival and immune infiltration. Cell Death Dis. 2020, 11, 779. [Google Scholar] [CrossRef]
- Kwon, H.; Schafer, J.; Song, N.; Kaneko, S.; Li, A.; Xiao, T.; Ma, A.; Allen, C.; Das, K.; Zhou, L. Androgen conspires with the CD8+ T cell exhaustion program and contributes to sex bias in cancer. Sci. Immunol. 2022, 7, eabq2630. [Google Scholar] [CrossRef]
- Guan, X.; Polesso, F.; Wang, C.; Sehrawat, A.; Hawkins, R.M.; Murray, S.E.; Thomas, G.V.; Caruso, B.; Thompson, R.F.; Wood, M.A. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 2022, 606, 791–796. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Park, S.H.; Goh, J.C.; Shin, S.J.; Lee, J.L.; Mehra, N.; McDermott, R.; Sala-Gonzalez, N.; Fong, P.C.; Greil, R. Pembrolizumab Plus Olaparib for Patients With Previously Treated and Biomarker-Unselected Metastatic Castration-Resistant Prostate Cancer: The Randomized, Open-Label, Phase III KEYLYNK-010 Trial. J. Clin. Oncol. 2023, 41, 3839–3850. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Ratta, R.; Gafanov, R.; Facchini, G.; Piulats, J.M.; Kramer, G.; Flaig, T.W.; Chandana, S.R.; Li, B.; Burgents, J. KEYNOTE-921: Phase III study of pembrolizumab plus docetaxel for metastatic castration-resistant prostate cancer. Future Oncol. 2021, 17, 3291–3299. [Google Scholar] [CrossRef] [PubMed]
- Petrylak, D.; Li, B.; Schloss, C.; Fizazi, K. KEYNOTE-921: Phase III study of pembrolizumab (pembro) plus docetaxel and prednisone for enzalutamide (enza)-or abiraterone (abi)-pretreated patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 2019, 30, v351. [Google Scholar] [CrossRef]
- Drake, C.; Saad, F.; Clark, W.; Ciprotti, M.; Sharkey, B.; Subudhi, S.; Fizazi, K. 690TiP a Phase III, randomized, double-blind trial of nivolumab or placebo combined with docetaxel for metastatic castration-resistant prostate cancer (mCRPC.; CheckMate 7DX). Ann. Oncol. 2020, 31, S546. [Google Scholar] [CrossRef]
- Graf, R.P.; Fisher, V.; Weberpals, J.; Gjoerup, O.; Tierno, M.B.; Huang, R.S.; Sayegh, N.; Lin, D.I.; Raskina, K.; Schrock, A.B. Comparative effectiveness of immune checkpoint inhibitors vs chemotherapy by tumor mutational burden in metastatic castration-resistant prostate cancer. JAMA Netw. Open 2022, 5, e225394. [Google Scholar] [CrossRef] [PubMed]
- Cabel, L.; Loir, E.; Gravis, G.; Lavaud, P.; Massard, C.; Albiges, L.; Baciarello, G.; Loriot, Y.; Fizazi, K. Long-term complete remission with Ipilimumab in metastatic castrate-resistant prostate cancer: Case report of two patients. J. Immunother. Cancer 2017, 5, 31. [Google Scholar] [CrossRef]
- Graham, L.S.; Montgomery, B.; Cheng, H.H.; Yu, E.Y.; Nelson, P.S.; Pritchard, C.; Erickson, S.; Alva, A.; Schweizer, M.T. Mismatch repair deficiency in metastatic prostate cancer: Response to PD-1 blockade and standard therapies. PLoS ONE 2020, 15, e0233260. [Google Scholar] [CrossRef]
- Agarwal, N.; McGregor, B.; Maughan, B.L.; Dorff, T.B.; Kelly, W.; Fang, B.; McKay, R.R.; Singh, P.; Pagliaro, L.; Dreicer, R. Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: Results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol. 2022, 23, 899–909. [Google Scholar] [CrossRef]
- Vitkin, N.; Nersesian, S.; Siemens, D.R.; Koti, M. The tumor immune contexture of prostate cancer. Front. Immunol. 2019, 10, 603. [Google Scholar] [CrossRef]
- Naoe, M.; Marumoto, Y.; Aoki, K.; Fukagai, T.; Ogawa, Y.; Ishizaki, R.; Nakagami, Y.; Yoshida, H.; Ballo, M. MHC-class I expression on prostate carcinoma and modulation by IFN-gamma. Nihon Hinyokika Gakkai Zasshi. Jpn. J. Urol. 2002, 93, 532–538. [Google Scholar]
- Martini, M.; Testi, M.G.; Pasetto, M.; Picchio, M.C.; Innamorati, G.; Mazzocco, M.; Ugel, S.; Cingarlini, S.; Bronte, V.; Zanovello, P. IFN-γ-mediated upmodulation of MHC class I expression activates tumor-specific immune response in a mouse model of prostate cancer. Vaccine 2010, 28, 3548–3557. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Wang, J.; Du, Y.; Xu, T. Immunosuppressive environment in response to androgen deprivation treatment in prostate cancer. Front. Endocrinol. 2022, 13, 1055826. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Xu, M.; Liang, Y.; Yang, K.; Guo, Y.; Yang, X.; Fu, Y.-X. Androgen receptor antagonists compromise T cell response against prostate cancer leading to early tumor relapse. Sci. Transl. Med. 2016, 8, 333ra47. [Google Scholar] [CrossRef]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef]
- Graff, J.N.; Burgents, J.; Liang, L.W.; Stenzl, A. Phase III Study of Pembrolizumab (Pembro) Plus Enzalutamide (Enza) versus Placebo Plus Enza for Metastatic Castration-Resistant Prostate Cancer (mCRPC): KEYNOTE-641. J. Clin. Oncol. 2020, 38, TPS258. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Ratta, R.; Matsubara, N.; Korbenfeld, E.P.; Gafanov, R.; Mourey, L.; Todenhöfer, T.; Gurney, H.; Kramer, G.; Bergman, A.M. Pembrolizumab Plus Docetaxel for Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC): Randomized, Double-Blind, Phase 3 KEYNOTE-921 Study. J. Clin. Oncol. 2023, 41, 19. [Google Scholar] [CrossRef]
- Powles, T.; Yuen, K.C.; Gillessen, S.; Kadel Iii, E.E.; Rathkopf, D.; Matsubara, N.; Drake, C.G.; Fizazi, K.; Piulats, J.M.; Wysocki, P.J. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: A randomized phase 3 trial. Nat. Med. 2022, 28, 144–153. [Google Scholar] [CrossRef]
