Five Different Artemisia L. Species Ethanol Extracts’ Phytochemical Composition and Their Antimicrobial and Nematocide Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Composition of Certain Species of Artemisia L. Extracts
2.2. Antibacterial and Antifungal Activity of Ethanol Extracts of Artemisia L. Plants
2.3. Nematocidal Activity of cv. Artemisia L. Extracts
3. Materials and Methods
3.1. Sampling
3.2. Extracts’ Preparation
3.3. Gas Chromatography–Mass Spectrometry
3.4. High Performance Liquid Chromatography—Mass Spectrometry
3.5. Reagents
3.6. Antibacterial Effect Tests
3.6.1. Microorganism Strains and Growth Media
3.6.2. Antimicrobial Assay In Vitro
3.7. Nematocidal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 2022, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Mucciarelli, M.; Maffei, M. Introduction to the Genus. In Artemisia; Wright, C.W., Ed.; Taylor & Francis Inc.: New York, NY, USA, 2002; pp. 1–42. [Google Scholar] [CrossRef]
- Watson, L.E.; Bates, P.L.; Evans, T.M.; Unwin, M.M.; Estes, J.R. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol. Biol. 2002, 2, 17. [Google Scholar] [CrossRef]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. Genus: A Review of Bioactive Essential Oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef]
- Hayat, M.Q.; Ashraf, M.; Khan, M.A.; Jabeen, S. Ethnobotany of the genus Artemisia L. (Asteraceae) in Pakistan. Ethnobot. Res. Appl. 2009, 7, 147–162. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Shinyuy, L.M.; Loe, G.E.; Jansen, O.; Mamede, L.; Ledoux, A.; Noukimi, S.F.; Abenwie, S.N.; Ghogomu, S.M.; Souopgui, J.; Robert, A.; et al. Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review. Metabolites 2023, 13, 613. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wang, L.; He, C.; Zhao, J.; Si, L.; Huang, H. Artemisia scoparia: Traditional uses, active constituents and pharmacological effects. J. Ethnopharmacol. 2021, 273, 113960. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Vörös-Horváth, B.; Bencsik, T.; Micalizzi, G.; Mondello, L.; Horváth, G.; Kőszegi, T.; Széchenyi, A. Antimicrobial Activity of Different Artemisia Essential Oil Formulations. Molecules 2020, 25, 2390. [Google Scholar] [CrossRef]
- Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus Artemisia. Arch. Pharm. Res. 2021, 44, 439–474. [Google Scholar] [CrossRef]
- Kishore, N.; Dubey, N.K.; Chansouria, J.P.N. Antimycotic activity of the essential oil of Artemisia nilagirica. Flavour Fragr. J. 2001, 16, 61–63. [Google Scholar] [CrossRef]
- Wenqiang, G.; Shufen, L.; Ruixiang, Y.; Yanfeng, H. Comparison of composition and antifungal activity of Artemisia argyi Levl. et Vant inflorescence essential oil extracted by hydrodistillation and supercritical carbon dioxide. Nat. Prod. Res. 2006, 20, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Ge, D.; Li, S.; Huang, K.; Liu, J.; Li, F. Chemical Composition and Antimicrobial Activities of Artemisia argyi Lévl. et Vant Essential Oils Extracted by Simultaneous Distillation-Extraction, Subcritical Extraction and Hydrodistillation. Molecules 2019, 24, 483. [Google Scholar] [CrossRef] [PubMed]
- Kiso, Y.; Ogasawara, S.; Hirota, K.; Watanabe, N.; Oshima, Y.; Konno, C.; Hikino, H. Antihepatotoxic principles of Artemisia capillaris Buds 1. Planta Med. 1984, 50, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Shreenidhi, K.; Bose, V.G. A Preliminary Investigation on the Antihepatotoxic Activity of Artemisia pallens Leaves in the Diclofenac-Treated—Pangasius sps. Pol. J. Environ. Stud. 2022, 31, 4837–4849. [Google Scholar] [CrossRef]
- Ivanescu, B.; Lungu, C.; Vlase, L.; Gheldiu, A.M.; Grigorescu, C.; Corciova, A. Bioactive Compounds from Artemisia campestris L. subsp. Campestris. Rev. Chim. 2018, 69, 3076–3081. [Google Scholar] [CrossRef]
- Abate, G.; Zhang, L.; Pucci, M.; Morbini, G.; Mac Sweeney, E.; Maccarinelli, G.; Ribaudo, G.; Gianoncelli, A.; Uberti, D.; Memo, M.; et al. Phytochemical Analysis and Anti-Inflammatory Activity of Different Ethanolic Phyto-Extracts of Artemisia annua L. Biomolecules 2021, 11, 975. [Google Scholar] [CrossRef]
- Aglarova, A.M.; Zilfikarov, I.N.; Severtseva, O.V. Biological Characteristics and Useful Properties of Tarragon (Artemisia dracunculus L.) (Review). Pharm. Chem. J. 2008, 42, 81–86. [Google Scholar] [CrossRef]
- Tambo, E.; Khater, E.I.M.; Chen, J.-H.; Bergquist, R.; Zhou, X.-N. Nobel prize for the artemisinin and ivermectin discoveries: A great boost towards elimination of the global infectious diseases of poverty. Infect. Dis. Poverty 2015, 4, 58. [Google Scholar] [CrossRef]
