Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria
Abstract
:1. Introduction
2. Modern Research on Heavy Metal Toxicity
3. Conclusions
Funding
Conflicts of Interest
Abbreviations
3UDNP state | 2,4-Dinitrophenol uncoupled state |
5-HD | 5-Hydroxydecanoate |
ΔΨmito | Inner mitochondrial membrane potential |
AgNPs | Silver nanoparticles |
AlNPs | Aluminum nanoparticles |
ANT | Adenine nucleotide translocase |
BAPTA | 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid |
Bax | apoptosis-inducing factor |
Bcl-2 | apoptosis-inducing factor |
BHM | Bovine heart mitochondria |
BKA | Bongkrekic acid |
CI–CV | Inner membrane mitochondrial complexes I–V |
CaMK-II | Ca2+/calmodlin-dependent protein kinase II |
CAT | Carboxyatractyloside |
CCCP | Carbonyl cyanide m-chlorophenyl hydrazone |
CsA | Cyclosporine A |
Diam | Diamide |
DIDS | 4,4′-Diisothiocyanostilbene-2,2′-disulfonate |
DMSO | Dimethyl sulfoxide |
DNP | 2,4-Dinitrophenol |
DTT | Dithiothreitol |
EDTA | Ethylenediaminetetraacetic acid |
EGTA | Ethylene glycol-bis(β-aminoethyl ether) N,N,N′,N′-tetraacetic acid |
EMA | Eosin-5-maleimide |
ER | Endoplasmic reticulum |
ERK | Extracellular signal-regulated kinase |
ETC | Electron transport chain |
GSH | Glutathione |
IMM | Inner mitochondrial membrane |
JNK | Jun N-terminal kinase |
LDH | Lactate dehydrogenase |
MCU | Mitochondrial Ca2+ uniporter |
mitoKATP | Mitochondrial ATP-sensitive potassium channel |
mitoKCa | Mitochondrial BK-type Ca2+-activated potassium channel |
MPTP | Mitochondrial permeability transition pore |
NAC | N-acetylcysteine |
NEM | n-Ethylmaleimide |
PAO | Phenylarsine oxide |
Pi | Inorganic phosphate |
RCR | Respiratory control ratio |
RHM | Rat heart mitochondria |
RKM | Rat kidney mitochondria |
RLM | Rat liver mitochondria |
ROS | Reactive oxygen species |
RR | Ruthenium red |
Ru360 | An analog of ruthenium red |
SOD | Superoxide dismutase |
tBHP | Tert-butyl hydroperoxide |
TMPD | N,N,N,N-tetramethyl-p-phenylenediamine |
References
- Riley, M.V.; Lehninger, A.L. Changes in sulfhydryl groups of rat liver mitochondria during swelling and contraction. J. Biol. Chem. 1964, 239, 2083–2089. [Google Scholar] [CrossRef] [PubMed]
- Faddeeva, M.D.; Beliaeva, T.N.; Sokolovskaia, E.L. Effect of a number of biologically active substances on the activity of membrane-bound Na+,K+-ATPase from the bovine brain. Tsitologiia 1987, 29, 576–581. (In Russian) [Google Scholar] [PubMed]
- Higashida, H.; Semba, R.K.; Niwa, F.; Kashiwamata, S. Mitochondrial malate dehydrogenase of bovine cerebrum. Characterization and mechanisms of inhibition by silver ions. J. Biochem. 1975, 78, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Kone, B.C.; Kaleta, M.; Gullans, S.R. Silver ion Ag+-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: Reversal by thiol reagents. J. Membr. Biol. 1988, 102, 11–19. [Google Scholar] [CrossRef]
- Kone, B.C.; Brenner, R.M.; Gullans, S.R. Sulfhydryl-reactive heavy metals increase cell membrane K+ and Ca2+ transport in renal proximal tubule. J. Membr. Biol. 1990, 113, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.V. The biochemistry of sodium, potassium, magnesium, and calcium. Q. Rev. Chem. Soc. 1970, 3, 331–365. [Google Scholar] [CrossRef]
- Douglas, K.T.; Bunni, M.A.; Baindur, S.R. Thallium in biochemistry. Int. J. Biochem. 1990, 22, 429–438. [Google Scholar] [CrossRef]
- Skul’skiĭ, I.A. The isomorphism of univalent thallium and potassium in membrane transport processes. Tsitologiia 1991, 33, 118–129. (In Russian) [Google Scholar]
- Korotkov, S.M. Mitochondria as a Key Intracellular Target of Thallium Toxicity; Academic Press: Cambridge, MA, USA, 2022; pp. 1–261. Available online: https://www.elsevier.com/books/mitochondria-as-a-key-intracellular-target-of-thallium-toxicity/korotkov/978-0-323-95531-7 (accessed on 1 June 2022).
- Mulkey, J.P.; Oehme, F.W. A review of thallium toxicity. Vet. Hum. Toxicol. 1993, 35, 445–453. [Google Scholar]
- Zhang, D.; Gopalakrishnan, S.M.; Freiberg, G.; Surowy, C.S. A thallium transport FLIPR-based assay for the identification of KCC2-positive modulators. J. Biomol. Screen. 2010, 15, 177–184. [Google Scholar] [CrossRef]
- Blain, R.; Kazantzis, G. Thallium. In Handbook on the Toxicology of Metals—Volume II: Specific Metals; Nordberg, G.F., Fowler, B.A.L., Nordberg, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1229–1240. [Google Scholar]
- Nriagu, J.O. Thallium in the Environment; Wiley Series in Advances in Environmental Science and Technology; Wiley: New York, NY, USA, 1998; pp. 1–284. [Google Scholar]
- McCall, D.; Zimmer, L.J.; Katz, A.M. Kinetics of thallium exchange in cultured rat myocardial cells. Circ. Res. 1985, 56, 370–376. [Google Scholar] [CrossRef]
- Herman, M.M.; Bensch, K.G. Light and electron microscopic studies of acute and chronic thallium intoxication in rats. Toxicol. Appl. Pharmacol. 1967, 10, 199–222. [Google Scholar] [CrossRef]
- Mourelle, M.; Favari, L.; Amezcua, J.L. Protection against thallium hepatotoxicity by silymarin. J. Appl. Toxicol. 1988, 8, 351–354. [Google Scholar] [CrossRef]
- Leung, K.M.; Ooi, V.E. Studies on thallium toxicity, its tissue distribution and histopathological effects in rats. Chemosphere 2000, 41, 155–159. [Google Scholar] [CrossRef]
- Li, S.; Huang, W.; Duan, Y.; Xing, J.; Zhou, Y. Human fatality due to thallium poisoning: Autopsy, microscopy, and mass spectrometry assays. J. Forensic Sci. 2015, 60, 247–251. [Google Scholar] [CrossRef]
- Repetto, G.; Sanz, P.; Repetto, M. Comparative in vitro effects of sodium arsenite and sodium arsenate on neuroblastoma cells. Toxicology 1994, 92, 143–153. [Google Scholar] [CrossRef]
- Puga Molina, L.C.; Verstraeten, S.V. Thallium(III)-mediated changes in membrane physical properties and lipid oxidation affect cardiolipin-cytochrome c interactions. Biochim. Biophys. Acta 2008, 1778, 2157–2164. [Google Scholar] [CrossRef]
- Rodríguez-Mercado, J.J.; Altamirano-Lozano, M.A. Genetic toxicology of thallium: A review. Drug Chem. Toxicol. 2013, 36, 369–383. [Google Scholar] [CrossRef]
- Zierold, K. Heavy metal cytotoxicity studied by electron probe X-ray microanalysis of cultured rat hepatocytes. Toxicol. In Vitro 2000, 14, 557–563. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Nesterov, V.P.; Belostotskaya, G.B.; Brailovskaya, I.V.; Novozhilov, A.V.; Sobol, C.V. Influence of Tl+ on the movement of Ca2+ and Na+ ions across membranes of rat neonatal cardiomyocytes and rat heart mitochondria. Ukr. Biochem. J. 2020, 92, 41–55. [Google Scholar] [CrossRef]
- Melnick, R.L.; Monti, L.G.; Motzkin, S.M. Uncoupling of mitochondrial oxidative phosphorylation by thallium. Biochem. Biophys. Res. Commun. 1976, 69, 68–73. [Google Scholar] [CrossRef]
- Woods, J.S.; Fowler, B.A. Alteration of hepatocellular structure and function by thallium chloride: Ultrastructural, morphometric, and biochemical studies. Toxicol. Appl. Pharmacol. 1986, 83, 218–229. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Brailovskaya, I.V.; Kormilitsyn, B.N.; Furaev, V.V. Tl+ showed negligible interaction with inner membrane sulfhydryl groups of rat liver mitochondria, but formed complexes with matrix proteins. J. Biochem. Mol. Toxicol. 2014, 28, 149–156. [Google Scholar] [CrossRef]
- Perrin, D.D. Stability Constants of Metal-Ion Complexes—Part B—Organic Ligands; Pergamon: Oxford, UK, 1979; pp. 1–1263. [Google Scholar]
- Weinberg, J.M.; Harding, P.G.; Humes, H.D. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. I. Direct effects of in vitro mercuric chloride on renal mitochondrial function. J. Biol. Chem. 1982, 257, 60–67. [Google Scholar] [CrossRef]
- Chávez, E.; Holguín, J.A. Mitochondrial calcium release as induced by Hg2+. J. Biol. Chem. 1988, 263, 3582–3587. [Google Scholar] [CrossRef]
- Lund, B.O.; Miller, D.M.; Woods, J.S. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem. Pharmacol. 1993, 45, 2017–2024. [Google Scholar] [CrossRef]
- Chávez, R.; Corona, N.; García, C.; Chávez, E. The effect of cyclosporin A on Hg2+-poisoning mitochondria. In vivo and in vitro studies. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1994, 107, 429–434. [Google Scholar] [CrossRef]
- Southard, J.H.; Penniston, J.T.; Green, D.E. Induction of transmembrane proton transfer by mercurials in mitochondria. I. Ion movements accompanying transmembrane proton transfer. J. Biol. Chem. 1973, 248, 3546–3550. [Google Scholar] [CrossRef]
- Reyes-Vivas, H.; Lopez-Moreno, F.; Chávez, E. Protective effect of diethyldithiocarbamate on mercury-induced toxicity in kidney mitochondria. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1996, 113, 349–352. [Google Scholar] [CrossRef]
- Shenker, B.J.; Guo, T.L.; Shapiro, I.M. Low-level methylmercury exposure causes human T-cells to undergo apoptosis: Evidence of mitochondrial dysfunction. Environ. Res. 1998, 77, 149–159. [Google Scholar] [CrossRef]
- Chandler, J.E.; Messer, H.H.; Ellender, G. Cytotoxicity of gallium and indium ions compared with mercuric ion. J. Dent. Res. 1994, 73, 1554–1559. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.S.; Ellis, M.E. Up-regulation of glutathione synthesis in rat kidney by methyl mercury. Relationship to mercury-induced oxidative stress. Biochem. Pharmacol. 1995, 50, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Korotkov, S.M.; Skulskii, I.A.; Glazunov, V.V. Cd2+ effects on respiration and swelling of rat liver mitochondria were modified by monovalent cations. J. Inorg. Biochem. 1998, 70, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Korotkov, S.M. The Effect of Cadmium on Oxidative Phosphorylation and Ion Transport in Mitochondria. Ph.D. Thesis, Russian Federation, St. Petersburg, Russia, 1987; pp. 1–24. (In Russian). [Google Scholar]