- Fizazi, K.; Mella, P.G.; Castellano, D.; Minatta, J.N.; Kalebasty, A.R.; Shaffer, D.; Limón, J.C.V.; López, H.M.S.; Armstrong, A.J.; Horvath, L. Nivolumab plus docetaxel in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer: Results from the phase II CheckMate 9KD trial. Eur. J. Cancer 2022, 160, 61–71. [Google Scholar] [CrossRef]
- Drake, C.; Kelleher, C.; Bruno, T.; Harris, T.; Flies, D.; Getnet, D.; Hipkiss, E.; Maris, C.; Grosso, J. Blocking the regulatory T cell molecule LAG-3 augments in vivo anti-tumor immunity in an autochthonous model of prostate cancer. J. Clin. Oncol. 2006, 24 (Suppl. S18), 2573. [Google Scholar] [CrossRef]
- Andrews, L.P.; Marciscano, A.E.; Drake, C.G.; Vignali, D.A. LAG 3 (CD 223) as a cancer immunotherapy target. Immunol. Rev. 2017, 276, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Piao, Y.; Jin, X. Analysis of Tim-3 as a therapeutic target in prostate cancer. Tumor Biol. 2017, 39, 1010428317716628. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ward, J.F.; Pettaway, C.A.; Shi, L.Z.; Subudhi, S.K.; Vence, L.M.; Zhao, H.; Chen, J.; Chen, H.; Efstathiou, E. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 2017, 23, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Porras, V.; Pardo, J.C.; Notario, L.; Etxaniz, O.; Font, A. Immune checkpoint inhibitors: A promising treatment option for metastatic castration-resistant prostate cancer? Int. J. Mol. Sci. 2021, 22, 4712. [Google Scholar] [CrossRef] [PubMed]
- Carosella, E.D.; Ploussard, G.; LeMaoult, J.; Desgrandchamps, F. A systematic review of immunotherapy in urologic cancer: Evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur. Urol. 2015, 68, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Blanco, B.; Domínguez-Alonso, C.; Alvarez-Vallina, L. Bispecific immunomodulatory antibodies for cancer immunotherapy. Clin. Cancer Res. 2021, 27, 5457–5464. [Google Scholar] [CrossRef]
- Huehls, A.M.; Coupet, T.A.; Sentman, C.L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 2015, 93, 290–296. [Google Scholar] [CrossRef]
- Zhou, S.-J.; Wei, J.; Su, S.; Chen, F.-J.; Qiu, Y.-D.; Liu, B.-R. Strategies for bispecific single chain antibody in cancer immunotherapy. J. Cancer 2017, 8, 3689. [Google Scholar] [CrossRef]
- Gaspar, M.; Pravin, J.; Rodrigues, L.; Uhlenbroich, S.; Everett, K.L.; Wollerton, F.; Morrow, M.; Tuna, M.; Brewis, N. CD137/OX40 bispecific antibody induces potent antitumor activity that is dependent on target coengagement. Cancer Immunol. Res. 2020, 8, 781–793. [Google Scholar] [CrossRef]
- Asano, R.; Ikoma, K.; Shimomura, I.; Taki, S.; Nakanishi, T.; Umetsu, M.; Kumagai, I. Cytotoxic enhancement of a bispecific diabody by format conversion to tandem single-chain variable fragment (taFv): The case of the hEx3 diabody. J. Biol. Chem. 2011, 286, 1812–1818. [Google Scholar] [CrossRef]
- Chichili, G.R.; Huang, L.; Li, H.; Burke, S.; He, L.; Tang, Q.; Jin, L.; Gorlatov, S.; Ciccarone, V.; Chen, F. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: Preclinical activity and safety in nonhuman primates. Sci. Transl. Med. 2015, 7, 289ra82. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.M.; Jacobus, E.J.; Lyons, B.; Frost, S.; Freedman, J.D.; Dyer, A.; Khalique, H.; Taverner, W.K.; Carr, A.; Champion, B.R. Bi-and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J. ImmunoTherapy Cancer 2019, 7, 320. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.S.; Lotze, M.T.; Zhu, Z.; Storkus, W.J.; Song, X.-T. Bi-and tri-specific T cell engager-armed oncolytic viruses: Next-generation cancer immunotherapy. Biomedicines 2020, 8, 204. [Google Scholar] [CrossRef] [PubMed]
- Kontermann, R. Dual Targeting Strategies with Bispecific Antibodies. MAbs 2012, 4, 182–197. [Google Scholar] [CrossRef]
- Willems, A.; Schoonooghe, S.; Eeckhout, D.; Jaeger, G.D.; Grooten, J.; Mertens, N. CD3× CD28 cross-interacting bispecific antibodies improve tumor cell dependent T-cell activation. Cancer Immunol. Immunother. 2005, 54, 1059–1071. [Google Scholar] [CrossRef]
- Haas, C.; Lulei, M.; Fournier, P.; Arnold, A.; Schirrmacher, V. A tumor vaccine containing anti-CD3 and anti-CD28 bispecific antibodies triggers strong and durable antitumor activity in human lymphocytes. Int. J. Cancer 2006, 118, 658–667. [Google Scholar] [CrossRef]
- Lee, S.C.; Ma, J.S.; Kim, M.S.; Laborda, E.; Choi, S.-H.; Hampton, E.N.; Yun, H.; Nunez, V.; Muldong, M.T.; Wu, C.N. A PSMA-targeted bispecific antibody for prostate cancer driven by a small-molecule targeting ligand. Sci. Adv. 2021, 7, eabi8193. [Google Scholar] [CrossRef]
- Chiu, D.; Tavaré, R.; Haber, L.; Aina, O.H.; Vazzana, K.; Ram, P.; Danton, M.; Finney, J.; Jalal, S.; Krueger, P. A PSMA-targeting CD3 bispecific antibody induces antitumor responses that are enhanced by 4-1BB costimulation. Cancer Immunol. Res. 2020, 8, 596–608. [Google Scholar] [CrossRef]
- Bailis, J.; Deegen, P.; Thomas, O.; Bogner, P.; Wahl, J.; Liao, M.; Li, S.; Matthes, K.; Nägele, V.; Rau, D. Preclinical Evaluation of AMG 160, a Next-Generation Bispecific T Cell Engager (BiTE) Targeting the Prostate-Specific Membrane Antigen PSMA for Metastatic Castration-Resistant Prostate Cancer (mCRPC). J. Clin. Oncol. 2019, 37, 301. [Google Scholar] [CrossRef]
- Deegen, P.; Thomas, O.; Nolan-Stevaux, O.; Li, S.; Wahl, J.; Bogner, P.; Aeffner, F.; Friedrich, M.; Liao, M.Z.; Matthes, K. The PSMA-targeting half-life extended BiTE therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2021, 27, 2928–2937. [Google Scholar] [CrossRef]