- Xin-Zhuan, S.; Miller, L.H. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci. China Life Sci. 2015, 58, 1175–1179. [Google Scholar] [CrossRef]
- Wang, M.; Park, C.; Wu, Q.; Simon, J.E. Analysis of Artemisinin in Artemisia annua L. by LC-MS with Selected Ion Monitoring. J. Agric. Food Chem. 2005, 53, 7010–7013. [Google Scholar] [CrossRef]
- Teja-Isavadharm, P.; Siriyanonda, D.; Siripokasupkul, R.; Apinan, R.; Chanarat, N.; Lim, A.; Wannaying, S.; Saunders, D.; Fukuda, M.M.; Miller, R.S.; et al. A Simplified Liquid Chromatography-Mass Spectrometry Assay for Artesunate and Dihydroartemisinin, Its Metabolite, in Human Plasma. Molecules 2010, 15, 8747–8768. [Google Scholar] [CrossRef] [PubMed]
- Cesar, I.C.; Ribeiro, J.A.A.; Teixeira, L.S.; Bellorio, K.B.; de Abreu, F.C.; Moreira, J.M.; Chellini, P.R.; Pianetti, G.A. Liquid chromatography-tandem mass spectrometry for the simultaneous quantitation of artemether and lumefantrine in human plasma: Application for a pharmacokinetic study. J. Pharm. Biomed. Anal. 2011, 54, 114–120. [Google Scholar] [CrossRef]
- Persaud, S.; Eid, S.; Swiderski, N.; Serris, I.; Cho, H. Preparations of Rectal Suppositories Containing Artesunate. Pharmaceutics 2020, 12, 222. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Singh, P. The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils. Medicines 2017, 4, 68. [Google Scholar] [CrossRef]
- Anibogwu, R.; Jesus, K.D.; Pradhan, S.; Pashikanti, S.; Mateen, S.; Sharma, K. Extraction, Isolation and Characterization of Bioactive Compounds from Artemisia and Their Biological Significance: A Review. Molecules 2021, 26, 6995. [Google Scholar] [CrossRef]
- Seo, J.M.; Kang, H.M.; Son, K.H.; Kim, J.H.; Lee, C.W.; Kim, H.M.; Chang, S.I.; Kwon, B.M. Antitumor activity of flavones isolated from Artemisia argyi. Planta Med. 2003, 69, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Z.; Murch, S.J.; EL-Demerdash, M.; Saxena, P.K. Artemisia judaica L.: Micropropagation and antioxidant activity. J. Biotechnol. 2004, 110, 63–71. [Google Scholar] [CrossRef]
- Lee, H.G.; Yu, K.A.; Oh, W.K.; Baeg, T.W.; Oh, H.C.; Ahn, J.S.; Jang, W.C.; Kim, J.W.; Lim, J.S.; Choe, Y.K.; et al. Inhibitory effect of jaceosidin isolated from Artemisia argyion the function of E6 and E7 oncoproteins of HPV 16. J. Ethnopharmacol 2005, 98, 339–343. [Google Scholar] [CrossRef]
- Jia, L.; Song, Q.; Zhou, C.; Li, X.; Pi, L.; Ma, X. Dihydroartemisinin as a putative STAT3 inhibitor, suppresses the growth of head and neck squamous cell carcinoma by targeting Jak2/STAT3 signaling. PLoS ONE 2016, 11, 0147157. [Google Scholar] [CrossRef]
- Slezakova, S.; Ruda-Kucerova, J. Anticancer Activity of Artemisinin and its Derivatives. Anticancer Res. 2017, 37, 5995–6003. [Google Scholar] [CrossRef]
- Feng, X.; Cao, S.; Qiu, F.; Zhang, B.-L. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol. Ther. 2020, 216, 107650. [Google Scholar] [CrossRef]
- Kiani, B.H.; Kayani, W.K.; Khayam, A.U.; Dilshad, E.; Ismail, H.; Mirza, B. Artemisinin and its derivatives: A promising cancer therapy. Mol. Biol. Rep. 2020, 47, 6321–6336. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T. Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnol. Adv. 2018, 36, 1730–1737. [Google Scholar] [CrossRef]
- Efferth, T.; Romero, M.R.; Wolf, D.G.; Stamminger, T.; Marin, J.J.; Marschall, M. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis. 2008, 47, 804–811. [Google Scholar] [CrossRef]
- Obeid, S.; Alen, J.; Nguyen, V.H.; Pham, V.C.; Meuleman, P.; Pannecouque, C.; Le, T.N.; Neyts, J.; Dehaen, W.; Paeshuyse, J. Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS ONE 2013, 8, e81783. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.R.; Efferth, T.; Serrano, M.A.; Castano, B.; Macias, R.I.; Briz, O.; Marin, J.J. Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antivir. Res. 2005, 68, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Liu, P.; Hu, Y.; Liu, T.; Guo, Y.; Sun, P.; Zheng, J.; Ren, Z.; Wang, Y. Antiviral activities of Artemisia vulgaris L. extract against herpes simplex virus. Chin. Med. 2023, 18, 21. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, S.; Scaccabarozzi, D.; Signorini, L.; Perego, F.; Ilboudo, D.P.; Ferrante, P.; Delbue, S. The Use of Antimalarial Drugs against Viral Infection. Microorganisms 2020, 8, 85. [Google Scholar] [CrossRef]