- Lee, W.K.; Spielmann, M.; Bork, U.; Thévenod, F. Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: Role of Ca2+ uniporter, K+ cycling, and protonmotive force. Am. J. Physiol. Cell Physiol. 2005, 289, C656–C664. [Google Scholar] [CrossRef] [PubMed]
- Al-Nasser, I.A. Cadmium hepatotoxicity and alterations of the mitochondrial function. J. Toxicol. Clin. Toxicol. 2000, 38, 407–413. [Google Scholar] [CrossRef]
- Rasheed, B.K.; Diwan, J.J.; Sanadi, D.R. Activation of potassium ion transport in mitochondria by cadmium ion. Eur. J. Biochem. 1984, 144, 643–647. [Google Scholar] [CrossRef]
- Belyaeva, E.A.; Korotkov, S.M.; Saris, N.E. In vitro modulation of heavy metal-induced rat liver mitochondria dysfunction: A comparison of copper and mercury with cadmium. J. Trace Elem. Med. Biol. 2011, 25, S63–S73. [Google Scholar] [CrossRef]
- Skul’skiĭ, I.A.; Korotkov, S.M.; Glazunov, V.V.; Ivanova, T.I.; Savina, M.V. Effect of cadmium ions on the respiration, cation transport and morphology of the liver mitochondria in the rat and the lamprey. Tsitologiia 1988, 30, 956–962. (In Russian) [Google Scholar]
- Belyaeva, E.A.; Glazunov, V.V.; Korotkov, S.M. Cyclosporin A-sensitive permeability transition pore is involved in Cd2+-induced dysfunction of isolated rat liver mitochondria: Doubts no more. Arch. Biochem. Biophys. 2002, 405, 252–264. [Google Scholar] [CrossRef]
- Koike, H.; Shinohara, Y.; Terada, H. Why is inorganic phosphate necessary for uncoupling of oxidative phosphorylation by Cd2+ in rat liver mitochondria? Biochim. Biophys. Acta 1991, 1060, 75–81. [Google Scholar] [CrossRef]
- Shemarova, I.V.; Korotkov, S.M.; Nesterov, V.P. Effect of oxidative processes in mitochondria on contractility of heart muscle of the frog Rana temporaria. Actions of Cd2+. J. Evol. Biochem. Physiol. 2011, 47, 360–365. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Nesterov, V.P.; Emel’yanova, L.V.; Ryabchikov, N.N. Involvement of SH-groups during interaction of diazoxide with the inner membrane of rat heart mitochondria. Dokl. Biochem. Biophys. 2007, 415, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Dorta, D.J.; Leite, S.; DeMarco, K.C.; Prado, I.M.; Rodrigues, T.; Mingatto, F.E.; Uyemura, S.A.; Santos, A.C.; Curti, C. A proposed sequence of events for cadmium-induced mitochondrial impairment. J. Inorg. Biochem. 2003, 97, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Miccadei, S.; Floridi, A. Sites of inhibition of mitochondrial electron transport by cadmium. Chem. Biol. Interact. 1993, 89, 159–167. [Google Scholar] [CrossRef]
- Bagchi, D.; Vuchetich, P.J.; Bagchi, M.; Hassoun, E.A.; Tran, M.X.; Tang, L.; Stohs, S.J. Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radic. Biol. Med. 1997, 22, 471–478. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Skul’skiĭ, I.A. Changes in the effect of Cd2+ on the respiration of isolated rat liver mitochondria after their preincubation with Ca2+, Sr2+, Ba2+, Mn2+ and ruthenium red. Tsitologiia 1996, 38, 500–509. (In Russian) [Google Scholar]
- Belyaeva, E.A.; Glazunov, V.V.; Nikitina, E.R.; Korotkov, S.M. Bivalent metal ions modulate Cd2+ effects on isolated rat liver mitochondria. J. Bioenerg. Biomembr. 2001, 33, 303–318. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Glazunov, V.V.; Rozengart, E.V.; Suvorov, A.A.; Nikitina, E.R. Effects of Cd2+ and two cadmium organic complexes on isolated rat liver mitochondria. J. Biochem. Mol. Toxicol. 1999, 13, 149–157. [Google Scholar] [CrossRef]
- Belyaeva, E.A.; Korotkov, S.M. Mechanism of primary Cd2+-induced rat liver mitochondria dysfunction: Discrete modes of Cd2+ action on calcium and thiol-dependent domains. Toxicol. Appl. Pharmacol. 2003, 192, 56–68. [Google Scholar] [CrossRef]
- Chávez, E.; Briones, R.; Michel, B.; Bravo, C.; Jay, D. Evidence for the involvement of dithiol groups in mitochondrial calcium transport: Studies with cadmium. Arch. Biochem. Biophys. 1985, 242, 493–497. [Google Scholar] [CrossRef]
- Jay, D.; Zamorano, R.; Muñoz, E.; Gleason, R.; Boldu, J.L. Study of the interaction of cadmium with membrane-bound succinate dehydrogenase. J. Bioenerg. Biomembr. 1991, 23, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Viarengo, A.; Nicotera, P. Possible role of Ca2+ in heavy metal cytotoxicity. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1991, 100, 81–84. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Poblenz, A.T.; Medrano, C.J.; Fox, D.A. Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J. Biol. Chem. 2000, 275, 12175–12184. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.A.; He, L.; Poblenz, A.T.; Medrano, C.J.; Blocker, Y.S.; Srivastava, D. Lead-induced alterations in retinal cGMP phosphodiesterase trigger calcium overload, mitochondrial dysfunction and rod photoreceptor apoptosis. Toxicol. Lett. 1998, 102–103, 359–361. [Google Scholar] [CrossRef]
- Kapoor, S.C.; van Rossum, G.D.; O’Neill, K.J.; Mercorella, I. Uptake of inorganic lead in vitro by isolated mitochondria and tissue slices of rat renal cortex. Biochem. Pharmacol. 1985, 34, 1439–1448. [Google Scholar] [CrossRef]
- Chávez, E.; Jay, D.; Bravo, C. The mechanism of lead-induced mitochondrial Ca2+ efflux. J. Bioenerg. Biomembr. 1987, 19, 285–295. [Google Scholar] [CrossRef]
- van Rossum, G.D.; Kapoor, S.C.; Rabinowitz, M.S. Effects of inorganic lead in vitro on ion exchanges and respiratory metabolism of rat kidney cortex. Arch. Toxicol. 1985, 56, 175–181. [Google Scholar] [CrossRef]
- Kapoor, S.C.; van Rossum, G.D. Effects of Pb2+ added in vitro on Ca2+ movements in isolated mitochondria and slices of rat kidney cortex. Biochem. Pharmacol. 1984, 33, 1771–1778. [Google Scholar] [CrossRef]
- Scott, K.M.; Hwang, K.M.; Jurkowitz, M.; Brierley, G.P. Ion transport by heart mitochondria. 23. The effects of lead on mitochondrial reactions. Arch. Biochem. Biophys. 1971, 147, 557–567. [Google Scholar] [CrossRef]
- Cardona, E.; Lessler, M.A.; Brierley, G.P. Mitochondrial oxidative phosphorylation: Interaction of lead and inorganic phosphate. Proc. Soc. Exp. Biol. Med. 1971, 136, 300–304. [Google Scholar] [CrossRef]
- Castaño, R.; Culebras, C.; Zazueta, C.; Chávez, E. Protective role of chlorpromazine on lead-induced damage to heart mitochondria. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1991, 99, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Sabbioni, E.; Marafante, E. Identification of lead-binding components in rat liver: In vivo study. Chem. Biol. Interact. 1976, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Dini, L.; Giudetti, A.M.; Ruzittu, M.; Gnoni, G.V.; Zara, V. Citrate carrier and lipogenic enzyme activities in lead nitrate-induced proliferative and apoptotic phase in rat liver. Biochem. Mol. Biol. Int. 1999, 47, 607–614. [Google Scholar] [CrossRef]
- Simons, T.J.B. Lead-calcium interactions and lead toxicity. In Calcium in Drug Actions; Baker, P.F., Ed.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 1988; Volume 83, pp. 509–525. [Google Scholar] [CrossRef]
- Simons, T.J. Lead-calcium interactions in cellular lead toxicity. Neurotoxicology 1993, 14, 77–85. [Google Scholar]
- Miyahara, M.; Utsumi, K. Oxidative phosphorylation controlled by potassium in rat liver mitochondria. Cell Struct. Funct. 1975, 1, 51–59. [Google Scholar] [CrossRef]
- Dominguez, M.C.; Sole, E.; Goñi, C.; Ballabriga, A. Effect of aluminum and lead salts on lipid peroxidation and cell survival in human skin fibroblasts. Biol. Trace Elem. Res. 1995, 47, 57–67. [Google Scholar] [CrossRef]
- Verstraeten, S.V.; Golub, M.S.; Keen, C.L.; Oteiza, P.I. Myelin is a preferential target of aluminum-mediated oxidative damage. Arch. Biochem. Biophys. 1997, 344, 289–294. [Google Scholar] [CrossRef]
- Leikin, Y.N.; Zharova, T.V.; Tjulina, O.V. Novel oxaloacetate effect on mitochondrial Ca2+ movement. FEBS Lett. 1993, 331, 35–37. [Google Scholar] [CrossRef]
- Novgorodov, S.A.; Kultayeva, E.V.; Yaguzhinsky, L.S.; Lemeshko, V.V. Ion permeability induction by the SH cross-linking reagents in rat liver mitochondria is inhibited by the free radical scavenger, butylhydroxytoluene. J. Bioenerg. Biomembr. 1987, 19, 191–202. [Google Scholar] [CrossRef]
- Csillag, A. The effect of arsenite on rat-liver mitochondria. FEBS Lett. 1971, 17, 342–344. [Google Scholar] [CrossRef]
- Guerrieri, F.; Papa, S. Effect of thiol reagents on the proton conductivity of the H+-ATPase of mitochondria. Eur. J. Biochem. 1982, 128, 9–13. [Google Scholar] [CrossRef]
- Rein, K.A.; Borrebaek, B.; Bremer, J. Arsenite inhibits beta-oxidation in isolated rat liver mitochondria. Biochim. Biophys. Acta 1979, 574, 487–494. [Google Scholar] [CrossRef]
- Costantini, P.; Chernyak, B.V.; Petronilli, V.; Bernardi, P. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biol. Chem. 1996, 271, 6746–6751. [Google Scholar] [CrossRef] [PubMed]
- Kowaltowski, A.J.; Castilho, R.F.; Grijalba, M.T.; Bechara, E.J.; Vercesi, A.E. Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. J. Biol. Chem. 1996, 271, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Pourahmad, J.; O’Brien, P.J. Biological reactive intermediates that mediate chromium (VI) toxicity. Adv. Exp. Med. Biol. 2001, 500, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Susa, N.; Ueno, S.; Furukawa, Y. Protective effect of diethyldithiocarbamate pretreatment on chromium (VI)-induced cytotoxicity and lipid peroxidation in primary cultures of rat hepatocytes. J. Vet. Med. Sci. 1998, 60, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, K.; Kozuka, S.; Kawai, K. Mitochondria toxicity of silver ion as the molecular mechanism for the antifungal activity. Dep. Bull. Pap. 2017, 53, 87–97. Available online: https://core.ac.uk/display/236360138? (accessed on 1 June 2022).