- Miyahira, A.K.; Soule, H.R. The 27th Annual Prostate Cancer Foundation Scientific Retreat Report. Prostate 2021, 81, 1107–1124. [Google Scholar] [CrossRef]
- Kawahara, R.; Granato, D.C.; Yokoo, S.; Domingues, R.R.; Trindade, D.M.; Leme, A.F.P. Mass spectrometry-based proteomics revealed Glypican-1 as a novel ADAM17 substrate. J. Proteom. 2017, 151, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Xu, K.; Zhu, Z.; Robev, D.; Kalidindi, T.; Xu, Y.; Himanen, J.; de Stanchina, E.; Pillarsetty, N.V.K.; Dimitrov, D.S. Inhibitory monoclonal antibody targeting ADAM17 expressed on cancer cells. Transl. Oncol. 2022, 15, 101265. [Google Scholar] [CrossRef] [PubMed]
- Lindner, D.; Arndt, C.; Loureiro, L.R.; Feldmann, A.; Kegler, A.; Koristka, S.; Berndt, N.; Mitwasi, N.; Bergmann, R.; Frenz, M. Combining Radiation-with Immunotherapy in Prostate Cancer: Influence of Radiation on T Cells. Int. J. Mol. Sci. 2022, 23, 7922. [Google Scholar] [CrossRef]
- Atiq, M.; Chandran, E.; Karzai, F.; Madan, R.A.; Aragon-Ching, J.B. Emerging treatment options for prostate cancer. Expert Rev. Anticancer. Ther. 2023, 23, 625–631. [Google Scholar] [CrossRef]
- Leconet, W.; Liu, H.; Guo, M.; Le Lamer-Déchamps, S.; Molinier, C.; Kim, S.; Vrlinic, T.; Oster, M.; Liu, F.; Navarro, V. Anti-PSMA/CD3 bispecific antibody delivery and antitumor activity using a polymeric depot formulation. Mol. Cancer Ther. 2018, 17, 1927–1940. [Google Scholar] [CrossRef]
- Chou, J.; Egusa, E.A.; Wang, S.; Badura, M.L.; Lee, F.; Bidkar, A.P.; Zhu, J.; Shenoy, T.; Trepka, K.; Robinson, T.M. Immunotherapeutic Targeting and PET Imaging of DLL3 in Small-Cell Neuroendocrine Prostate Cancer. Cancer Res. 2023, 83, 301–315. [Google Scholar] [CrossRef]
- Giffin, M.J.; Cooke, K.; Lobenhofer, E.K.; Estrada, J.; Zhan, J.; Deegen, P.; Thomas, M.; Murawsky, C.M.; Werner, J.; Liu, S. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin. Cancer Res. 2021, 27, 1526–1537. [Google Scholar] [CrossRef]
- Aggarwal, R.R.; Aparicio, A.; Heidenreich, A.; Sandhu, S.K.; Zhang, Y.; Salvati, M.; Shetty, A.; Hashemi Sadraei, N. Phase 1b Study of AMG 757, a Half-Life Extended Bispecific T-Cell Engager (HLE BiTEimmune-Oncology Therapy) Targeting DLL3, in De Novo or Treatment Emergent Neuroendocrine Prostate Cancer (NEPC). J. Clin. Oncol. 2021, 39, TPS5100. [Google Scholar] [CrossRef]
- Aggarwal, R.R.; Rottey, S.; Aparicio, A.; Greil, R.; Reimers, M.A.; Sandhu, S.K.; Zhang, Y.; Salvati, M.; Hashemi Sadraei, N. Phase 1b Study of Tarlatamab, a Half-Life Extended Bispecific T-Cell Engager (HLE BiTE Immune Therapy) Targeting DLL3, in De Novo or Treatment Emergent Neuroendocrine Prostate Cancer (NEPC). J. Clin. Oncol. 2022, 40, TPS197. [Google Scholar] [CrossRef]
- Einsele, H.; Borghaei, H.; Orlowski, R.Z.; Subklewe, M.; Roboz, G.J.; Zugmaier, G.; Kufer, P.; Iskander, K.; Kantarjian, H.M. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020, 126, 3192–3201. [Google Scholar] [CrossRef]
- Piron, B.; Bastien, M.; Antier, C.; Dalla-Torre, R.; Jamet, B.; Gastinne, T.; Dubruille, V.; Moreau, P.; Martin, J.; Bénichou, A. Immune-related adverse events with bispecific T-cell engager therapy targeting B-cell maturation antigen. Haematologica 2020. [Google Scholar] [CrossRef]
- Heitmann, J.S.; Pfluegler, M.; Jung, G.; Salih, H.R. Bispecific antibodies in prostate cancer therapy: Current status and perspectives. Cancers 2021, 13, 549. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, J.S.; Walz, J.S.; Pflügler, M.; Kauer, J.; Schlenk, R.F.; Jung, G.; Salih, H.R. Protocol of a prospective, multicentre phase I study to evaluate the safety, tolerability and preliminary efficacy of the bispecific PSMAxCD3 antibody CC-1 in patients with castration-resistant prostate carcinoma. BMJ Open 2020, 10, e039639. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, J.S.; Walz, J.S.; Pflügler, M.; Marconato, M.; Tegeler, C.M.; Reusch, J.; Labrenz, J.; Schlenk, R.; Jung, G.; Salih, H. Abstract CT141: CC-1, a bispecific PSMAxCD3 antibody for treatment of prostate carcinoma: Results of the ongoing phase I dose escalation trial. Cancer Res. 2022, 82 (Suppl. S12), CT141. [Google Scholar] [CrossRef]
- Golubovskaya, V. CAR-T cell therapy: From the bench to the bedside. Cancers 2017, 9, 150. [Google Scholar] [CrossRef]
- Yan, T.; Zhu, L.; Chen, J. Current advances and challenges in CAR T-Cell therapy for solid tumors: Tumor-associated antigens and the tumor microenvironment. Exp. Hematol. Oncol. 2023, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Van Der Stegen, S.J.; Hamieh, M.; Sadelain, M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 2015, 14, 499–509. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kitaura, M.; Tsunei, A.; Kusabuka, H.; Ogaki, E.; Okada, N. Structure of the signal transduction domain in second-generation CAR regulates the Input efficiency of CAR signals. Int. J. Mol. Sci. 2021, 22, 2476. [Google Scholar] [CrossRef]
- George, P.; Dasyam, N.; Giunti, G.; Mester, B.; Bauer, E.; Andrews, B.; Perera, T.; Ostapowicz, T.; Frampton, C.; Li, P. Third-generation anti-CD19 chimeric antigen receptor T-cells incorporating a TLR2 domain for relapsed or refractory B-cell lymphoma: A phase I clinical trial protocol (ENABLE). BMJ Open 2020, 10, e034629. [Google Scholar] [CrossRef]