- Rolta, R.; Salaria, D.; Sharma, P.P.; Sharma, B.; Kumar, V.; Rathi, B.; Verma, M.; Sourirajan, A.; Baumler, D.J.; Dev, K. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit Spike Protein of SARS-CoV-2 Binding to ACE2 Receptor: In Silico Approach. Curr. Pharmacol. Rep. 2021, 7, 135–149. [Google Scholar] [CrossRef]
- Cao, R.; Hu, H.; Li, Y.; Wang, X.; Xu, M.; Liu, J.; Zhang, H.; Yan, Y.; Zhao, L.; Li, W.; et al. Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect. Dis. 2020, 6, 2524–2531. [Google Scholar] [CrossRef]
- Sehailia, M.; Chemat, S. Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: Potential repurposing of artenimol for COVID-19. J. Biomol. Struct. Dyn. 2021, 16, 6184–6194. [Google Scholar] [CrossRef] [PubMed]
- Rai, K.K.; Sharma, L.; Pandey, N.; Meena, R.P.; Rai, S.P. Repurposing Artemisia annua L. flavonoids, artemisinin and its derivatives as potential drugs against novel coronavirus (SARS-nCoV) as revealed by in-silico studies. Int. J. Appl. Sci. Biotechnol. 2020, 84, 374–393. [Google Scholar] [CrossRef]
- Nie, C.; Trimpert, J.; Moon, S.; Haag, R.; Gilmore, K.; Kaufer, B.B.; Seeberger, P.H. In vitro efficacy of Artemisia extracts against SARS-CoV-2. Virol. J. 2021, 18, 182. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.; Huang, Y.; Fidock, D.A.; Polyak, S.J.; Wagoner, J.; Towler, M.J.; Weathers, P.J. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. J. Ethnopharmacol. 2021, 274, 114016. [Google Scholar] [CrossRef] [PubMed]
- Gendrot, M.; Duflot, I.; Boxberger, M.; Delandre, O.; Jardot, P.; Bideau, M.L.; Andreani, J.; Fonta, I.; Mosnier, J.; Rolland, C.; et al. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int. J. Infect. Dis. 2020, 99, 437–440. [Google Scholar] [CrossRef]
- Orege, J.I.; Adeyemi, S.B.; Tiamiyu, B.B.; Akinyemi, T.O.; Ibrahim, Y.A.; Orege, O.B. Artemisia and Artemisia-based products for COVID-19 management: Current state and future perspective. Adv. Tradit. Med. 2023, 23, 85–96. [Google Scholar] [CrossRef]
- Malhotra, A.; Rawat, A.; Prakash, O.; Kumar, R.; Srivastava, R.M.; Kumar, S. Chemical composition and pesticide activity of essential oils from Artemisia annua L. harvested in the rainy and winter seasons. Biochem. Syst. Ecol. 2023, 107, 104601. [Google Scholar] [CrossRef]
- Kim, Y.B.; Cho, H.J.; Yi, Y.S. Anti-inflammatory role of Artemisia argyi methanol extract by targeting the caspase-11 non-canonical inflammasome in macrophages. J. Ethnopharmacol. 2023, 307, 116231. [Google Scholar] [CrossRef] [PubMed]
- Qanash, H.; Bazaid, A.S.; Aldarhami, A.; Alharbi, B.; Almashjary, M.N.; Hazzazi, M.S.; Felemban, H.R.; Abdelghany, T.M. Phytochemical Characterization and Efficacy of Artemisia judaica Extract Loaded Chitosan Nanoparticles as Inhibitors of Cancer Proliferation and Microbial Growth. Polymers 2023, 15, 391. [Google Scholar] [CrossRef]
- Chebbac, K.; Benziane Ouaritini, Z.; El Moussaoui, A.; Chalkha, M.; Lafraxo, S.; Bin Jardan, Y.A.; Nafidi, H.-A.; Bourhia, M.; Guemmouh, R. Antimicrobial and Antioxidant Properties of Chemically Analyzed Essential Oil of Artemisia annua L. (Asteraceae) Native to Mediterranean Area. Life 2023, 13, 807. [Google Scholar] [CrossRef]
- Chebbac, K.; Benziane Ouaritini, Z.; Allali, A.; Tüzün, B.; Zouirech, O.; Chalkha, M.; El Moussaoui, A.; Lafraxo, S.; Nafidi, H.-A.; Bin Jardan, Y.A.; et al. Promising Insecticidal Properties of Essential Oils from Artemisia aragonensis Lam. and Artemisia negrei L. (Asteraceae) by Targeting Gamma-Aminobutyric Acid and Ryanodine Receptor Proteins: In Vitro and In Silico Approaches. Separations 2023, 10, 329. [Google Scholar] [CrossRef]
- Kshirsagar, S.G.; Rao, R.V. Antiviral and Immunomodulation Effects of Artemisia. Medicina 2021, 57, 217. [Google Scholar] [CrossRef]
- Banožić, M.; Wronska, A.W.; Jakovljević Kovač, M.; Aladić, K.; Jerković, I.; Jokić, S. Comparative Evaluation of Different Extraction Techniques for Separation of Artemisinin from Sweet Wormwood (Artemisia annua L.). Horticulturae 2023, 9, 629. [Google Scholar] [CrossRef]
- Hong, M.; Kim, M.; Jang, H.; Bo, S.; Deepa, P.; Sowndhararajan, K.; Kim, S. Multivariate Analysis of Essential Oil Composition of Artemisia annua L. Collected from Different Locations in Korea. Molecules 2023, 28, 1131. [Google Scholar] [CrossRef]
- Fitsev, I.M.; Blokhin, V.K.; Budnikov, G.K. Chromatographic techniques in forensic chemical examinations. J. Anal. Chem. 2004, 59, 1171–1180. [Google Scholar] [CrossRef]