- Yuan, L.; Gao, T.; He, H.; Jiang, F.L.; Liu, Y. Silver ion-induced mitochondrial dysfunction via a nonspecific pathway. Toxicol. Res. 2017, 6, 621–630. [Google Scholar] [CrossRef]
- Almofti, M.R.; Ichikawa, T.; Yamashita, K.; Terada, H.; Shinohara, Y. Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome C. J. Biochem. 2003, 134, 43–49. [Google Scholar] [CrossRef]
- Kawashima, S.; Yamamoto, T.; Horiuchi, Y.; Fujiwara, K.; Gouda, S.; Yoshimura, Y.; Yamamoto, A.; Inotani, Y.; Yamashita, K.; Kitamura, S.; et al. S-15176 and its methylated derivative suppress the CsA-insensitive mitochondrial permeability transition and subsequent cytochrome c release induced by silver ion, and show weak protonophoric activity. Mol. Cell. Biochem. 2011, 358, 45–51. [Google Scholar] [CrossRef]
- Dong, P.; Li, J.H.; Xu, S.P.; Wu, X.J.; Xiang, X.; Yang, Q.Q.; Jin, J.C.; Liu, Y.; Jiang, F.L. Mitochondrial dysfunction induced by ultra-small silver nanoclusters with a distinct toxic mechanism. J. Hazard. Mater. 2016, 308, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, J.S.; Simões, A.M.; Duarte, F.V.; Rolo, A.P.; Murdoch, R.C.; Hussain, S.M.; Palmeira, C.M. Assessment of the toxicity of silver nanoparticles in vitro: A mitochondrial perspective. Toxicol. In Vitro 2011, 25, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, Z.; Wang, Y.; Ma, C.; Bi, L.; Song, M.; Jiang, G. Silver Nanoparticles Induce Apoptosis in HepG2 Cells through Particle-Specific Effects on Mitochondria. Environ. Sci. Technol. 2022, 56, 5706–5713. [Google Scholar] [CrossRef]
- da Silva Ferreira, V.; Eugenio, M.F.C.; Del Nery Dos Santos, E.; de Souza, W.; Sant’Anna, C. Cellular toxicology and mechanism of the response to silver-based nanoparticle exposure in Ewing’s sarcoma cells. Nanotechnology 2021, 32, 115101. [Google Scholar] [CrossRef]
- Sidambaram, P.; Colleran, J. Evaluating the anticancer properties and real-time electrochemical extracellular bio-speciation of bis (1,10-phenanthroline) silver (I) acetate monohydrate in the presence of A549 lung cancer cells. Biosens. Bioelectron. 2021, 175, 112876. [Google Scholar] [CrossRef]
- Michaeloudes, C.; Seiffert, J.; Chen, S.; Ruenraroengsak, P.; Bey, L.; Theodorou, I.G.; Ryan, M.; Cui, X.; Zhang, J.; Shaffer, M.; et al. Effect of silver nanospheres and nanowires on human airway smooth muscle cells: Role of sulfidation. Nanoscale Adv. 2020, 2, 5635–5647. [Google Scholar] [CrossRef]
- Buttacavoli, M.; Albanese, N.N.; Di Cara, G.; Alduina, R.; Faleri, C.; Gallo, M.; Pizzolanti, G.; Gallo, G.; Feo, S.; Baldi, F.; et al. Anticancer activity of biogenerated silver nanoparticles: An integrated proteomic investigation. Oncotarget 2017, 9, 9685–9705. [Google Scholar] [CrossRef] [PubMed]
- Ahlberg, S.; Rancan, F.; Epple, M.; Loza, K.; Höppe, D.; Lademann, J.; Vogt, A.; Kleuser, B.; Gerecke, C.; Meinke, M.C. Comparison of different methods to study effects of silver nanoparticles on the pro- and antioxidant status of human keratinocytes and fibroblasts. Methods 2016, 109, 55–63. [Google Scholar] [CrossRef]
- Jiang, X.; Foldbjerg, R.; Miclaus, T.; Wang, L.; Singh, R.; Hayashi, Y.; Sutherland, D.; Chen, C.; Autrup, H.; Beer, C. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol. Lett. 2013, 222, 55–63. [Google Scholar] [CrossRef]
- Barbasz, A.; Oćwieja, M.; Roman, M. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids Surf. B Biointerfaces 2017, 156, 397–404. [Google Scholar] [CrossRef]
- Kaplan, A.; Akalin Ciftci, G.; Kutlu, H.M. The apoptotic and genomic studies on A549 cell line induced by silver nitrate. Tumour Biol. 2017, 39, 1–12. [Google Scholar] [CrossRef]
- Piao, M.J.; Kang, K.A.; Lee, I.K.; Kim, H.S.; Kim, S.; Choi, J.Y.; Choi, J.; Hyun, J.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 2011, 201, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Suzuki, Y.; Yoshimaru, T.; Ra, C. Ca2+-dependent mast cell death induced by Ag(I) via cardiolipin oxidation and ATP depletion. J. Leukoc. Biol. 2009, 86, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Miyayama, T.; Arai, Y.; Suzuki, N.; Hirano, S. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate. Toxicology 2013, 305, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Cortese-Krott, M.M.; Münchow, M.; Pirev, E.; Hessner, F.; Bozkurt, A.; Uciechowski, P.; Pallua, N.; Kröncke, K.D.; Suschek, C.V. Silver ions induce oxidative stress and intracellular zinc release in human skin fibroblasts. Free Radic. Biol. Med. 2009, 47, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mello, D.F.; Zucker, R.M.; Rivera, N.A.; Rogers, N.M.K.; Geitner, N.K.; Boyes, W.K.; Wiesner, M.R.; Hsu-Kim, H.; Meyer, J.N. Lack of detectable direct effects of silver and silver nanoparticles on mitochondria in mouse hepatocytes. Environ. Sci. Technol. 2021, 55, 11166–11175. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W.X. Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. Chemosphere 2021, 281, 130762. [Google Scholar] [CrossRef]
- Hussain, S.M.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.; Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005, 19, 975–983. [Google Scholar] [CrossRef]
- Das, B.; Tripathy, S.; Adhikary, J.; Chattopadhyay, S.; Mandal, D.; Dash, S.K.; Das, S.; Dey, A.; Dey, S.K.; Das, D.; et al. Surface modification minimizes the toxicity of silver nanoparticles: An in vitro and in vivo study. J. Biol. Inorg. Chem. 2017, 22, 893–918. [Google Scholar] [CrossRef]
- Choudhary, A.; Singh, S.; Ravichandiran, V. Toxicity, preparation methods and applications of silver nanoparticles: An update. Toxicol. Mech. Methods 2022, 32, 650–661. [Google Scholar] [CrossRef]
- Li, J.; Chang, X.; Shang, M.; Niu, S.; Zhang, W.; Li, Y.; Sun, Z.; Wu, T.; Kong, L.; Zhang, T.; et al. The crosstalk between DRP1-dependent mitochondrial fission and oxidative stress triggers hepatocyte apoptosis induced by silver nanoparticles. Nanoscale 2021, 13, 12356–12369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Rohde, M.M.; Snyder, C.M.; Sloop, J.; Solst, S.R.; Donati, G.L.; Spitz, D.R.; Furdui, C.M.; Singh, R. The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Part. Fibre Toxicol. 2021, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, A.; Liu, Z.; Yang, X.; Xu, Z.; Wang, Y.; Wang, R.; Koohi-Moghadam, M.; Hu, L.; Xia, W.; et al. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLoS Biol. 2019, 17, e3000292. [Google Scholar] [CrossRef]
- Elnaggar, M.G.; Jiang, K.; Eldesouky, H.E.; Pei, Y.; Park, J.; Yuk, S.A.; Meng, F.; Dieterly, A.M.; Mohammad, H.T.; Hegazy, Y.A.; et al. Antibacterial nanotruffles for treatment of intracellular bacterial infection. Biomaterials 2020, 262, 120344. [Google Scholar] [CrossRef]
- Saris, N.E.; Skul’skiĭ, I.A.; Savina, M.V.; Glasunov, V.V. Mechanism of mitochondrial transport of thallous ions. J. Bioenerg. Biomembr. 1981, 13, 51–59. [Google Scholar] [CrossRef]
- Skulskii, I.A.; Savina, M.V.; Glasunov, V.V.; Saris, N.E. Electrophoretic transport of Tl+ in mitochondria. J. Membr. Biol. 1978, 44, 187–194. [Google Scholar] [CrossRef]
- Korotkov, S.M. Effects of Tl+ on ion permeability, membrane potential and respiration of isolated rat liver mitochondria. J. Bioenerg. Biomembr. 2009, 41, 277–287. [Google Scholar] [CrossRef]
- Bragadin, M.; Toninello, A.; Bindoli, A.; Rigobello, M.P.; Canton, M. Thallium induces apoptosis in Jurkat cells. Ann. N. Y. Acad. Sci. 2003, 1010, 283–291. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Emel’yanova, L.V.; Yagodina, O.V. Inorganic phosphate stimulates the toxic effects of Tl+ in rat liver mitochondria. J. Biochem. Mol. Toxicol. 2008, 22, 148–157. [Google Scholar] [CrossRef]
- Flesch, P.; Goldstone, S.B. Effect of thallium on sulphydryl compounds in vitro. J. Investig. Dermatol. 1950, 15, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Wojtovich, A.P.; Williams, D.M.; Karcz, M.K.; Lopes, C.M.; Gray, D.A.; Nehrke, K.W.; Brookes, P.S. A novel mitochondrial KATP channel assay. Circ. Res. 2010, 106, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Testai, L.; Martelli, A.; Marino, A.; D’antongiovanni, V.; Ciregia, F.; Giusti, L.; Lucacchini, A.; Chericoni, S.; Breschi, M.C.; Calderone, V. The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury. Biochem. Pharmacol. 2013, 85, 1634–1643. [Google Scholar] [CrossRef]
- Spencer, P.S.; Peterson, E.R.; Madrid, R.; Raine, C.S. Effects of thallium salts on neuronal mitochondria in organotypic cord-ganglia-muscle combination cultures. J. Cell Biol. 1973, 58, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Korotkov, S.M.; Saris, N.E. Influence of Tl+ on mitochondrial permeability transition pore in Ca2+-loaded rat liver mitochondria. J. Bioenerg. Biomembr. 2011, 43, 149–162. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Nesterov, V.P.; Brailovskaya, I.V.; Furaev, V.V.; Novozhilov, A.V. Tl+ induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria. J. Bioenerg. Biomembr. 2013, 45, 531–539. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Lapin, A.V. Thallium induces opening of the mitochondrial permeability transition pore in the inner membrane of rat liver mitochondria. Dokl. Biochem. Biophys. 2003, 392, 247–252. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Konovalova, S.A.; Brailovskaya, I.V.; Saris, N.E. To involvement the conformation of the adenine nucleotide translocase in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. Toxicol. In Vitro 2016, 32, 320–332. [Google Scholar] [CrossRef]