- Roselli, E.; Boucher, J.C.; Li, G.; Kotani, H.; Spitler, K.; Reid, K.; Cervantes, E.V.; Bulliard, Y.; Tu, N.; Lee, S.B. 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. J. Immunother. Cancer 2021, 9, e003354. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Rouce, R.; Robertson, C.S.; Reyna, A.; Narala, N.; Vyas, G.; Mehta, B.; Zhang, H.; Dakhova, O.; Carrum, G. In vivo fate and activity of second-versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin’s lymphomas. Mol. Ther. 2018, 26, 2727–2737. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Moon, E.K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol. 2019, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Giraudet, A.-L.; Kryza, D.; Hofman, M.; Moreau, A.; Fizazi, K.; Flechon, A.; Hicks, R.J.; Tran, B. PSMA targeting in metastatic castration-resistant prostate cancer: Where are we and where are we going? Ther. Adv. Med. Oncol. 2021, 13, 17588359211053898. [Google Scholar] [CrossRef]
- Zuccolotto, G.; Penna, A.; Fracasso, G.; Carpanese, D.; Montagner, I.M.; Dalla Santa, S.; Rosato, A. PSMA-specific CAR-engineered T cells for prostate cancer: CD28 outperforms combined CD28-4-1BB “super-stimulation”. Front. Oncol. 2021, 11, 3870. [Google Scholar] [CrossRef]
- Dorff, T.B.; Blanchard, S.; Carruth, P.; Wagner, J.; Kuhn, P.; Chaudhry, A.; Adkins, L.; Thomas, S.; Martirosyan, H.; Chu, P. A Phase I Study to Evaluate PSCA-Targeting Chimeric Antigen Receptor (CAR)-T Cells for Patients with PSCA+ Metastatic Castration-resistant Prostate Cancer (mCRPC). J. Clin. Oncol. 2020, 38, TPS250. [Google Scholar] [CrossRef]
- Dorff, T.B.; Blanchard, S.; Martirosyan, H.; Adkins, L.; Dhapola, G.; Moriarty, A.; Wagner, J.R.; Chaudhry, A.; D’Apuzzo, M.; Kuhn, P. Phase 1 Study of PSCA-Targeted Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Castration-Resistant Prostate Cancer (mCRPC). J. Clin. Oncol. 2022, 40, 91. [Google Scholar] [CrossRef]
- Deng, Z.; Wu, Y.; Ma, W.; Zhang, S.; Zhang, Y.-Q. Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol. 2015, 16, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Sadagopan, A.; Ma, T.; Dotti, G.; Wang, Y.; Zheng, H.; Gao, X.; Wang, D.; DeLeo, A.B. Targeting radiation-resistant prostate cancer stem cells by B7-H3 CAR T cells. Mol. Cancer Ther. 2021, 20, 577–588. [Google Scholar] [CrossRef]
- Frieling, J.S.; Tordesillas, L.; Bustos, X.E.; Ramello, M.C.; Bishop, R.T.; Cianne, J.E.; Snedal, S.A.; Li, T.; Lo, C.H.; de la Iglesia, J. γδ-Enriched CAR-T cell therapy for bone metastatic castrate-resistant prostate cancer. Sci. Adv. 2023, 9, eadf0108. [Google Scholar] [CrossRef]
- Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 2018, 26, 1855–1866. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Helfand, B.T.; Carneiro, B.A.; Qin, W.; Yang, X.J.; Lee, C.; Zhang, W.; Giles, F.J.; Cristofanilli, M.; Kuzel, T.M. Efficacy against human prostate cancer by prostate-specific membrane antigen-specific, transforming growth factor-β insensitive genetically targeted CD8+ T-cells derived from patients with metastatic castrate-resistant disease. Eur. Urol. 2018, 73, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Priceman, S.J.; Gerdts, E.A.; Tilakawardane, D.; Kennewick, K.T.; Murad, J.P.; Park, A.K.; Jeang, B.; Yamaguchi, Y.; Yang, X.; Urak, R. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncoimmunology 2018, 7, e1380764. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Kamat, N.V.; Pariva, T.E.; Wu, L.-T.; Tsao, A.; Sasaki, K.; Sun, H.; Javier, G.; Nutt, S.; Coleman, I. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat. Commun. 2023, 14, 2041. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, V.; Kamat, N.V.; Pariva, T.E.; Wu, L.-T.; Tsao, A.; Sasaki, K.; Wiest, L.T.; Zhang, A.; Rudoy, D.; Gulati, R. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell therapy. bioRxiv 2022. 2022.05.16.492156. [Google Scholar]
- Hegde, M.; Mukherjee, M.; Grada, Z.; Pignata, A.; Landi, D.; Navai, S.A.; Wakefield, A.; Fousek, K.; Bielamowicz, K.; Chow, K.K. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J. Clin. Investig. 2016, 126, 3036–3052. [Google Scholar] [CrossRef]
- Yilmaz, A.; Cui, H.; Caligiuri, M.A.; Yu, J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 168. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Q.; Wang, F.; Zhang, C.; Xu, C.; Gu, A.; Zhong, W.H.; Hu, Y.; Zhong, X. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during CAR-T immunotherapy. J. Transl. Med. 2022, 20, 432. [Google Scholar] [CrossRef]
- Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022, 21, 28. [Google Scholar] [CrossRef]
- Abou-el-Enein, M.; Elsallab, M.; Feldman, S.A.; Fesnak, A.D.; Heslop, H.E.; Marks, P.; Till, B.G.; Bauer, G.; Savoldo, B. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discov. 2021, 2, 408–422. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, X.; Sun, R.; Xiong, X.; Wang, J.; Xie, D.; Zhao, M. Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J. Transl. Med. 2021, 19, 499. [Google Scholar] [CrossRef]
- Stock, S.; Schmitt, M.; Sellner, L. Optimizing manufacturing protocols of chimeric antigen receptor T cells for improved anticancer immunotherapy. Int. J. Mol. Sci. 2019, 20, 6223. [Google Scholar] [CrossRef] [PubMed]
- Castellarin, M.; Sands, C.; Da, T.; Scholler, J.; Graham, K.; Buza, E.; Fraietta, J.A.; Zhao, Y.; June, C.H. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight 2020, 5, e136012. [Google Scholar] [CrossRef] [PubMed]