- Singh, H.P.; Kaur, S.; Mittal, S.; Batish, D.R.; Kohli, R.K. Phytotoxicity of major constituents of the volatile oil from leaves of Artemisia scoparia Waldst. & Kit. Z. Naturforsch. 2008, 63, 663–666. [Google Scholar] [CrossRef]
- Al-Marzoqi, A.H.; Hameed, I.H.; Idan, S.A. Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC–MS). Afr. J. Biotechnol. 2015, 14, 2812–2830. [Google Scholar] [CrossRef]
- Zhigzhitzhapova, S.V.; Randalova, T.E.; Radnaeva, L.D. Composition of essential oil of Artemisia scoparia Waldst. et Kit. from Buryatia and Mongolia. Russ. J. Bioorg. Chem. 2016, 42, 730–734. [Google Scholar] [CrossRef]
- Hameed, I.H.; Altameme, H.J.; Idan, S.A. Artemisia annua: Biochemical products analysis of methanolic aerial parts extract and anti-microbial capacity. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1843–1868. [Google Scholar]
- Sharonova, N.L.; Terenzhev, D.A.; Bushmeleva, K.N.; Gumerova, S.K.; Lyubina, A.P.; Fitsev, I.M.; Belov, T.G. Phytochemical Contents, Antimicrobial and Antioxidant Properties of Gnaphalium uliginosum L. Ethanolic Extract and Essential Oil for Agricultural Uses. Asian J. Chem. 2019, 11, 2672–2678. [Google Scholar] [CrossRef]
- Sharonova, N.; Nikitin, E.; Terenzhev, D.; Lyubina, A.; Amerhanova, S.; Bushmeleva, K.; Rakhmaeva, A.; Fitsev, I.; Sinyashin, K. Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. Plants 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Wang, Y.H.; Smillie, T.J.; Mabusela, W.; Vincent, L.; Weitz, F.; Khan, I.A. Quantitative determination of flavonoids by column high-performance liquid chromatography with mass spectrometry and ultraviolet absorption detection in Artemisia afra and comparative studies with various species of Artemisia plants. J. AOAC Int. 2009, 92, 633–644. [Google Scholar] [CrossRef]
- Souhila, T.; Fatma Zohra, B.; Tahar, H.S. Identification and quantification of phenolic compounds of Artemisia herba-alba at three harvest time by HPLC-ESI–Q-TOF–MS. Int. J. Food Prop. 2019, 22, 843–852. [Google Scholar] [CrossRef]
- Fu, C.; Yu, P.; Wang, M.; Qiu, F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem. 2020, 312, 126070. [Google Scholar] [CrossRef]
- Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Woźniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Wang, Z.; Xu, F.; Li, J.; Li, J.; Wang, M. A Discovery-Based Metabolomic Approach Using UPLC-Q-TOF-MS/MS Reveals Potential Antimalarial Compounds Present in Artemisia annua L. Int. J. Mol. Sci. 2022, 23, 14903. [Google Scholar] [CrossRef] [PubMed]
- Fitsev, I.; Shlyamina, O.; Makaeva, A.; Nasybullina, G.; Saifutdinov, A. Detection of cypermethrin residues in toxicological control objects using gas chromatography-mass spectrometry with solid-phase extraction. Int. J. Mech. Prod. Eng. Res. Dev. 2020, 10, 5563–5570. [Google Scholar] [CrossRef]
- Fitsev, I.M.; Likhacheva, A.Y.; Sayfutdinov, A.M.; Mukharlyamova, A.Z.; Mokhtarova, S.L.; Nasybullina, Z.R. Determination of diquat and paraquat by high performance liquid chromatography in areas of environmental monitoring. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 2021, 163, 61–71. [Google Scholar] [CrossRef]
- Fitsev, I.M.; Rakhmetova, E.R.; Mukhammetshina, A.G.; Burkin, K.E.; Shlyamina, O.V. Gas Chromatography–Mass Spectrometry Determination of Deltamethrin in Food. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 2021, 163, 569–580. [Google Scholar] [CrossRef]
- Obistioiu, D.; Cristina, R.T.; Schmerold, I.; Chizzola, R.; Stolze, K.; Nichita, I.; Chiurciu, V. Chemical characterization by GC–MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem. Cent. J. 2014, 8, 6. [Google Scholar] [CrossRef]
- Al-Shuneigat, J.; Al-Sarayreh, S.; Al-Qudah, M.; Al-Tarawneh, I.; Al-Saraireh, Y.; Al-Qtaitat, A. GC–MS analysis and antibacterial activity of the essential oil isolated from wild Artemisia herba-alba grown in South Jordan. Br. J. Med. Med. Res. 2015, 5. [Google Scholar] [CrossRef]
- Sahu, N.; Meena, S.; Shukla, V.; Chaturvedi, P.; Kumar, B.; Datta, D.; Arya, K.R. Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination. J. Ethnopharmacol. 2018, 213, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Maharjan, B.; Bharati, S.; Shrestha, T.; Mishra, P.K.; Karanjit, S.; Shrestha, R.L.S. Phytochemical screening GC–MS analysis and biological activities of extracts of Artemisia vulgaris Linn. Amrit Res. J. 2021, 2, 83–92. [Google Scholar] [CrossRef]