- Korotkov, S.; Konovalova, S.; Emelyanova, L.; Brailovskaya, I. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J. Inorg. Biochem. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Brailovskaya, I.V.; Shumakov, A.R.; Emelyanova, L.V. Closure of mitochondrial potassium channels favors opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J. Bioenerg. Biomembr. 2015, 47, 243–254. [Google Scholar] [CrossRef]
- Fontaine, E.; Eriksson, O.; Ichas, F.; Bernardi, P. Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex I. J. Biol. Chem. 1998, 273, 12662–12668. [Google Scholar] [CrossRef] [PubMed]
- Kowaltowski, A.J.; Vercesi, A.E.; Castilho, R.F. Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: Correlation with mitochondrial permeability transition. Biochim. Biophys. Acta 1997, 1318, 395–402. [Google Scholar] [CrossRef] [PubMed]
- McStay, G.P.; Clarke, S.J.; Halestrap, A.P. Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem. J. 2002, 367, 541–548. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Konovalova, S.A.; Brailovskaya, I.V. Diamide accelerates opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. Biochem. Biophys. Res. Commun. 2015, 468, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Korotkov, S.M.; Novozhilov, A.V. The joint influence of Tl+ and thiol-modifying agents on rat liver mitochondrial parameters in vitro. Int. J. Mol. Sci. 2022, 23, 8964. [Google Scholar] [CrossRef]
- Korotkov, S.M.; Novozhilov, A.V. comparative study on the effects of the lysine reagent pyridoxal 5-phosphate and some thiol reagents in opening the Tl+-induced mitochondrial permeability transition pore. Int. J. Mol. Sci. 2023, 24, 2460. [Google Scholar] [CrossRef]
- Hanzel, C.E.; Verstraeten, S.V. Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol. Appl. Pharmacol. 2006, 216, 485–492. [Google Scholar] [CrossRef]
- Hanzel, C.E.; Verstraeten, S.V. Tl(I) and Tl(III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells. Toxicol. Appl. Pharmacol. 2009, 236, 59–70. [Google Scholar] [CrossRef]
- Verstraeten, S.V. Relationship between thallium(I)-mediated plasma membrane fluidification and cell oxidants production in Jurkat T cells. Toxicology 2006, 222, 95–102. [Google Scholar] [CrossRef]
- Pourahmad, J.; Eskandari, M.R.; Daraei, B. A comparison of hepatocyte cytotoxic mechanisms for thallium (I) and thallium (III). Environ. Toxicol. 2010, 25, 456–467. [Google Scholar] [CrossRef]
- Eskandari, M.R.; Pourahmad, J.; Daraei, B. Thallium(I) and thallium(III) induce apoptosis in isolated rat hepatocytes by alterations in mitochondrial function and generation of ROS. Toxicol. Environ. Chem. 2011, 93, 145–156. [Google Scholar] [CrossRef]
- Pino, M.T.; Marotte, C.; Verstraeten, S.V. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis. Arch. Toxicol. 2017, 91, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Maya-López, M.; Mireles-García, M.V.; Ramírez-Toledo, M.; Colín-González, A.L.; Galván-Arzate, S.; Túnez, I.; Santamaría, A. Thallium-induced toxicity in rat brain crude synaptosomal/mitochondrial fractions is sensitive to anti-excitatory and antioxidants agents. Neurotox. Res. 2018, 33, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Bramanti, E.; Onor, M.; Colombaioni, L. Neurotoxicity Induced by Low Thallium Doses in Living Hippocampal Neurons: Evidence of Early Onset Mitochondrial Dysfunction and Correlation with Ethanol Production. ACS Chem. Neurosci. 2019, 10, 451–459. [Google Scholar] [CrossRef]
- Puga Molina, L.C.; Salvatierra Fréchou, D.M.; Verstraeten, S.V. Early response of glutathione- and thioredoxin-dependent antioxidants defense systems to Tl(I)- and Tl(III)-mediated oxidative stress in adherent pheochromocytoma (PC12adh) cells. Arch. Toxicol. 2017, 92, 195–211. [Google Scholar] [CrossRef]
- Osorio-Rico, L.; Villeda-Hernández, J.; Santamaría, A.; Königsberg, M.; Galván-Arzate, S. The N-Methyl-d-aspartate receptor antagonist MK-801 prevents thallium-induced behavioral and biochemical alterations in the rat brain. Int. J. Toxicol. 2015, 34, 505–513. [Google Scholar] [CrossRef]
- Peter, A.L.; Viraraghavan, T. Thallium: A review of public health and environmental concerns. Environ. Int. 2005, 31, 493–501. [Google Scholar] [CrossRef]
- Belyaeva, E.A.; Glazunov, V.V.; Korotkov, S.M. Cd2+-promoted mitochondrial permeability transition: A comparison with other heavy metals. Acta Biochim. Pol. 2004, 51, 545–551. [Google Scholar] [CrossRef]
- Ma, L.; Bi, K.D.; Fan, Y.M.; Jiang, Z.Y.; Zhang, X.Y.; Zhang, J.W.; Zhao, J.; Jiang, F.L.; Dong, J.X. In vitro modulation of mercury-induced rat liver mitochondria dysfunction. Toxicol. Res. 2018, 7, 1135–1143. [Google Scholar] [CrossRef]
- Belyaeva, E.A. Modulators of mitochondrial ATP-sensitive potassium channel affect cytotoxicity of heavy metals: Action on isolated rat liver mitochondria and AS-30D ascites hepatoma cells. Ecotoxicol. Environ. Saf. 2023, 256, 114829. [Google Scholar] [CrossRef]
- Ajsuvakova, O.P.; Tinkov, A.A.; Aschner, M.; Rocha, J.B.T.; Michalke, B.; Skalnaya, M.G.; Skalny, A.V.; Butnariu, M.; Dadar, M.; Sarac, I.; et al. Sulfhydryl groups as targets of mercury toxicity. Coord. Chem. Rev. 2020, 417, 213343. [Google Scholar] [CrossRef] [PubMed]
- Nesci, S.; Trombetti, F.; Pirini, M.; Ventrella, V.; Pagliarani, A. Mercury and protein thiols: Stimulation of mitochondrial F1FO-ATPase and inhibition of respiration. Chem. Biol. Interact. 2016, 260, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.L.; Braga, H.C.; Stringari, J.; Missau, F.C.; Posser, T.; Mendes, B.G.; Leal, R.B.; Santos, A.R.; Dafre, A.L.; Pizzolatti, M.G.; et al. Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: Protective effects of quercetin. Chem. Res. Toxicol. 2007, 20, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Esquivel, L.; Zazueta, C.; Buelna-Chontal, M.; Hernández-Reséndiz, S.; Pavón, N.; Chávez, E. Protective behavior of tamoxifen against Hg2+-induced toxicity on kidney mitochondria: In vitro and in vivo experiments. J. Steroid Biochem. Mol. Biol. 2011, 127, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Novo, J.P.; Martins, B.; Raposo, R.S.; Pereira, F.C.; Oriá, R.B.; Malva, J.O.; Fontes-Ribeiro, C. Cellular and molecular mechanisms mediating methylmercury neurotoxicity and neuroinflammation. Int. J. Mol. Sci. 2021, 22, 3101. [Google Scholar] [CrossRef]
- Palanirajan, S.K.; Gummadi, S.N. Heavy-Metals-Mediated Phospholipids Scrambling by Human Phospholipid Scramblase 3: A Probable Role in Mitochondrial Apoptosis. Chem. Res. Toxicol. 2020, 33, 553–564. [Google Scholar] [CrossRef]
- Branco, V.; Godinho-Santos, A.; Gonçalves, J.; Lu, J.; Holmgren, A.; Carvalho, C. Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radic. Biol. Med. 2014, 73, 95–105. [Google Scholar] [CrossRef]
- Issa, Y.; Brunton, P.; Waters, C.M.; Watts, D.C. Cytotoxicity of metal ions to human oligodendroglial cells and human gingival fibroblasts assessed by mitochondrial dehydrogenase activity. Dent. Mater. 2008, 24, 281–287. [Google Scholar] [CrossRef]
- Branco, V.; Coppo, L.; Solá, S.; Lu, J.; Rodrigues, C.M.P.; Holmgren, A.; Carvalho, C. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biol. 2017, 13, 278–287. [Google Scholar] [CrossRef]
- Chen, Y.W.; Huang, C.F.; Yang, C.Y.; Yen, C.C.; Tsai, K.S.; Liu, S.H. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways. Toxicol. Appl. Pharmacol. 2010, 243, 323–331. [Google Scholar] [CrossRef]
- Orr, S.E.; Barnes, M.C.; Joshee, L.; Uchakian, O.; McKallip, R.J.; Bridges, C.C. Potential mechanisms of cellular injury following exposure to a physiologically relevant species of inorganic mercury. Toxicol. Lett. 2019, 304, 13–20. [Google Scholar] [CrossRef]
- Belyaeva, E.A.; Dymkowska, D.; Wieckowski, M.R.; Wojtczak, L. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol. Appl. Pharmacol. 2008, 231, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Belyaeva, E.A.; Dymkowska, D.; Wieckowski, M.R.; Wojtczak, L. Reactive oxygen species produced by the mitochondrial respiratory chain are involved in Cd2+-induced injury of rat ascites hepatoma AS-30D cells. Biochim. Biophys. Acta 2006, 1757, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- Jorissen, A.; Plum, L.M.; Rink, L.; Haase, H. Impact of lead and mercuric ions on the interleukin-2-dependent proliferation and survival of T cells. Arch. Toxicol. 2013, 87, 249–258. [Google Scholar] [CrossRef]