- de Galiza Barbosa, F.; Queiroz, M.A.; Nunes, R.F.; Costa, L.B.; Zaniboni, E.C.; Marin, J.F.G.; Cerri, G.G.; Buchpiguel, C.A. Nonprostatic diseases on PSMA PET imaging: A spectrum of benign and malignant findings. Cancer Imaging 2020, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.-C.; Göbel, C.; Kluth, M.; Bernreuther, C.; Sauer, C.; Schroeder, C.; Möller-Koop, C.; Hube-Magg, C.; Lebok, P.; Burandt, E. PSCA expression is associated with favorable tumor features and reduced PSA recurrence in operated prostate cancer. BMC Cancer 2018, 18, 612. [Google Scholar] [CrossRef] [PubMed]
- Obiezu, C.V.; Scorilas, A.; Magklara, A.; Thornton, M.H.; Wang, C.Y.; Stanczyk, F.Z.; Diamandis, E.P. Prostate-specific antigen and human glandular kallikrein 2 are markedly elevated in urine of patients with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2001, 86, 1558–1561. [Google Scholar] [CrossRef]
- Shang, Z.; Niu, Y.; Cai, Q.; Chen, J.; Tian, J.; Yeh, S.; Lai, K.-P.; Chang, C. Human kallikrein 2 (KLK2) promotes prostate cancer cell growth via function as a modulator to promote the ARA70-enhanced androgen receptor transactivation. Tumor Biol. 2014, 35, 1881–1890. [Google Scholar] [CrossRef]
- Stephan, C.; Jung, K.; Lein, M.; Sinha, P.; Schnorr, D.; Loening, S.A. Molecular forms of prostate-specific antigen and human kallikrein 2 as promising tools for early diagnosis of prostate cancer. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1133–1147. [Google Scholar]
- Wang, L. Association of Polymorphism rs198977 in Human Kallikrein-2 Gene (KLK2) with Susceptibility of Prostate Cancer: A Meta-Analysis. PLoS ONE 2013, 8, e65651. [Google Scholar]
- Gorchakov, A.A.; Kulemzin, S.V.; Kochneva, G.V.; Taranin, A.V. Challenges and prospects of chimeric antigen receptor T-cell therapy for metastatic prostate cancer. Eur. Urol. 2020, 77, 299–308. [Google Scholar] [CrossRef]
- Narayan, V.; Barber-Rotenberg, J.S.; Jung, I.-Y.; Lacey, S.F.; Rech, A.J.; Davis, M.M.; Hwang, W.-T.; Lal, P.; Carpenter, E.L.; Maude, S.L. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. Nat. Med. 2022, 28, 724–734. [Google Scholar] [CrossRef]
- Kottke, T.; Thompson, J.; Diaz, R.M.; Pulido, J.; Willmon, C.; Coffey, M.; Selby, P.; Melcher, A.; Harrington, K.; Vile, R.G. Improved systemic delivery of oncolytic reovirus to established tumors using preconditioning with cyclophosphamide-mediated Treg modulation and interleukin-2. Clin. Cancer Res. 2009, 15, 561–569. [Google Scholar] [CrossRef]
- Motoyoshi, Y. Different Mechanisms for Anti-Tumor Effects of Low-And High-Dose Cyclophosphamide; Nagasaki University: Nagasaki, Japan, 2008. [Google Scholar]
- Carabasi, M.H.; McKean, M.; Stein, M.N.; Schweizer, M.T.; Luke, J.J.; Narayan, V.; Pachynski, R.K.; Parikh, R.A.; Zhang, J.; Fountaine, T.J. PSMA Targeted Armored Chimeric Antigen Receptor (CAR) T-Cells in Patients with Advanced mCRPC: A Phase I Experience. J. Clin. Oncol. 2021, 39, 2534. [Google Scholar] [CrossRef]
- Gladney, W.; Vultur, A.; Schweizer, M.; Fraietta, J.; Rech, A.; June, C.; O’Rourke, M.; Roberts, A.; Patel, H.; Rosen, J. 335 analyses of severe immune-mediated toxicity in patients with advanced mCRPC treated with a PSMA-targeted armored CAR T-cells. BMJ Spec. J. 2022. [Google Scholar] [CrossRef]
- Pettitt, D.; Arshad, Z.; Smith, J.; Stanic, T.; Holländer, G.; Brindley, D. CAR-T cells: A systematic review and mixed methods analysis of the clinical trial landscape. Mol. Ther. 2018, 26, 342–353. [Google Scholar] [CrossRef]
- Adkins, S. The Role of Advanced Practitioners in Optimizing Clinical Management and Support of Patients With Cytokine Release Syndrome From CAR T-Cell Therapy. J. Adv. Pract. Oncol. 2019, 10, 833. [Google Scholar]
- Dietrich, J.; Frigault, M.J. Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS); UpToDate: Waltham, MA, USA, 2021. [Google Scholar]
- Pennisi, M.; Jain, T.; Santomasso, B.D.; Mead, E.; Wudhikarn, K.; Silverberg, M.L.; Batlevi, Y.; Shouval, R.; Devlin, S.M.; Batlevi, C. Comparing CAR T-cell toxicity grading systems: Application of the ASTCT grading system and implications for management. Blood Adv. 2020, 4, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Jiang, Z.; Jiang, W.; Yang, R. Universal chimeric antigen receptor T cell therapy—The future of cell therapy: A review providing clinical evidence. Cancer Treat. Res. Commun. 2022, 33, 100638. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Higano, C.S.; Armstrong, A.J.; Sartor, A.O.; Vogelzang, N.J.; Kantoff, P.W.; McLeod, D.G.; Pieczonka, C.M.; Penson, D.F.; Shore, N.D.; Vacirca, J. Real-world outcomes of sipuleucel-T treatment in PROCEED, a prospective registry of men with metastatic castration-resistant prostate cancer. Cancer 2019, 125, 4172–4180. [Google Scholar] [CrossRef]
- Sheikh, N.A.; Petrylak, D.; Kantoff, P.W.; dela Rosa, C.; Stewart, F.P.; Kuan, L.-Y.; Whitmore, J.B.; Trager, J.B.; Poehlein, C.H.; Frohlich, M.W. Sipuleucel-T immune parameters correlate with survival: An analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol. Immunother. 2013, 62, 137–147. [Google Scholar] [CrossRef] [PubMed]
- GuhaThakurta, D.; Sheikh, N.A.; Fan, L.-Q.; Kandadi, H.; Meagher, T.C.; Hall, S.J.; Kantoff, P.W.; Higano, C.S.; Small, E.J.; Gardner, T.A. Humoral immune response against nontargeted tumor antigens after treatment with sipuleucel-T and its association with improved clinical outcome. Clin. Cancer Res. 2015, 21, 3619–3630. [Google Scholar] [CrossRef] [PubMed]