- Houti, H.; Ghanmi, M.; Satrani, B.; Mansouri, F.E.; Cacciola, F.; Sadiki, M.; Boukir, A. Moroccan Endemic Artemisia herba-alba Essential Oil: GC–MS Analysis and Antibacterial and Antifungal Investigation. Separations 2023, 10, 59. [Google Scholar] [CrossRef]
- Fitsev, I.M.; Nikitin, E.N.; Rakhmaeva, A.M.; Terenzhev, D.A.; Sakhno, T.M.; Nasybullina, Z.R. Chemical composition of Cupressus sempervirens L. and Thuja occidentalis L. essential oils and their activity against phytopathogenic fungi. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 2022, 164, 392–407. [Google Scholar] [CrossRef]
- Lee, S.J.; Chung, H.Y.; Maier, C.G.A.; Wood, A.R.; Dixon, R.A.; Mabry, T.J. Estrogenic Flavonoids from Artemisia vulgaris L. J. Agric. Food Chem. 1998, 46, 3325–3329. [Google Scholar] [CrossRef]
- Farzaneh, M.; Ahmadzadeh, M.; Hadian, J.; Tehrani, A.S. Chemical composition and antifungal activity of the essential oils of three species of Artemisia on some soil-borne phytopathogens. Commun. Agric. Appl. Biol. Sci. 2006, 71, 1327–1333. [Google Scholar]
- Bouzenna, H.; Krichen, L. Pelargonium graveolens L’Her. and Artemisia arborescens L. essential oils: Chemical composition, antifungal activity against Rhizoctonia solani and insecticidal activity against Rhyzopertha dominica. Nat. Prod. Res. 2013, 27, 841–846. [Google Scholar] [CrossRef]
- Ramezani, M.; Fazli-Bazzaz, B.; Saghafi-Khadem, F.; Dabaghian, A. Antimicrobial activity of four Artemisia species of Iran. Fitoterapia 2004, 75, 201–203. [Google Scholar] [CrossRef]
- Sengul, M.; Ercisli, S.; Yildiz, H.; Gungor, N.; Kavaz, A.; Çetin, B. Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran. J. Pharm. Res. 2011, 10, 49. [Google Scholar]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J. Food Meas. Charact. 2017, 11, 847–863. [Google Scholar] [CrossRef]
- Yun, K.W.; Jeong, H.J.; Kim, J.H. The influence of the growth season on the antimicrobial and antioxidative activity in Artemisia princeps var. orientalis. Ind. Crops Prod. 2008, 27, 69–74. [Google Scholar] [CrossRef]
- Dhingra, V.; Pakki, S.R.; Narasu, M.L. Antimicrobial activity of artemisinin and its precursors. Curr. Sci. 2000, 78, 709–713. [Google Scholar]
- Gupta, P.C.; Dutta, B.; Pant, D.; Joshi, P.; Lohar, D.R. In Vitro Antibacterial Activity of Artemisia annua Linn. Growing in India. Int. J. Green Pharm. 2009, 3. [Google Scholar] [CrossRef]
- Sotirova, A.; Mutafova, B.; Berkov, S.; Nikolova, M. Antibacterial Activity of Methanol Extract and Acetone Exudates from Bulgarian Plants. Acta Microbiol. Bulg. 2022, 38, 48–51. [Google Scholar]
- Bordean, M.E.; Ungur, R.A.; Toc, D.A.; Borda, I.M.; Marțiș, G.S.; Pop, C.R.; Filip, M.; Vlassa, M.; Nasui, B.A.; Pop, A.; et al. Antibacterial and Phytochemical Screening of Artemisia Species. Antioxidants 2023, 12, 596. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef]
- Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol. 2017, 208, 236–252. [Google Scholar] [CrossRef]
- Andrade, T.C.; De Lima, S.G.; Freitas, R.M.; Rocha, M.S.; Islam, M.; Da Silva, T.G.; Militão, G.C. Isolation, characterization and evaluation of antimicrobial and cytotoxic activity of estragole, obtained from the essential oil of Croton zehntneri (Euphorbiaceae). An. Acad. Bras. Ciências 2015, 87, 173–182. [Google Scholar] [CrossRef]
- Shin, S.; Kang, C.-A. Antifungal Activity of the Essential Oil of Agastache Rugosa Kuntze and Its Synergism with Ketoconazole. Lett. Appl. Microbiol. 2003, 36, 111–115. [Google Scholar] [CrossRef]
- Shin, S. Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch. Pharm. Res. 2004, 27, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Tajbakhsh, M.; Soleimani, N. Evaluation of the bactericidal effects of Zingiber officinale, Aloysia citrodora and Artemisia dracunculus on the survival of standard Gram-positive and Gram-negative bacterial strains. Jorjani Biomed. J. 2018, 6, 22–32. [Google Scholar] [CrossRef]
- Ekiert, H.; Świątkowska, J.; Knut, E.; Klin, P.; Rzepiela, A.; Tomczyk, M.; Szopa, A. Artemisia dracunculus (Tarragon): A review of its traditional uses, phytochemistry and pharmacology. Front. Pharmacol. 2021, 12, 653993. [Google Scholar] [CrossRef] [PubMed]
- Dadasoglu, F.; Kotan, R.; Cakir, A.; Cakmakci, R.; Kordali, S.; Ozer, H.; Karagoz, K.; Dikbas, N. Antibacterial activities of essential oils, extracts and some of their major components of Artemisia spp. L. against seed-borne plant pathogenic bacteria. Fresenius Environ. Bull. 2015, 24, 2715–2724. [Google Scholar]