- Cordier, W.; Yousaf, M.; Nell, M.J.; Steenkamp, V. Underlying mechanisms of cytotoxicity in HepG2 hepatocarcinoma cells exposed to arsenic, cadmium and mercury individually and in combination. Toxicol. In Vitro 2021, 72, 105101. [Google Scholar] [CrossRef] [PubMed]
- Paesano, L.; Marmiroli, M.; Bianchi, M.G.; White, J.C.; Bussolati, O.; Zappettini, A.; Villani, M.; Marmiroli, N. Differences in toxicity, mitochondrial function and miRNome in human cells exposed in vitro to Cd as CdS quantum dots or ionic Cd. J. Hazard. Mater. 2020, 393, 122430. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Shi, X.; Tang, B.Z.; Wang, W.X. Real-time in vitro monitoring of the subcellular toxicity of inorganic Hg and methylmercury in zebrafish cells. Aquat. Toxicol. 2021, 236, 105859. [Google Scholar] [CrossRef]
- Liu, C.B.; Qu, G.B.; Cao, M.X.; Liang, Y.; Hu, L.G.; Shi, J.B.; Cai, Y.; Jiang, G.B. Distinct toxicological characteristics and mechanisms of Hg2+ and MeHg in Tetrahymena under low concentration exposure. Aquat. Toxicol. 2017, 193, 152–159. [Google Scholar] [CrossRef]
- Agarwala, S.; Rao, N.B.; Mudholkar, K.; Bhuwania, R.; Satish Rao, B.S. Mangiferin, a dietary xanthone protects against mercury-induced toxicity in HepG2 cells. Environ. Toxicol. 2012, 27, 117–127. [Google Scholar] [CrossRef]
- Stacchiotti, A.; Morandini, F.; Bettoni, F.; Schena, I.; Lavazza, A.; Grigolato, P.G.; Apostoli, P.; Rezzani, R.; Aleo, M.F. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicology 2009, 264, 215–224. [Google Scholar] [CrossRef]
- Yeh, J.H.; Chung, H.M.; Ho, C.M.; Jan, C.R. Mercury-induced Ca2+ increase and cytotoxicity in renal tubular cells. Life Sci. 2004, 74, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Wei, Y.; Ni, L.; Li, X.; Deng, Y.; Xu, B.; Yang, T.; Sun, J.; Liu, W. Unbalanced ER-mitochondrial calcium homeostasis promotes mitochondrial dysfunction and associated apoptotic pathways activation in methylmercury exposed rat cortical neurons. J. Biochem. Mol. Toxicol. 2022, 36, e23136. [Google Scholar] [CrossRef] [PubMed]
- Ciapaite, J.; Nauciene, Z.; Baniene, R.; Wagner, M.J.; Krab, K.; Mildaziene, V. Modular kinetic analysis reveals differences in Cd2+ and Cu2+ ion-induced impairment of oxidative phosphorylation in liver. FEBS J. 2009, 276, 3656–3668. [Google Scholar] [CrossRef]
- Pavón, N.; Buelna-Chontal, M.; Macías-López, A.; Correa, F.; Uribe-Álvarez, C.; Hernández-Esquivel, L.; Chávez, E. On the oxidative damage by cadmium to kidney mitochondrial functions. Biochem. Cell Biol. 2019, 97, 187–192. [Google Scholar] [CrossRef]
- Zazueta, C.; Sánchez, C.; García, N.; Correa, F. Possible involvement of the adenine nucleotide translocase in the activation of the permeability transition pore induced by cadmium. Int. J. Biochem. Cell Biol. 2000, 32, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.K.; Bork, U.; Gholamrezaei, F.; Thévenod, F. Cd2+-induced cytochrome c release in apoptotic proximal tubule cells: Role of mitochondrial permeability transition pore and Ca2+ uniporter. Am. J. Physiol. Ren. Physiol. 2005, 288, F27–F39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.H.; Liu, X.R.; Jiang, F.L.; Tian, F.F.; Liu, Y. Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J. Membr. Biol. 2011, 241, 39–49. [Google Scholar] [CrossRef]
- Li, M.; Xia, T.; Jiang, C.S.; Li, L.J.; Fu, J.L.; Zhou, Z.C. Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology 2003, 194, 19–33. [Google Scholar] [CrossRef]
- Ardehali, H.; O’Rourke, B. Mitochondrial KATP channels in cell survival and death. J. Mol. Cell. Cardiol. 2005, 39, 7–16. [Google Scholar] [CrossRef]
- Costa, A.D.; Jakob, R.; Costa, C.L.; Andrukhiv, K.; West, I.C.; Garlid, K.D. The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition. J. Biol. Chem. 2006, 281, 20801–20808. [Google Scholar] [CrossRef]
- Kupsch, K.; Parvez, S.; Siemen, D.; Wolf, G. Modulation of the permeability transition pore by inhibition of the mitochondrial KATP channel in liver vs brain mitochondria. J. Membr. Biol. 2007, 215, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Belyaeva, E.A.; Glazunov, V.V.; Korotkov, S.M. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: A proposed direct participation of respiratory complexes I and III. Chem. Biol. Interact. 2004, 150, 253–370. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Shaikh, Z.A. Renal cortical mitochondrial dysfunction upon cadmium metallothionein administration to Sprague-Dawley rats. J. Toxicol. Environ. Health A 2001, 63, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Thévenod, F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 2010, 23, 857–875. [Google Scholar] [CrossRef] [PubMed]
- Thévenod, F.; Fels, J.; Lee, W.K.; Zarbock, R. Channels.; transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: Myths and facts. Biometals 2019, 32, 469–489. [Google Scholar] [CrossRef]
- Choong, G.; Liu, Y.; Templeton, D.M. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem. Biol. Interact. 2014, 211, 54–65. [Google Scholar] [CrossRef]
- Thévenod, F.; Lee, W.K. Cadmium and cellular signaling cascades: Interactions between cell death and survival pathways. Arch. Toxicol. 2013, 87, 1743–1786. [Google Scholar] [CrossRef]
- Yeh, J.H.; Huang, C.C.; Yeh, M.Y.; Wang, J.S.; Lee, J.K.; Jan, C.R. Cadmium-induced cytosolic Ca2+ elevation and subsequent apoptosis in renal tubular cells. Basic Clin. Pharmacol. Toxicol. 2009, 104, 345–351. [Google Scholar] [CrossRef]
- Yang, C.S.; Tzou, B.C.; Liu, Y.P.; Tsai, M.J.; Shyue, S.K.; Tzeng, S.F. Inhibition of cadmium-induced oxidative injury in rat primary astrocytes by the addition of antioxidants and the reduction of intracellular calcium. J. Cell. Biochem. 2008, 103, 825–834. [Google Scholar] [CrossRef]
- Wang, X.; Yi, M.; Liu, H.; Han, Y.; Yi, H. Reactive oxygen species and Ca2+ are involved in cadmium-induced cell killing in yeast cells. Can. J. Microbiol. 2017, 63, 153–159. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Y.; Li, J.; Wu, H.; Sun, J.; Zhang, Z.; Geng, L.; Yu, X.; Liu, Z. Cadmium stimulates mouse skin fibroblast apoptosis by affecting intracellular homeostasis. Drug Chem. Toxicol. 2017, 40, 74–84. [Google Scholar] [CrossRef]
- Pourahmad, J.; O’Brien, P.J. Contrasting role of Na+ ions in modulating Cu2+ or Cd2+ induced hepatocyte toxicity. Chem. Biol. Interact. 2000, 126, 159–169. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, C.Y.; Xu, H.; Sun, Y.; Hu, F.F.; Bian, J.C.; Liu, X.Z.; Gu, J.H.; Liu, Z.P. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS ONE 2013, 8, e64330. [Google Scholar] [CrossRef]
- Biagioli, M.; Pifferi, S.; Ragghianti, M.; Bucci, S.; Rizzuto, R.; Pinton, P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 2008, 43, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.K.; Thévenod, F. Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: Lessons from in vitro cadmium toxicity studies. Biochem. Pharmacol. 2008, 76, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Wätjen, W.; Cox, M.; Biagioli, M.; Beyersmann, D. Cadmium-induced apoptosis in C6 glioma cells: Mediation by caspase 9-activation. Biometals 2002, 15, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Wätjen, W.; Beyersmann, D. Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress. Biometals 2004, 17, 65–78. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, X.; Mao, W.; Yue, L.; Kong, X.; Gao, Y.; Luo, L.; Yin, Z. Inhibition of cadmium-induced apoptosis by glutathione S-transferase P1 via mitogen-activated protein kinases, and mitochondrial pathways. Environ. Toxicol. Pharmacol. 2010, 30, 202–208. [Google Scholar] [CrossRef]
- Murugavel, P.; Pari, L.; Sitasawad, S.L.; Kumar, S.; Kumar, S. Cadmium induced mitochondrial injury and apoptosis in vero cells: Protective effect of diallyl tetrasufide from garlic. Int. J. Biochem. Cell Biol. 2007, 39, 161–170. [Google Scholar] [CrossRef]
- Kim, S.J.; Jeong, H.J.; Myung, N.Y.; Kim, M.C.; Lee, J.H.; So, H.S.; Park, R.K.; Kim, H.M.; Um, J.Y.; Hong, S.H. The protective mechanism of antioxidants in cadmium-induced ototoxicity in vitro and in vivo. Environ. Health Perspect. 2008, 116, 854–862. [Google Scholar] [CrossRef]
- Nair, A.R.; Lee, W.K.; Smeets, K.; Swennen, Q.; Sanchez, A.; Thévenod, F.; Cuypers, A. Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch. Toxicol. 2015, 89, 2273–2289. [Google Scholar] [CrossRef] [PubMed]
- Thévenod, F. Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol. 2003, 93, p87–p93. [Google Scholar] [CrossRef] [PubMed]
- Almazan, G.; Liu, H.N.; Khorchid, A.; Sundararajan, S.; Martinez-Bermudez, A.K.; Chemtob, S. Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic. Biol. Med. 2000, 29, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Pourahmad, J.; O’Brien, P.J. A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology 2000, 143, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.O.; Lee, J.C.; Hitron, J.A.; Pan, J.; Zhang, Z.; Shi, X. Cadmium induces intracellular Ca2+- and H2O2-dependent apoptosis through JNK- and p53-mediated pathways in skin epidermal cell line. Toxicol. Sci. 2010, 113, 127–137. [Google Scholar] [CrossRef]