- Hayes, T.G.; Sonpavde, G.; Wang, M.; Wang, Y.; Joe, T.; Mims, M.P.; Ittmann, M.M.; Wheeler, T.M.; Gee, A.P.; Wang, R.F. Phase I Trial of NY-ESO-1/LAGE1 Peptide Vaccine for Metastatic Castration Resistant Prostate Cancer (mCRPC). J. Clin. Oncol. 2012, 30, 4643. [Google Scholar] [CrossRef]
- Madan, R.; Gulley, J.; Dahut, W.; Tsang, K.; Steinberg, S.; Schlom, J.; Arlen, P. Overall survival (OS) analysis of a phase II study using a pox viral-based vaccine, PSA-TRICOM, in the treatment of metastatic, castrate-resistant prostate cancer (mCRPC): Implications for clinical trial design. J. Clin. Oncol. 2008, 26 (Suppl. S15), 3005. [Google Scholar] [CrossRef]
- Kitagawa, K.; Gonoi, R.; Tatsumi, M.; Kadowaki, M.; Katayama, T.; Hashii, Y.; Fujisawa, M.; Shirakawa, T. Preclinical development of a WT1 oral cancer vaccine using a bacterial vector to treat castration-resistant prostate cancer. Mol. Cancer Ther. 2019, 18, 980–990. [Google Scholar] [CrossRef] [PubMed]
- Zahm, C.D.; Colluru, V.T.; McNeel, D.G. DNA vaccines for prostate cancer. Pharmacol. Ther. 2017, 174, 27–42. [Google Scholar] [CrossRef]
- Cain, C. Translating mRNA vaccines. Sci.-Bus. Exch. 2012, 5, 1273. [Google Scholar] [CrossRef]
- Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. npj Vaccines 2019, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, J.; Heidu, S.; Balchen, T.; Richardson, J.R.; Schmeltz, C.; Sonne, J.; Schweiker, J.; Rammensee, H.-G.; Straten, P.T.; Røder, M.A. Vaccination against RhoC induces long-lasting immune responses in patients with prostate cancer: Results from a phase I/II clinical trial. J. Immunother. Cancer 2020, 8, e001157. [Google Scholar] [CrossRef]
- Madan, R.A.; Heery, C.R.; Gulley, J.L. Poxviral-based vaccine elicits immunologic responses in prostate cancer patients. Oncoimmunology 2014, 3, e28611. [Google Scholar] [CrossRef]
- Stenzl, A. Re: Phase III Trial of PROSTVAC in Asymptomatic or Minimally Symptomatic Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2019, 77, 131–132. [Google Scholar] [CrossRef] [PubMed]
- McNeel, D.G.; Fong, L.; Antonarakis, E.S.; Liu, G. Abstract B147: Randomized phase II trial of a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with recurrent prostate cancer (NCT01341652). Cancer Immunol. Res. 2016, 4 (Suppl. S1), B147. [Google Scholar] [CrossRef]
- Mao, C.; Ding, Y.; Xu, N. A double-edged sword role of cytokines in prostate cancer immunotherapy. Front. Oncol. 2021, 11, 688489. [Google Scholar] [CrossRef] [PubMed]
- Gopal, M. Role of cytokines in tumor immunity and immune tolerance to cancer. In Cancer Immunology: A Translational Medicine Context; Springer: Berlin/Heidelberg, Germany, 2014; pp. 93–119. [Google Scholar]
- Chulpanova, D.S.; Kitaeva, K.V.; Green, A.R.; Rizvanov, A.A.; Solovyeva, V.V. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front. Cell Dev. Biol. 2020, 8, 402. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Wang, Y.; Wu, D.; Lau, A.H.Y.; Zhao, P.; Zou, C.; Dai, Y.; Chan, F.L. Targeting prostate cancer stem-like cells by an immunotherapeutic platform based on immunogenic peptide-sensitized dendritic cells-cytokine-induced killer cells. Stem Cell Res. Ther. 2020, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Erb, H.H.; Langlechner, R.V.; Moser, P.L.; Handle, F.; Casneuf, T.; Verstraeten, K.; Schlick, B.; Schäfer, G.; Hall, B.; Sasser, K. IL6 sensitizes prostate cancer to the antiproliferative effect of IFNα2 through IRF9. Endocr. Relat. Cancer 2013, 20, 677. [Google Scholar] [CrossRef] [PubMed]
- Thalasila, A.; Poplin, E.; Shih, J.; Dvorzhinski, D.; Capanna, T.; Doyle-Lindrud, S.; Beers, S.; Goodin, S.; Rubin, E.; DiPaola, R.S. A phase I trial of weekly paclitaxel, 13-cis-retinoic acid, and interferon alpha in patients with prostate cancer and other advanced malignancies. Cancer Chemother. Pharmacol. 2003, 52, 119–124. [Google Scholar]
- Lin, Y.; Fukuchi, J.; Hiipakka, R.A.; Kokontis, J.M.; Xiang, J. Up-regulation of Bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. Cell Res. 2007, 17, 531–536. [Google Scholar] [CrossRef]
- Liu, B.; Lee, K.-W.; Li, H.; Ma, L.; Lin, G.L.; Chandraratna, R.A.; Cohen, P. Combination therapy of insulin-like growth factor binding protein-3 and retinoid X receptor ligands synergize on prostate cancer cell apoptosis in vitro and in vivo. Clin. Cancer Res. 2005, 11, 4851–4856. [Google Scholar] [CrossRef]
- Greve, P.; Meyer-Wentrup, F.A.; Peperzak, V.; Boes, M. Upcoming immunotherapeutic combinations for B-cell lymphoma. Immunother. Adv. 2021, 1, ltab001. [Google Scholar] [CrossRef]
- Liu, D. CAR-T “the Living Drugs”, Immune Checkpoint Inhibitors, and Precision Medicine: A New Era of Cancer Therapy. J. Hematol. Oncol. 2019, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Sam, J.; Colombetti, S.; Fauti, T.; Roller, A.; Biehl, M.; Fahrni, L.; Nicolini, V.; Perro, M.; Nayak, T.; Bommer, E. Combination of T-cell bispecific antibodies with PD-L1 checkpoint inhibition elicits superior anti-tumor activity. Front. Oncol. 2020, 10, 575737. [Google Scholar] [CrossRef] [PubMed]
- Daver, N. A bispecific approach to improving CAR T cells in AML. Blood J. Am. Soc. Hematol. 2020, 135, 703–704. [Google Scholar] [CrossRef] [PubMed]
- Slovin, S. Chemotherapy and immunotherapy combination in advanced prostate cancer. Clin. Adv. Hematol. Oncol. 2012, 10, 90–100. [Google Scholar]