- Rahhal, B.M.; Jaradat, N.; Hawash, M.; Qadi, M.; Issa, L.; Yahya, A.; Sanyora, S.; Saed, M.; Al-Rimawi, F. Phytochemical Screening, Antioxidative, Antiobesity, Antidiabetic and Antimicrobial Investigations of Artemisia scoparia Grown in Palestine. Processes 2022, 10, 2050. [Google Scholar] [CrossRef]
- Yamaga, I.; Nakamura, S. Penicillium growth inhibition, fruit decay reduction, and polymethoxyflavones and scoparone induction in satsuma mandarin irradiated with ultraviolet-A light-emitting diodes. Sci. Hortic. 2022, 303, 111197. [Google Scholar] [CrossRef]
- Manika, N.; Chanotiya, C.S.; Darokar, M.; Singh, S.; Das Bagchi, G. Compositional characters and antimicrobial potential of Artemisia stricta Edgew. F. stricta Pamp. Essential oil. Rec. Nat. Prod. 2016, 10, 40–46. [Google Scholar]
- Stojanović, G.S.; Ickovski, J.D.; Đorđević, A.S.; Petrović, G.M.; Stepić, K.D.; Palić, I.R.; Stamenković, J.G. The First Report on Chemical Composition and Antimicrobial Activity of Artemisia scoparia Waldst. et Kit. Extracts. Nat. Prod. Commun. 2020, 15, 1934578X20915034. [Google Scholar] [CrossRef]
- Sugimoto, N.; Tada, A.; Yamazaki, T.; Tanamoto, K. Antimicrobial activity and constituents in rumput roman extract as a natural food preservative. J. Food Hyg. Soc. Jpn. 2007, 48, 106–111. [Google Scholar] [CrossRef]
- Imai, K. Studies on the essential oil of Artemisia capillaris Thunb. III. Antifungal activity of essential oil. Structure and antifungal principal capillin. Yakugaku Zasshi J. Pharm. Soc. Jpn. 1956, 76, 405–408. [Google Scholar] [CrossRef]
- Alzoreky, N.S.; Nakahara, K. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 2003, 80, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Avila, D.; Helmcke, K.; Aschner, M. The Caenorhabiditis elegans model as a reliable tool in neurotoxicology. Hum. Exp. Toxicol. 2012, 31, 236–243. [Google Scholar] [CrossRef]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef]
- Choi, J. Caenorhabditis elegans as a biological model for multilevel biomarker analysis in environmental toxicology and risk assessment. Toxicol Res. 2008, 24, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Shin, Y.; Shin, Y.; Park, Y.S.; Cho, N.J. Regulation of ERK1/2 by the C. elegans muscarinic acetylcholine receptor GAR-3 in Chinese hamster ovary cells. Mol. Cells 2008, 25, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; LeBoeuf, B.; Garcia, L.R. Gαq-coupled muscarinic acetylcholine receptors enhance nicotinic acetylcholine receptor signaling in Caenorhabditis elegans mating behavior. J. Neurosci. 2007, 27, 1411–1421. [Google Scholar] [CrossRef] [PubMed]
- Steger, K.A.; Avery, L. The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 2004, 167, 633–643. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef]
- Sattelle, D.B. Invertebrate nicotinic acetylcholine receptors-targets for chemicals and drugs important in agriculture, veterinary medicine and human health. J. Pestic. Sci. 2009, 34, 233–240. [Google Scholar] [CrossRef]
- Dent, J.A. What can Caenorhabditis elegans tell us about nematocides and parasites? Biotechnol. Bioprocess Eng. 2001, 6, 252–263. [Google Scholar] [CrossRef]
- Holden-Dye, L.; Walker, R.J. Anthelmintic drugs and nematicides: Studies in Caenorhabditis elegans. In WormBook; University of Southampton: Southampton, UK, 2014; pp. 1–29. [Google Scholar] [CrossRef]
- Kalmykova, A.D.; Yakupova, E.N.; Bekmuratova, F.A.; Fitsev, I.M.; Ziyatdinova, G.K. Evaluation of the antioxidant properties and GC–MSD analysis of commercial essential oils from plants of the Lamiaceae family. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 2023, 165, 94–117. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 3–47. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4. [Google Scholar]
- Clinical and Laboratory Standards Institutes (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In CLSI Standard M07, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; p. 112. [Google Scholar]
- Kanagarajan, V.; Ezhilarasi, M.R.; Gopalakrishnan, M. In vitro microbiological evaluation of 1,1′-(5,5′-(1,4-phenylene)bis(3-aryl-1H-pyrazole-5,1-(4H,5H)-diyl))diethanones, novel bisacetylated pyrazoles. Org. Med. Chem. Lett. 2011, 1, 8. [Google Scholar] [CrossRef]