- Pourahmad, J.; Mihajlovic, A.; O’Brien, P.J. Hepatocyte lysis induced by environmental metal toxins may involve apoptotic death signals initiated by mitochondrial injury. Adv. Exp. Med. Biol. 2001, 500, 249–252. [Google Scholar] [CrossRef]
- Belyaeva, E.A.; Sokolova, T.V.; Emelyanova, L.V.; Zakharova, I.O. Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: Effects of cadmium, mercury, and copper. Sci. World J. 2012, 2012, 136063. [Google Scholar] [CrossRef]
- Belyaeva, E.A. Role of mitochondrial respiratory chain in neurotoxic action of heavy metals: Comparison of Cd2+, Hg2+ and Cu2+. Cut. Edge Res. Biol. 2022, 2, 144–174. [Google Scholar] [CrossRef]
- Zapór, L. Evaluation of the toxic potency of selected cadmium compounds on A549 and CHO-9 cells. Int. J. Occup. Saf. Ergon. 2014, 20, 573–581. [Google Scholar] [CrossRef]
- Sancho, P.; Fernández, C.; Yuste, V.J.; Amrán, D.; Ramos, A.M.; de Blas, E.; Susin, S.A.; Aller, P. Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis 2006, 11, 673–686. [Google Scholar] [CrossRef]
- Mahdavi, S.; Khodarahmi, P.; Roodbari, N.H. Effects of cadmium on Bcl-2/ Bax expression ratio in rat cortex brain and hippocampus. Hum. Exp. Toxicol. 2018, 37, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Rikans, L.E.; Yamano, T. Mechanisms of cadmium-mediated acute hepatotoxicity. J. Biochem. Mol. Toxicol. 2000, 14, 110–117. [Google Scholar] [CrossRef]
- Liu, Y.; Templeton, D.M. Role of the cytoskeleton in Cd2+-induced death of mouse mesangial cells. Can. J. Physiol. Pharmacol. 2010, 88, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Liu, Y.; Templeton, D.M. Pleiotropic effects of cadmium in mesangial cells. Toxicol. Appl. Pharmacol. 2009, 238, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Pillai, A.; Gupta, S. Antioxidant enzyme activity and lipid peroxidation in liver of female rats co-exposed to lead and cadmium: Effects of vitamin E and Mn2+. Free Radic. Res. 2005, 39, 707–712. [Google Scholar] [CrossRef]
- Shih, C.M.; Ko, W.C.; Wu, J.S.; Wei, Y.H.; Wang, L.F.; Chang, E.E.; Lo, T.Y.; Cheng, H.H.; Chen, C.T. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J. Cell. Biochem. 2004, 91, 384–397. [Google Scholar] [CrossRef]
- Tandon, S.K.; Singh, S.; Prasad, S.; Mathur, N. Hepatic and renal metallothionein induction by. an oral equimolar dose of zinc, cadmium or mercury in mice. Food Chem. Toxicol. 2001, 39, 571–577. [Google Scholar] [CrossRef]
- Binte Hossain, K.F.; Rahman, M.M.; Sikder, M.T.; Saito, T.; Hosokawa, T.; Kurasaki, M. Inhibitory effects of selenium on cadmium-induced cytotoxicity in PC12 cells via regulating oxidative stress and apoptosis. Food Chem. Toxicol. 2018, 114, 180–189. [Google Scholar] [CrossRef]
- Isaev, N.K.; Avilkina, S.; Golyshev, S.A.; Genrikhs, E.E.; Alexandrova, O.P.; Kapkaeva, M.R.; Stelmashook, E.V. N-acetyl-l-cysteine and Mn2+ attenuate Cd2+-induced disturbance of the intracellular free calcium homeostasis in cultured cerebellar granule neurons. Toxicology 2018, 393, 1–8. [Google Scholar] [CrossRef]
- Stelmashook, E.V.; Alexandrova, O.P.; Genrikhs, E.E.; Novikova, S.V.; Salmina, A.B.; Isaev, N.K. Effect of zinc and copper ions on cadmium-induced toxicity in rat cultured cortical neurons. J. Trace Elem. Med. Biol. 2022, 73, 127012. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, T.; Liu, J.; Chen, J.; Li, Y.; Ning, G.; Huo, N.; Tian, W.; Ma, H. Zn Supplement-Antagonized Cadmium-Induced Cytotoxicity in Macrophages In Vitro: Involvement of Cadmium Bioaccumulation and Metallothioneins Regulation. J. Agric. Food Chem. 2019, 67, 4611–4622. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ukiana, J.; Uson-Lopez, R.; Sikder, M.T.; Saito, T.; Kurasaki, M. Cytotoxic effects of cadmium and zinc co-exposure in PC12 cells and the underlying mechanism. Chem. Biol. Interact. 2017, 269, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, J.; Gao, J.; Shahzad, M.; Han, Z.; Wang, Z.; Li, J.; Sjölinder, H. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells. PLoS ONE 2014, 9, e103427. [Google Scholar] [CrossRef]
- Barbier, O.; Dauby, A.; Jacquillet, G.; Tauc, M.; Poujeol, P.; Cougnon, M. Zinc and cadmium interactions in a renal cell line derived from rabbit proximal tubule. Nephron Physiol. 2005, 99, p74–p84. [Google Scholar] [CrossRef] [PubMed]
- Poliandri, A.H.; Velardez, M.O.; Cabilla, J.P.; Bodo, C.C.; Machiavelli, L.I.; Quinteros, A.F.; Duvilanski, B.H. Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis. Free Radic. Biol. Med. 2004, 37, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Yang, C.L.; Chen, Y.; Wu, Z.L.; Du, Z.B.; Wu, J.S.; Gan, C.L.; Yan, S.P.; Huang, J.; Guo, N.J.; et al. Mitochondrial redox-driven mitofusin 2 S-glutathionylation promotes neuronal necroptosis via disrupting ER-mitochondria crosstalk in cadmium-induced neurotoxicity. Chemosphere 2021, 262, 127878. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, J.Y.; Dong, J.X.; Xiao, Q.; Zhao, J.; Jiang, F.L. Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol. Res. 2017, 6, 822–830. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, W.; Guo, J.; Zhu, Q.; Chen, H.; Xia, Y.; Zhu, G. Mitochondrion: A sensitive target for Pb exposure. J. Toxicol. Sci. 2021, 46, 345–358. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Zeng, H.; Cai, C.; Hu, Q.; Cai, S.; Xu, L.; Meng, X.; Zou, F. Role of the mitochondrial Ca2+ uniporter in Pb2+-induced oxidative stress in human neuroblastoma cells. Brain Res. 2014, 1575, 12–21. [Google Scholar] [CrossRef]
- Ye, F.; Li, X.; Li, F.; Li, J.; Chang, W.; Yuan, J.; Chen, J. Cyclosporin A protects against Lead neurotoxicity through inhibiting mitochondrial permeability transition pore opening in nerve cells. Neurotoxicology 2016, 57, 203–213. [Google Scholar] [CrossRef]
- Liu, G.; Li, Z.; Wang, J.; Wang, H.; Wang, Z.; Wang, L. Puerarin protects against lead-induced cytotoxicity in cultured primary rat proximal tubular cells. Hum. Exp. Toxicol. 2014, 33, 1071–1080. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Z.K.; Wang, Z.Y.; Yang, D.B.; Liu, Z.P.; Wang, L. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch. Toxicol. 2016, 90, 1193–1209. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Zhang, W.; Yuan, Z.; Yuan, H.; Liu, X.; Zhang, M.; Guo, X.; Guan, W. Lead induces Siberian tiger fibroblast apoptosis by interfering with intracellular homeostasis. Drug Chem. Toxicol. 2018, 41, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Daniel, P.V.; Kamthan, M.; Thakur, S.; Mondal, P. Molecular pathways dysregulated by Pb2+ exposure prompts pancreatic beta-cell dysfunction. Toxicol. Res. 2022, 11, 206–214. [Google Scholar] [CrossRef]
- Guo, S.; Zhou, J.; Chen, X.; Yu, Y.; Ren, M.; Hu, G.; Liu, Y.; Zou, F. Bystander effects of PC12 cells treated with Pb2+ depend on ROS-mitochondria-dependent apoptotic signaling via gap-junctional intercellular communication. Toxicol. Lett. 2014, 229, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Roy, S.; Ray, A.; Mazumder, S.; Bhattacharya, S. Arsenic trioxide and lead acetate induce apoptosis in adult rat hepatic stem cells. Cell Biol. Toxicol. 2009, 25, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Virgolini, M.B.; Aschner, M. Molecular mechanisms of lead neurotoxicity. Adv. Neurotoxicol. 2021, 5, 159–213. [Google Scholar] [CrossRef]
- Elmorsy, E.; Al-Ghafari, A.; Al Doghaither, H.; Ghulam, J. Effects of environmental metals on mitochondrial bioenergetics of the CD-1 mice pancreatic beta-cells. Toxicol. In Vitro 2021, 70, 105015. [Google Scholar] [CrossRef]
- Cai, P.; Zhu, Q.; Cao, Q.; Bai, Y.; Zou, H.; Gu, J.; Yuan, Y.; Liu, X.; Liu, Z.; Bian, J. Quercetin and Allicin Can Alleviate the Hepatotoxicity of Lead (Pb) through the PI3K Signaling Pathway. J. Agric. Food Chem. 2021, 69, 9451–9460. [Google Scholar] [CrossRef]
- Struzyńska, L.; Chalimoniuk, M.; Sulkowski, G. The role of astroglia in Pb-exposed adult rat brain with respect to glutamate toxicity. Toxicology 2005, 212, 185–194. [Google Scholar] [CrossRef]
- Parida, L.; Patel, T.N. Systemic impact of heavy metals and their role in cancer development: A review. Environ. Monit. Assess. 2023, 195, 766. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.; Stejskal, V.; Urbina, M.A.; Dadar, M.; Chirumbolo, S.; Mutter, J. Metals and Parkinson’s Disease: Mechanisms and Biochemical Processes. Curr. Med. Chem. 2018, 25, 2198–2214. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. Int. 2016, 23, 8244–8259. [Google Scholar] [CrossRef]