- Cattrini, C.; España, R.; Mennitto, A.; Bersanelli, M.; Castro, E.; Olmos, D.; Lorente, D.; Gennari, A. Optimal sequencing and predictive biomarkers in patients with advanced prostate cancer. Cancers 2021, 13, 4522. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Fischer, J.W.; Bhattarai, N. CAR-T cell therapy: Mechanism, management, and mitigation of inflammatory toxicities. Front. Immunol. 2021, 12, 693016. [Google Scholar] [CrossRef]
- Kobold, S.; Pantelyushin, S.; Rataj, F.; Vom Berg, J. Rationale for combining bispecific T cell activating antibodies with checkpoint blockade for cancer therapy. Front. Oncol. 2018, 8, 285. [Google Scholar] [CrossRef]
- Vafaei, S.; Zekiy, A.O.; Khanamir, R.A.; Zaman, B.A.; Ghayourvahdat, A.; Azimizonuzi, H.; Zamani, M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int. 2022, 22, 2. [Google Scholar] [CrossRef]
- Collins, J.M.; Redman, J.M.; Gulley, J.L. Combining vaccines and immune checkpoint inhibitors to prime, expand, and facilitate effective tumor immunotherapy. Expert Rev. Vaccines 2018, 17, 697–705. [Google Scholar] [CrossRef]
- Rožková, D.; Tišerová, H.; Fučíková, J.; Lašt’ovička, J.; Podrazil, M.; Ulčová, H.; Budínský, V.; Prausová, J.; Linke, Z.; Minárik, I. FOCUS on FOCIS: Combined chemo-immunotherapy for the treatment of hormone-refractory metastatic prostate cancer. Clin. Immunol. 2009, 131, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Podrazil, M.; Horvath, R.; Becht, E.; Rozkova, D.; Bilkova, P.; Sochorova, K.; Hromadkova, H.; Kayserova, J.; Vavrova, K.; Lastovicka, J. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 2015, 6, 18192. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, S.K.; Bendell, J.C.; Carducci, M.A.; Kopp, L.M.; Scott, J.; Grady, M.M.; Gardner, O.; Wise, D.R. ARC-6: A Phase 1b/2, Open-Label, Randomized Platform Study to Evaluate Efficacy and Safety of Etrumadenant (AB928)-Based Treatment Combinations in Patients with Metastatic Castrate-Resistant Prostate Cancer (mCRPC). J. Clin. Oncol. 2021, 39, 5038. [Google Scholar] [CrossRef]
- Shah, K.; Ganapathy, A.; Borkowski, A.; Shah, N.; Bansal, D.; Beck, R.; Knoche, E.M.; Picus, J.; Reimers, M.A.; Roth, B.J. A Pilot Trial of Neoantigen DNA Vaccine in Combination with Nivolumab/Ipilimumab and Prostvac in Metastatic Hormone-Sensitive Prostate Cancer (mHSPC). J. Clin. Oncol. 2022, 40, 5068. [Google Scholar] [CrossRef]
- Chen, G.; VanderWeele, D.J.; Karzai, F.; Bilusic, M.; Al Harthy, M.; Arlen, P.M.; Rosner, I.L.; Chun, G.; Owens, H.; Couvillon, A. Efficacy of Abiraterone and Enzalutamide in Patients Who Had Disease Progression within Twelve Months of Completing Docetaxel for Metastatic Castration Sensitive Prostate Cancer. J. Clin. Oncol. 2019, 37, 241. [Google Scholar] [CrossRef]
- Linch, M.; Papai, Z.; Takacs, I.; Imedio, E.R.; Kühnle, M.-C.; Derhovanessian, E.; Vogler, I.; Renken, S.; Graham, P.; Sahin, U. 421 A first-in-human (FIH) phase I/IIa clinical trial assessing a ribonucleic acid lipoplex (RNA-LPX) encoding shared tumor antigens for immunotherapy of prostate cancer; preliminary analysis of PRO-MERIT. BMJ Spec. J. 2021, 9, A451. [Google Scholar] [CrossRef]
- Haas, N.B.; Stein, M.N.; Tutrone, R.; Perini, R.; Denker, A.; Mauro, D.; Fong, L. Phase I-II study of ADXS31-142 alone and in combination with pembrolizumab in patients with previously treated metastatic castration-resistant prostate cancer (mCRPC): The KEYNOTE-046 trial. J. ImmunoTherapy Cancer 2015, 3, P153. [Google Scholar] [CrossRef]
- Melo, C.M.; Vidotto, T.; Chaves, L.P.; Lautert-Dutra, W.; dos Reis, R.B.; Squire, J.A. The role of somatic mutations on the immune response of the tumor microenvironment in prostate cancer. Int. J. Mol. Sci. 2021, 22, 9550. [Google Scholar] [CrossRef]
- Parkhurst, M.R.; Robbins, P.F.; Tran, E.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Ivey, G.; Li, Y.F.; El-Gamil, M.; Lalani, A. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 2019, 9, 1022–1035. [Google Scholar] [CrossRef]
- Miyahira, A.K.; Sharp, A.; Ellis, L.; Jones, J.; Kaochar, S.; Larman, H.B.; Quigley, D.A.; Ye, H.; Simons, J.W.; Pienta, K.J. Prostate cancer research: The next generation; report from the 2019 Coffey-Holden prostate cancer academy meeting. Prostate 2020, 80, 113–132. [Google Scholar] [CrossRef]
- Shen, H.; Liu, T.; Cui, J.; Borole, P.; Benjamin, A.; Kording, K.; Issadore, D. A web-based automated machine learning platform to analyze liquid biopsy data. Lab A Chip 2020, 20, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Allam, M.; Cai, S.; Coskun, A.F. Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. npj Precis. Oncol. 2020, 4, 11. [Google Scholar] [CrossRef] [PubMed]
NCT Number | Trial Name | Phase | Estimated Patients | Description | Sponsor |
---|---|---|---|---|---|
NCT03093428 | N/A | 2 | 45 | Pembrolizumab + Radium-223 vs. Radium-223 in mCRPC | DFCI |
NCT05766371 | N/A | 2 | 48 | Pembrolizumab + 177Lu-PSMA-617 in mCRPC | UCSF |
NCT03007732 | N/A | 2 | 23 | Pembrolizumab +/− SD-101 in Hormone-Naïve Oligometastatic PCP with RT and iADT | UCSF |
NCT01688492 | N/A | 1b/2 | 57 | Ipilimumab + Abiraterone Acetate in Chemotherapy and Immunotherapy-naïve mCRPC | MSKCC |
NCT02985957 | CheckMate 650 | 2 | 351 | Nivolumab + Ipilimumab, Ipilimumab Alone, or Cabazitaxel in mCRPC | Bristol-Myers Squibb |
NCT03061539 | N/A | 2 | 380 | Nivolumab Plus Ipilimumab followed by Nivolumab in mCRPC | UCL |
NCT04446117 | CONTACT-02 | 3 | 580 | Atezolizumab + Carbozantinib vs. ARSI in mCRPC | Exelixis |