- Akhmedov, A.; Gamirov, R.; Panina, Y.; Sokolova, E.; Leonteva, Y.; Tarasova, E.; Potekhina, R.; Fitsev, I.; Shurpik, D.; Stoikov, I. Towards potential antifungal agents: Synthesis, supramolecular self-assembly and in vitro activity of azole mono-, sesqui- and diterpenoids. Org. Biomol. Chem. 2023, 21, 4863–4873. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institutes (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. In CLSI Standard M27, 4th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; p. 31. [Google Scholar]
- ISO 5725-1:1994; Accuracy (Trueness and Precision) of Measurements Methods and Results–Part 1: General Principles and Definitions. TC 69/SC 6; International Standards Organization: Geneva, Switzerland, 1994.
- ISO/IEC GUIDE 98-1:2009; Uncertainty of Measurement—Part 1: Introduction to the Expression of Uncertainty in Measurement. International Organization for Standardization: Geneva, Switzerland, 2009; p. 32.
tR1, min | Compound | ω (%) | ||||
---|---|---|---|---|---|---|
A. annua cv. Novichok | A. dracunculus cv. Smaragd | A. santonica cv. Citral | A. abrotanum cv. Euxin | A. scoparia cv. Tavrida | ||
1 | 3 | 6 | 7 | 8 | 9 | 10 |
6.38 | α-pinene | 0.52 | 0.21 | 7.94 | 0.083 | 5.24 |
6.43 | Camphene | 3.34 | 1.10 | 2.99 | 8.10 | 0.09 |
6.66 | β-pinene | 0.84 | 1.01 | 0.54 | 0.09 | 5.68 |
6.96 | Sabinene | 1.26 | 0.06 | – | – | 1.41 |
7.08 | β-myrcene | 9.82 | 1.35 | 8.02 | 0.06 | 0.54 |
7.11 | 3-carene | 2.16 | 1.30 | 0.09 | 0.05 | 0.04 |
7.83 | Limonene | 1.87 | 3.61 | 3.54 | – | 2.80 |
7.90 | cis-β-ocimene | 1.0 | 1.37 | 1.23 | – | – |
7.78 | Zineol | 11.76 | 4.23 | 1.56 | – | 0.11 |
7.99 | trans-β-ocimene | 1.02 | 0.05 | 14.51 | 23.21 | 0.09 |
8.17 | Artemisia ketone | 32.81 | – | 1.21 | – | 0.05 |
8.53 | Artemisia alcohol | 3.74 | 0.06 | 0.05 | – | 0.08 |
8.94 | cis-sabinenehydrate | – | – | 1.58 | 0.08 | – |
9.71 | Camphor | 10.10 | – | 1.32 | 1.29 | – |
9.86 | cis-chrysanthenol | – | – | 21.57 | 34.26 | – |
10.07 | Borneol | 1.95 | – | – | 1.43 | 2.05 |
10.37 | Estragole | – | 56.20 | 4.86 | 3.34 | – |
10.90 | α-citral | 0.63 | 1.28 | 2.85 | 0.35 | 1.83 |
11.30 | β-citral | 1.02 | 0.91 | 3.74 | 0.38 | 2.02 |
12.53 | Eugenol | – | – | 4.73 | – | 1.70 |
13.63 | Caryophyllene | 0.73 | – | 0.04 | 0.05 | 3.02 |
13.79 | (E)-β-famesene | 1.96 | – | 1.05 | 0.19 | – |
14.23 | α-curcumene | – | – | 0.13 | – | 2.34 |
14.39 | Germacrene D | – | – | 0.07 | – | – |
14.41 | β-selinene | 1.70 | – | 3.29 | – | – |
14.50 | Capillene | – | 0.04 | 1.23 | 3.54 | 44.61 |
15.54 | Capillin | – | 0.05 | 0.87 | – | 7.46 |
16.07 | Spathulenol | 0.16 | 2.89 | 0.82 | – | 3.83 |
16.15 | Isospathulenol | – | 1.60 | 5.48 | 0.06 | – |
16.45 | α-eudesmol | 0.08 | – | 0.17 | 1.43 | – |
16.63 | α-bisabolol | 0.40 | – | – | 8.18 | 0.52 |
17.12 | Arteannuin b | 4.00 | – | – | – | – |
18.22 | Arteannuic acid | 4.05 | 1.24 | – | – | 0.86 |
19.09 | (2E,4E)-N-isobutyl-2,4-undecadiene-8,10-diynamide | 0.06 | 2.61 | 0.15 | 0.54 | – |
19.46 | Pellitorine | – | 3.64 | 1.97 | 0.93 | – |
19.52 | Scopoletin | 2.08 | – | – | – | – |
20.58 | Scoparone | – | – | 0.26 | 2.01 | 10.93 |
20.60 | Isofraxidin | 0.08 | 0.24 | – | 0.10 | – |
20.75 | Phytol | 0.81 | 1.68 | – | 10.01 | 0.98 |
21.02 | (2E,4E)-1-(piperidin-1-yl)deca-2,4-dien-1-one | – | 3.19 | – | – | – |
21.14 | 7-geranyloxycoumarin | – | 10.05 | 2.25 | 0.20 | – |
29.76 | α-Amyrin | – | – | – | – | 1.70 |
tR1, min | Compound | ω (%) | ||||
---|---|---|---|---|---|---|
A. annua cv. Novichok | A. dracunculus cv. Smaragd | A. santonica cv. Citral | A. abrotanum cv. Euxin | A. scoparia cv. Tavrida | ||
1 | 2 | 8 | 9 | 10 | 11 | 12 |
2.4 | Arteannuic acid | 4.85 | 1.74 | – | – | 0.92 |
15.0 | Gentisic acid | 0.57 | 0.52 | 0.48 | 0.10 | 0.58 |
33.5 | Scopolin | 2.09 | – | – | – | – |
35.8 | Isofraxidin | 1.11 | 2.28 | 2.54 | 2.22 | 2.12 |
36.7 | Feruloyl glucose | 1.71 | 4.92 | 1.53 | 4.63 | 4.23 |
38.5 | Vicenin-2 | 0.06 | 4.61 | – | 2.04 | 6.08 |
40.8 | 3-O-feruloyl-quinic acid | 3.84 | 4.61 | 2.73 | 4.52 | 4.32 |
46.8 | Scopoletin 2 | 2.06 | – | – | – | – |
49.9 | Fraxidin | 1.04 | 2.05 | 2.05 | 2.02 | 1.61 |
51.3 | Rutin 2 | 3.23 | 2.28 | 4.14 | 5.04 | 2.98 |
52.3 | Isoquercetin | 3.39 | 3.91 | 4.25 | 3.35 | 0.63 |
53.5 | Quercetin-3-O-hexoside | 4.73 | 2.94 | 4.83 | 4.83 | 5.33 |
53.8 | Luteolin 7-O-glucoside | 3.43 | 3.32 | 3.34 | 2.78 | 7.24 |
57.2 | Isochlorogenic acid | 3.04 | 3.45 | 3.56 | 3.22 | 6.34 |
58.5 | Isorhamnetin-3-rutinoside | 4.44 | 3.35 | 3.23 | 4.22 | – |
58.9 | Quercetrin | 6.41 | 6.74 | 7.69 | 6.53 | 2.10 |
61.4 | Luteolin 2 | 3.32 | 3.57 | 5.90 | 7.60 | 5.67 |
61.5 | Isorhamnetin | 2.51 | 3.07 | 5.58 | 4.59 | 7.55 |
62.0 | Eupatolitin | 2.28 | 2.39 | 3.82 | 3.83 | 3.32 |