- Gandolfi, L.; Stella, M.P.; Zambenedetti, P.; Zatta, P. Aluminum alters intracellular calcium homeostasis in vitro. Biochim. Biophys. Acta 1998, 1406, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Arab-Nozari, M.; Zamani, E.; Latifi, A.; Shaki, F. Mitochondrial toxicity of aluminium nanoparticles in comparison to its ionic form on isolated rat brain mitochondria. Bratisl. Lek. Listy 2019, 120, 516–522. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, U.; Mancon, M.; Battaglia, V.; Ceccon, S.; Cardellini, P.; Toninello, A. Influence of reactive oxygen species production by monoamine oxidase activity on aluminum-induced mitochondrial permeability transition. Cell Mol. Life Sci. 2004, 61, 2664–2671. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, J.; Liu, Y.; Zhao, J.; Jiang, F.; Liu, Y. Indium (III) induces isolated mitochondrial permeability transition by inhibiting proton influx and triggering oxidative stress. J. Inorg. Biochem. 2017, 177, 17–26. [Google Scholar] [CrossRef]
- Willhite, C.C.; Karyakina, N.A.; Yokel, R.A.; Yenugadhati, N.; Wisniewski, T.M.; Arnold, I.M.; Momoli, F.; Krewski, D. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev. Toxicol. 2014, 44, 1–80. [Google Scholar] [CrossRef]
- Matyja, E. Aluminum enhances glutamate-mediated neurotoxicity in organotypic cultures of rat hippocampus. Folia Neuropathol. 2000, 38, 47–53. [Google Scholar]
- Yu, Q.; Zhu, K.; Ding, Y.; Han, R.; Cheng, D. Comparative study of aluminum (Al) speciation on apoptosis-promoting process in PC12 cells: Correlations between morphological characteristics and mitochondrial kinetic disorder. J. Inorg. Biochem. 2022, 232, 111835. [Google Scholar] [CrossRef]
- Xu, F.; Ren, L.; Song, M.; Shao, B.; Han, Y.; Cao, Z.; Li, Y. Fas- and mitochondria-mediated signaling pathway involved in osteoblast apoptosis induced by AlCl3. Biol. Trace Elem. Res. 2018, 184, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, F.; Yan, X.; Miao, L.; Li, H.; Hu, C.; Wang, Z.; Lian, S.; Feng, Z.; Li, Y. The suppressive effects of aluminum chloride on the osteoblasts function. Environ. Toxicol. Pharmacol. 2016, 48, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, X.; Yuan, S.; Jiao, W.; Liu, B.; Cao, J.; Jiang, W. Chlorogenic acid protects against aluminium-induced cytotoxicity through chelation and antioxidant actions in primary hippocampal neuronal cells. Food Funct. 2017, 8, 2924–2934. [Google Scholar] [CrossRef] [PubMed]
- Mailloux, R.; Lemire, J.; Appanna, V. Aluminum-induced mitochondrial dysfunction leads to lipid accumulation in human hepatocytes: A link to obesity. Cell. Physiol. Biochem. 2007, 20, 627–638. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Niu, P.Y.; Niu, Q.; Wang, L.P. Effect of aluminum on neuronal mitochondria of rats. Wei Sheng Yan Jiu. (J. Hyg. Res.) 2005, 34, 674–677. (In Chinese) [Google Scholar]
- Li, M.; Song, M.; Ren, L.M.; Xiu, C.Y.; Liu, J.Y.; Zhu, Y.Z.; Li, Y.F. AlCl3 induces lymphocyte apoptosis in rats through the mitochondria-caspase dependent pathway. Environ. Toxicol. 2016, 31, 385–394. [Google Scholar] [CrossRef]
- Masson, J.D.; Badran, G.; Domdom, M.A.; Gherardi, R.K.; Mograbi, B.; Authier, F.J.; Crépeaux, G. Advances on the early cellular events occurring upon exposure of human macrophages to aluminum oxyhydroxide adjuvant. Sci. Rep. 2023, 13, 3198. [Google Scholar] [CrossRef]
- Xu, F.; Liu, Y.; Zhao, H.; Yu, K.; Song, M.; Zhu, Y.; Li, Y. Aluminum chloride caused liver dysfunction and mitochondrial energy metabolism disorder in rat. J. Inorg. Biochem. 2017, 174, 55–62. [Google Scholar] [CrossRef]
- Sieg, H.; Ellermann, A.L.; Maria Kunz, B.; Jalili, P.; Burel, A.; Hogeveen, K.; Böhmert, L.; Chevance, S.; Braeuning, A.; Gauffre, F.; et al. Aluminum in liver cells—The element species matters. Nanotoxicology 2019, 13, 909–922. [Google Scholar] [CrossRef]
- Chitambar, C.R. Gallium Complexes as Anticancer Drugs. Met. Ions Life Sci. 2018, 18, 281–301. [Google Scholar] [CrossRef]
- Ahamed, M.; Akhtar, M.J.; Khan, M.A.M.; Alhadlaq, H.A.; Aldalbahi, A. Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids Surf. B 2017, 156, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Alkahtane, A.A. Indium tin oxide nanoparticles-mediated DNA fragmentation and cell death by apoptosis in human lung epithelial cells. Toxicol. Environ. Chem. 2015, 97, 1086–1098. [Google Scholar] [CrossRef]
- Badding, M.A.; Stefaniak, A.B.; Fix, N.R.; Cummings, K.J.; Leonard, S.S. Cytotoxicity and characterization of particles collected from an indium-tin oxide production facility. J. Toxicol. Environ. Health A 2014, 77, 1193–1209. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, W.M.; Qu, W.; Shines, C.J.; Bousquet, R.W.; Taylor, G.J.; Waalkes, M.P.; Morgan, D.L. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro. Toxicol. Sci. 2013, 135, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Tabei, Y.; Sonoda, A.; Nakajima, Y.; Biju, V.; Makita, Y.; Yoshida, Y.; Horie, M. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage. J. Biochem. 2016, 159, 225–237. [Google Scholar] [CrossRef]
- Eskandari, A.; Glerum, D.M.; Tsui, T.Y. Influence of Indium (III) Chloride on Human Dermal Fibroblast Cell Adhesion on Tantalum/Silicon Oxide Nano-Composites. Materials 2022, 15, 3577. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Li, J.; Liu, R.; Zhao, F.; Liu, R. Indium oxide nanoparticles induce lung intercellular toxicity between bronchial epithelial cells and macrophages. J. Appl. Toxicol. 2020, 40, 1636–1646. [Google Scholar] [CrossRef]
- Kalo, M.B.; Rezaei, M. In vitro toxic interaction of arsenic and hyperglycemia in mitochondria: An important implication of increased vulnerability in pre-diabetics. Environ. Sci. Pollut. Res. Int. 2022, 29, 28375–28385. [Google Scholar] [CrossRef]
- Mozaffarian, F.; Dehghani, M.A.; Vanani, A.R.; Mahdavinia, M. Protective effects of alpha lipoic acid against arsenic induced oxidative stress in isolated rat liver mitochondria. Biol. Trace Elem. Res. 2022, 200, 1190–1200. [Google Scholar] [CrossRef]
- Ahangarpour, A.; Zeidooni, L.; Rezaei, M.; Alboghobeish, S.; Samimi, A.; Oroojan, A.A. Protective effect of metformin on toxicity of butyric acid and arsenic in isolated liver mitochondria and langerhans islets in male mice: An in vitro study. Iran. J. Basic Med. Sci. 2017, 20, 1297–1305. [Google Scholar] [CrossRef]
- Hosseini, M.J.; Shaki, F.; Ghazi-Khansari, M.; Pourahmad, J. Toxicity of Arsenic (III) on Isolated Liver Mitochondria: A New Mechanistic Approach. Iran. J. Pharm. Res. 2013, 12, 121–138. [Google Scholar] [PubMed]
- Keshtzar, E.; Khodayar, M.J.; Javadipour, M.; Ghaffari, M.A.; Bolduc, D.L.; Rezaei, M. Ellagic acid protects against arsenic toxicity in isolated rat mitochondria possibly through the maintaining of complex II. Hum. Exp. Toxicol. 2016, 35, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Rigobello, M.P.; Folda, A.; Scutari, G.; Bindoli, A. The modulation of thiol redox state affects the production and metabolism of hydrogen peroxide by heart mitochondria. Arch. Biochem. Biophys. 2005, 441, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Ma, X.; Qiao, D.; Ma, A.; Yan, F.; Huang, X. mCICR is required for As2O3-induced permeability transition pore opening and cytochrome c release from mitochondria. Mol. Cell. Biochem. 2005, 277, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.; Nutt, L.; Orrenius, S.; Gogvadze, V. Arsenic stimulates release of cytochrome c from isolated mitochondria via induction of mitochondrial permeability transition. Toxicol. Appl. Pharmacol. 2005, 207, S110–S116. [Google Scholar] [CrossRef]
- Németi, B.; Gregus, Z. Mitochondria work as reactors in reducing arsenate to arsenite. Toxicol. Appl. Pharmacol. 2002, 182, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Lu, Y.F.; Shi, J.Z.; Liang, S.X.; Shi, J.S.; Liu, J. Chemical form of metals in traditional medicines underlines potential toxicity in cell cultures. J. Ethnopharmacol. 2011, 134, 839–843. [Google Scholar] [CrossRef]
- Fiorani, M.; Guidarelli, A.; Capellacci, V.; Cerioni, L.; Crinelli, R.; Cantoni, O. The dual role of mitochondrial superoxide in arsenite toxicity: Signaling at the boundary between apoptotic commitment and cytoprotection. Toxicol. Appl. Pharmacol. 2018, 345, 26–35. [Google Scholar] [CrossRef]
- Guidarelli, A.; Fiorani, M.; Cerioni, L.; Scotti, M.; Cantoni, O. Arsenite induces DNA damage via mitochondrial ROS and induction of mitochondrial permeability transition. Biofactors 2017, 43, 673–684. [Google Scholar] [CrossRef]
- Guidarelli, A.; Fiorani, M.; Cantoni, O. Low concentrations of arsenite target the intraluminal inositol 1, 4, 5-trisphosphate receptor/ryanodine receptor crosstalk to significantly elevate intracellular Ca2+. J. Pharmacol. Exp. Ther. 2018, 367, 184–193. [Google Scholar] [CrossRef]
- Chen, C.; Gu, S.; Jiang, X.; Zhang, Z. Arsenite-induced endoplasmic reticulum-dependent apoptosis through disturbance of calcium homeostasis in HBE cell line. Environ. Toxicol. 2017, 32, 197–216. [Google Scholar] [CrossRef]