NCT05150236 | ANZUP2001 | 2 | 110 | Nivolumab + Ipilimumab + 177 Lu-PSMA in mCRPC | ANUPCTG |
NCT Number | Phase | Estimated Patients | Description | Sponsor |
---|---|---|---|---|
NCT05369000 | 1/2 | 66 | LAVA-1207 anti-PSMA × γδ | Lava Therapeutics |
NCT04898634 | 1 | 160 | JNJ-78278343 anti KLK2 | Janssen Research & Development |
NCT04740034 | 1 | 100 | AMG 340 anti-PSMA × CD3 | Amgen |
NCT05125016 | 1/2 | 199 | REGN4336/anti-PSMA × CD28 + Cemiplimab | Regeneron Pharmaceuticals |
NCT04702737 | 1 | 41 | AMG757/anti-DLL3 × CD3 | Amgen |
NCT04221542 | 1 | 464 | AMG 509/anti-STEAP1 × CD3 | Amgen |
NCT04104607 | 1 | 86 | anti-PSMA × CD3 CC-1 | University Hospital Tuebingen |
NCT Number | Phase | Estimated Patients | Description | Sponsor |
---|---|---|---|---|
NCT00664196 | 1 | 18 | PSMA CAR-T + IL-2 in Advanced Prostate Cancer after Non-Myeloablative Conditioning (suspended) | Roger Williams Medical Center |
NCT05732948 | 1 | 12 | PD-1 Silent PSMA/PSCA Targeted CAR-T for Prostate Cancer | Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd. |
NCT05805371 | 1 | 21 | PSCA-Targeting CAR-T Plus or Minus Radiation in PSCA+ mCRPC | City of Hope Medical Center |
NCT04249947 | 1 | 60 | P-PSMA-101 CAR-T in mCRPC and Advanced Salivary Gland Cancers | Poseida Therapeutics, Inc. |
NCT05022849 | 1 | 15 | KLK2 CAR-T/JNJ-75229414 in mCRPC | Janssen Research & Development, LLC |
NCT03089203 | 1 | 19 | CART-PSMA-TGFβRDN Cells in mCRPC | University of Pennsylvania |
NCT03873805 | 1 | 15 | PSCA-CAR T Cells in Treating Patients with PSCA+ mCRPC | City of Hope Medical Center |
NCT04227275 | 1 | 9 | CART-PSMA-TGFβRDN in mCRPC | Tmunity Therapeutics |
NCT04633148 | 1 | 39 | UniCAR02-T Cells and PSMA Target Module in mCRPC with Progressive Disease after Standard Systemic Therapy | AvenCell Europe GmbH |
NCT01140373 | 1 | 13 | Adoptive Transfer of Autologous T Cells Targeted to PSMA in mCRPC | Memorial Sloan Kettering Cancer Center |
NCT Number | Phase | Patients | Description | Sponsor |
---|---|---|---|---|
NCT00065442 | 3 | 512 | Provenge® (Sipuleucel-T) Active Cellular Immunotherapy in mCRPC | Dendreon |
NCT03199872 | 1/2 | 22 | RV001V, a RhoC Anticancer Vaccine, in Prostate Cancer | RhoVac APS |
NCT01322490 | 3 | 1297 | PROSTVAC-V/F +/− GM-CSF in mCRPC with Asymptomatic or Minimally Symptomatic Symptoms | Bavarian Nordic |
NCT01341652 | 2 | 99 | PAP Plus GM-CSF Versus GM-CSF Alone for Non-metastatic Prostate Cancer | University of Wisconsin, Madison |
NCT01197625 | 1/2 | 30 | DC-vaccination with Tumor mRNA in Curative Resected Prostate Cancer Patients | Oslo University Hospital |
NCT05533203 | 1 | 24 | Prodencel (an autologous dendritic cell therapeutic tumor vaccine) in mCRPC | Shanghai Humantech Biotechnology Co., Ltd. |
NCT01436968 | 3 | 711 | ProstAtak® Immunotherapy With Standard Radiation Therapy for Localized Prostate Cancer | Candel Therapeutics, Inc. |
NCT04701021 | 1 | 12 | TENDU Vaccine in Prostate Cancer Patients with Relapse after Primary Radical Prostatectomy | Ultimovacs ASA |
NCT00451022 | 3 | 750 | Follow-Up Study of Subjects (including prostate cancer) Previously Enrolled in a Poxviral Vector Vaccine Trial | National Cancer Institute |
NCT Number | Phase | Estimated Patients | Description | Sponsor |
---|---|---|---|---|
NCT03532217 | 1 | 19 | Neoantigen DNA Vaccine in Combination with Nivolumab/Ipilimumab and PROSTVAC in Hormone-Sensitive mCRPC | Washington University School of Medicine |
NCT02649855 | 2 | 74 | Docetaxel and PROSTVAC for mCRPC | NCI |
NCT02325557 | 1/2 | 51 | ADXS31-142 Alone and in Combination with Pembrolizumab in mCRPC | Advaxis, Inc |
NCT04382898 | 1/2 | 115 | PRO-MERIT in mCRPC | BioNTech SE |
NCT04989946 | 1/2 | 39 | ADT, +/− pTVG-AR, and +/− Nivolumab, in Newly Diagnosed, High-Risk Prostate cancer | University of Wisconsin, Madison |
NCT04090528 | 2 | 60 | pTVG-HP DNA Vaccine +/− pTVG-AR DNA Vaccine and Pembrolizumab in mCRPC | University of Wisconsin, Madison |
NCT03600350 | 2 | 19 | pTVG-HP and Nivolumab in Non-Metastatic PSA-Recurrent Prostate Cancer | University of Wisconsin, Madison |
NCT03315871 | 2 | 29 | Combination Immunotherapy in Biochemically Recurrent Prostate Cancer | NCI |
NCT04114825 | 2 | 180 | RV001V in Biochemical Failure Following Curatively Intended Therapy For Localized Prostate Cancer | RhoVac APS |
NCT03493945 | 1/2 | 113 | Immunotherapy Combination BN-Brachyury Vaccine, M7824, N-803 and Epacadostat in mCRPC | NCI |
NCT02933255 | 1/2 | 29 | PROSTVAC + Nivolumab in Prostate Cancer | NCI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Yang, Y.; Mortazavi, A.; Zhang, J. Emerging Immunotherapy Approaches for Treating Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 14347. https://doi.org/10.3390/ijms241814347
Meng L, Yang Y, Mortazavi A, Zhang J. Emerging Immunotherapy Approaches for Treating Prostate Cancer. International Journal of Molecular Sciences. 2023; 24(18):14347. https://doi.org/10.3390/ijms241814347
Chicago/Turabian StyleMeng, Lingbin, Yuanquan Yang, Amir Mortazavi, and Jingsong Zhang. 2023. "Emerging Immunotherapy Approaches for Treating Prostate Cancer" International Journal of Molecular Sciences 24, no. 18: 14347. https://doi.org/10.3390/ijms241814347
APA StyleMeng, L., Yang, Y., Mortazavi, A., & Zhang, J. (2023). Emerging Immunotherapy Approaches for Treating Prostate Cancer. International Journal of Molecular Sciences, 24(18), 14347. https://doi.org/10.3390/ijms241814347