63.5 | Rosmarinic acid | 6.73 | 7.45 | 8.10 | 4.39 | 5.64 |
63.6 | β-santonin | 7.39 | 8.98 | 8.41 | 8.08 | 6.01 |
63.8 | Chrysosplenol D | 7.16 | 9.94 | 7.91 | 8.31 | 8.20 |
64.1 | Taurin 3 | 3.44 | 4.78 | 3.72 | 3.12 | 1.23 |
65.4 | Cirsilineol | 7.06 | 7.32 | 7.04 | 6.16 | 3.84 |
66.7 | Casticin | 8.58 | 4,87 | 8.81 | 8.32 | 8.23 |
68.7 | Arteannuin b | 4.05 | – | – | – | – |
72.2 | Artemisinin 2 | 1.45 | 0.24 | 0.12 | 0.07 | 0.16 |
Bacteria/Fungi Strain | A. annua cv. Novichok | A. dracunculus cv. Smaragd | A. santonica cv. Citral | A. abrotanum cv. Euxin | A. scoparia cv. Tavrida | Nor 1/Chl 2/Dif 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | |
Rathayibacter iranicus VKM Ac-162 | 500 | 1000 | 310 | 310 | 1000 | 1000 | 2000 | 2000 | 5000 | 5000 | 0.50 | 0.50 |
Bacillus subtilis VKM B-12 | 2000 | >5000 | 2000 | >5000 | 4000 | >5000 | 4000 | >5000 | 4000 | >5000 | 0.50 | 0.50 |
Agrobacterium tumefaciens A-47 | 4000 | 4000 | 2000 | 2000 | 2000 | 2000 | 4000 | 4000 | 625 | 625 | 250.00 | 500.00 |
Xanthomonas arboricola S3 | 1000 | 2000 | 625 | 1250 | 560 | 1120 | 2000 | 4000 | 150 | 625 | 250.00 | 500.00 |
Alternaria solani K-100054 | 4000 | 4000 | 2500 | 2500 | 2500 | 2500 | >5000 | >5000 | 1250 | 1250 | 1.90 | 31.30 |
Fusarium graminearum FG-30 | 4000 | >5000 | 2500 | 2500 | 2500 | 2500 | >5000 | >5000 | 310 | 625 | 3.90 | 62.50 |
Rhizoctonia solani VKM F-895 | 2000 | 2000 | 2500 | 5000 | 1120 | 1120 | >5000 | >5000 | 150 | 625 | 3.90 | 125.00 |
Sample | Percentage of Dead Nematodes, % | |||||
---|---|---|---|---|---|---|
Extract Concentration, µg/mL | ||||||
1000 | 500 | 250 | 125 | 62.5 | 31.25 | |
A. annua cv. Novichok | 100 | 92.0 ± 2.2 | 75.3 ± 3.5 | 55.3 ± 4.0 | 46.0 ± 4.0 | 22.0 ± 4.1 |
A. dracunculus cv. Smaragd | 100 | 95.3 ± 1.7 | 68.0 ± 3.8 | 44.0 ± 4.0 | 34.0 ± 3.8 | 24.0 ± 4.2 |
A. santonica cv. Citral | 100 | 94.5 ± 1.6 | 80.0 ± 2.8 | 67.0 ± 3.3 | 51.0 ± 3.5 | 40.0 ± 3.4 |
Sample | Percentage of Dead Nematodes, % | ||||
---|---|---|---|---|---|
N2 | RB896 gar-1 | RB756 gar-2 | JD217 gar-3 | RB918 acr-16 | |
A. annua cv. Novichok | 85.2 ± 2.2 | 9.5 ± 2.0 | 9.0 ± 2.0 | 83.6 ± 2.3 | 8.0 ± 1.9 |
A. dracunculus cv. Smaragd | 82.4 ± 2.4 | 77.2 ± 2.6 | 72.0 ± 2.8 | 84.5 ± 2.5 | 83.0 ± 2.6 |
A. santonica cv. Citral | 86.5 ± 2.4 | 48.0 ± 3.5 | 93.5 ± 1.7 | 27.5 ± 3.1 | 83.5 ± 2.6 |
Sample | Percentage of Dead Nematodes, % | |||||
---|---|---|---|---|---|---|
N2 | VC1041 lev-8 | VC428 unc-63 | CB211 lev-1 | CB904 unc-38 | CB522 unc-29 | |
A. annua cv. Novichok | 92.0 ± 1.7 | 85.5 ± 2.4 | 14.8 ± 2.2 | 46.5 ± 3.5 | 86.5 ± 2.4 | 90.8 ± 1.8 |
A. dracunculus cv. Smaragd | 82.0 ± 2.7 | 55.2 ± 3.1 | 35.0 ± 3.3 | 28.5 ± 3.1 | 47.5 ± 3.5 | 67.6 ± 2.9 |
A. santonica cv. Citral | 91.0 ± 2.0 | 67.5 ± 3.3 | 27.5 ± 3.1 | 66.0 ± 3.3 | 100 | 62.5 ± 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitin, E.; Fitsev, I.; Egorova, A.; Logvinenko, L.; Terenzhev, D.; Bekmuratova, F.; Rakhmaeva, A.; Shumatbaev, G.; Gatiyatullina, A.; Shevchuk, O.; et al. Five Different Artemisia L. Species Ethanol Extracts’ Phytochemical Composition and Their Antimicrobial and Nematocide Activity. Int. J. Mol. Sci. 2023, 24, 14372. https://doi.org/10.3390/ijms241814372
Nikitin E, Fitsev I, Egorova A, Logvinenko L, Terenzhev D, Bekmuratova F, Rakhmaeva A, Shumatbaev G, Gatiyatullina A, Shevchuk O, et al. Five Different Artemisia L. Species Ethanol Extracts’ Phytochemical Composition and Their Antimicrobial and Nematocide Activity. International Journal of Molecular Sciences. 2023; 24(18):14372. https://doi.org/10.3390/ijms241814372
Chicago/Turabian StyleNikitin, Evgeny, Igor Fitsev, Anastasia Egorova, Lidia Logvinenko, Dmitriy Terenzhev, Feruzakhon Bekmuratova, Adelya Rakhmaeva, Georgiy Shumatbaev, Alsu Gatiyatullina, Oksana Shevchuk, and et al. 2023. "Five Different Artemisia L. Species Ethanol Extracts’ Phytochemical Composition and Their Antimicrobial and Nematocide Activity" International Journal of Molecular Sciences 24, no. 18: 14372. https://doi.org/10.3390/ijms241814372
APA StyleNikitin, E., Fitsev, I., Egorova, A., Logvinenko, L., Terenzhev, D., Bekmuratova, F., Rakhmaeva, A., Shumatbaev, G., Gatiyatullina, A., Shevchuk, O., & Kalinnikova, T. (2023). Five Different Artemisia L. Species Ethanol Extracts’ Phytochemical Composition and Their Antimicrobial and Nematocide Activity. International Journal of Molecular Sciences, 24(18), 14372. https://doi.org/10.3390/ijms241814372