- King, Y.A.; Chiu, Y.J.; Chen, H.P.; Kuo, D.H.; Lu, C.C.; Yang, J.S. Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. Environ. Toxicol. 2016, 31, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; He, Z.; Deng, P.; Lu, M.; Zhou, C.; Yang, L.; Yu, Z. PIN1-mediated ROS production is involved in antagonism of N-acetyl-L-cysteine against arsenic-induced hepatotoxicity. Toxicol. Res. 2022, 11, 628–643. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.A.; Franklin, C.C. Enhanced glutathione biosynthetic capacity promotes resistance to As3+-induced apoptosis. Toxicol. Lett. 2010, 193, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Ran, S.; Gao, X.; Ma, M.; Zhang, J.; Li, S.; Zhang, M.; Li, S. NaAsO2 decreases GSH synthesis by inhibiting GCLC and induces apoptosis through Hela cell mitochondrial damage, mediating the activation of the NF-κB/miR-21 signaling pathway. Ecotoxicol. Environ. Saf. 2022, 234, 113380. [Google Scholar] [CrossRef]
- Duan, T.; Hu, T.; Wu, C.; Yeh, Y.T.; Lu, J.; Zhang, Q.; Li, X.; Jian, W.; Luo, P. PINK1/Parkin-mediated mitophagy is involved in NaAsO2-induced apoptosis of human hepatic cells through activation of ERK signaling. Toxicol. In Vitro 2020, 66, 104857. [Google Scholar] [CrossRef]
- Wei, S.; Qiu, T.; Yao, X.; Wang, N.; Jiang, L.; Jia, X.; Tao, Y.; Wang, Z.; Pei, P.; Zhang, J.; et al. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J. Hazard. Mater. 2020, 384, 121390. [Google Scholar] [CrossRef]
- Cheng, B.; Yang, X.; An, L.; Gao, B.; Liu, X. Arsenic trioxide-induced apoptosis of Hep-2 cell line through modulating intracellular glutathione (GSH) level. Auris Nasus Larynx 2010, 37, 89–94. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Wang, H.; Xue, P.; Li, X.; Li, B.; Zheng, Q.; Sun, G. Arsenic induces mitochondria-dependent apoptosis by reactive oxygen species generation rather than glutathione depletion in Chang human hepatocytes. Arch. Toxicol. 2009, 83, 899–908. [Google Scholar] [CrossRef]
- Ray, A.; Roy, S.; Agarwal, S.; Bhattacharya, S. As2O3 toxicity in rat hepatocytes: Manifestation of caspase-mediated apoptosis. Toxicol. Ind. Health 2008, 24, 643–653. [Google Scholar] [CrossRef]
- Tian, X.; Wang, M.; Ying, X.; Dong, N.; Li, M.; Feng, J.; Zhao, Y.; Zhao, Q.; Tian, F.; Li, B.; et al. Co-exposure to arsenic and fluoride to explore the interactive effect on oxidative stress and autophagy in myocardial tissue and cell. Ecotoxicol. Environ. Saf. 2023, 253, 114647. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.J.; Graham, B.; Dugo, E.; Berhaneselassie-Sumner, B.; Ndebele, K.; Tchounwou, P.B. Arsenic trioxide induces apoptosis via specific signaling pathways in HT-29 colon cancer cells. J. Cancer Sci. Ther. 2017, 9, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Wang, Q.; Wang, H.; Tan, M. Metallothionein Attenuated Arsenic-Induced Cytotoxicity: The Underlying Mechanism Reflected by Metabolomics and Lipidomics. J. Agric. Food Chem. 2021, 69, 5372–5380. [Google Scholar] [CrossRef] [PubMed]
- Pourahmad, J.; Rabiei, M.; Jokar, F.; O’brien, P.J. A comparison of hepatocyte cytotoxic mechanisms for chromate and arsenite. Toxicology 2005, 206, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, S.; Gao, C.; Chen, H.; Li, J.; Lu, J.; Yuan, Y.; Zheng, X.; He, H.; Zhang, X.; et al. Arsenic trioxide-induced cardiotoxicity triggers ferroptosis in cardiomyoblast cells. Hum. Exp. Toxicol. 2022, 41, 1–9. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, A. HIF-1α mediates arsenic-induced metabolic reprogramming in lung bronchial epithelial cells. Biol. Trace Elem. Res. 2023, 201, 2284–2293. [Google Scholar] [CrossRef]
- Chavan, H.; Christudoss, P.; Mickey, K.; Tessman, R.; Ni, H.M.; Swerdlow, R.; Krishnamurthy, P. Arsenite effects on mitochondrial bioenergetics in human and mouse primary hepatocytes follow a nonlinear dose response. Oxid. Med. Cell. Longev. 2017, 2017, 9251303. [Google Scholar] [CrossRef]
- Wu, P.J.; Hsin, I.L.; Hung, W.L.; Lee, M.S.; Wang, P.H.; Ko, J.L. Combination treatment with cyclosporin A and arsenic trioxide induce synergistic cell death via non-apoptotic pathway in uterine cervical cancer cells. Chem. Biol. Interact. 2022, 368, 110177. [Google Scholar] [CrossRef]
- Santra, A.; Bishnu, D.; Santra, S.; Ghatak, S.; Mukherjee, P.S.; Dhali, G.K.; Chowdhury, A. Arsenic-induced injury of mouse hepatocytes through lysosome and mitochondria: An in vitro study. Int. J. Hepatol. 2022, 2022, 1546297. [Google Scholar] [CrossRef]
- Larochette, N.; Decaudin, D.; Jacotot, E.; Brenner, C.; Marzo, I.; Susin, S.A.; Zamzami, N.; Xie, Z.; Reed, J.; Kroemer, G. Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp. Cell Res. 1999, 249, 413–421. [Google Scholar] [CrossRef]
- Tang, Q.; Bai, L.; Zou, Z.; Meng, P.; Xia, Y.; Cheng, S.; Mu, S.; Zhou, J.; Wang, X.; Qin, X.; et al. Ferroptosis is newly characterized form of neuronal cell death in response to arsenite exposure. Neurotoxicology 2018, 67, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Costantini, P.; Belzacq, A.S.; Vieira, H.L.; Larochette, N.; de Pablo, M.A.; Zamzami, N.; Susin, S.A.; Brenner, C.; Kroemer, G. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 2000, 19, 307–314. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, Y.; Zhang, H.; Zhou, C.; Ma, Q.; Deng, P.; Lu, M.; Mou, Z.; Lin, M.; Yang, L.; et al. NAC antagonizes arsenic-induced neurotoxicity through TMEM179 by inhibiting oxidative stress in Oli-neu cells. Ecotoxicol. Environ. Saf. 2021, 223, 112554. [Google Scholar] [CrossRef]
- Guidarelli, A.; Carloni, S.; Balduini, W.; Fiorani, M.; Cantoni, O. Mitochondrial ascorbic acid prevents mitochondrial O2.- formation, an event critical for U937 cell apoptosis induced by arsenite through both autophagic-dependent and independent mechanisms. Biofactors 2016, 42, 190–200. [Google Scholar] [PubMed]
- Wang, S.; Geng, Z.; Shi, N.; Li, X.; Wang, Z. Dose-dependent effects of selenite (Se4+) on arsenite (As3+)-induced apoptosis and differentiation in acute promyelocytic leukemia cells. Cell Death Dis. 2015, 6, e1596. [Google Scholar] [CrossRef]
- Zhou, J.; Ci, X.; Ma, X.; Yu, Q.; Cui, Y.; Zhen, Y.; Li, S. Pterostilbene Activates the Nrf2-Dependent Antioxidant Response to Ameliorate Arsenic-Induced Intracellular Damage and Apoptosis in Human Keratinocytes. Front. Pharmacol. 2019, 10, 497. [Google Scholar] [CrossRef]
- Duan, X.; Li, J.; Li, W.; Xing, X.; Zhang, Y.; Li, W.; Zhao, L.; Sun, G.; Gao, X.H.; Li, B. Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes. Free Radic. Biol. Med. 2016, 94, 74–87. [Google Scholar] [CrossRef]
- Yang, Y.P.; Liang, Z.Q.; Gao, B.; Jia, Y.L.; Qin, Z.H. Dynamic effects of autophagy on arsenic trioxide-induced death of human leukemia cell line HL60 cells. Acta Pharmacol. Sin. 2008, 29, 123–134. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, B.; Liu, L.; Li, H.; Zheng, X.; Li, M.; He, R.; Wang, K. Glutathione Might Attenuate Arsenic-Induced Liver Injury by Modulating the Foxa2-XIAP Axis to Reduce Oxidative Stress and Mitochondrial Apoptosis. Biol. Trace Elem. Res. 2023, 201, 5201–5212. [Google Scholar] [CrossRef]
- Jahangirnejad, R.; Goudarzi, M.; Kalantari, H.; Najafzadeh, H.; Rezaei, M. Subcellular organelle toxicity caused by arsenic nanoparticles in isolated rat hepatocytes. Int. J. Occup. Environ. Med. 2020, 11, 41–52. [Google Scholar] [CrossRef]
- Su, L.; Fang, W.; Zhao, X.; Zhu, L.; Gao, L.; Chen, G. Disruption of mitochondrial redox homeostasis as a mechanism of antimony-induced reactive oxygen species and cytotoxicity. Ecotoxicol. Environ. Saf. 2022, 237, 113519. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, E.S.; de Jesus, J.A.; Bezerra-Souza, A.; Brito, J.R.; Lago, J.H.G.; Laurenti, M.D.; Passero, L.F.D. Tolnaftate inhibits ergosterol production and impacts cell viability of Leishmania sp. Bioorg. Chem. 2020, 102, 104056. [Google Scholar] [CrossRef] [PubMed]
- Keogan, D.M.; Oliveira, S.S.C.; Sangenito, L.S.; Branquinha, M.H.; Jagoo, R.D.; Twamley, B.; Santos, A.L.S.; Griffith, D.M. Novel antimony(iii) hydroxamic acid complexes as potential anti-leishmanial agents. Dalton Trans. 2018, 47, 7245–7255. [Google Scholar] [CrossRef]
- Andrade, J.M.; Gonçalves, L.O.; Liarte, D.B.; Lima, D.A.; Guimarães, F.G.; de Melo Resende, D.; Santi, A.M.M.; de Oliveira, L.M.; Velloso, J.P.L.; Delfino, R.G.; et al. Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines. Parasite Vectors 2020, 13, 600. [Google Scholar] [CrossRef] [PubMed]
- Verdugo, M.; Ogra, Y.; Quiroz, W. Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species. J. Toxicol. Sci. 2016, 41, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Lösler, S.; Schlief, S.; Kneifel, C.; Thiel, E.; Schrezenmeier, H.; Rojewski, M.T. Antimony-trioxide- and arsenic-trioxide-induced apoptosis in myelogenic and lymphatic cell lines, recruitment of caspases, and loss of mitochondrial membrane potential are enhanced by modulators of the cellular glutathione redox system. Ann. Hematol. 2009, 88, 1047–1058. [Google Scholar] [CrossRef]
- Lecureur, V.; Le Thiec, A.; Le Meur, A.; Amiot, L.; Drenou, B.; Bernard, M.; Lamy, T.; Fauchet, R.; Fardel, O. Potassium antimonyl tartrate induces caspase- and reactive oxygen species-dependent apoptosis in lymphoid tumoral cells. Br. J. Haematol. 2002, 119, 608–615. [Google Scholar] [CrossRef]
- Lecureur, V.; Lagadic-Gossmann, D.; Fardel, O. Potassium antimonyl tartrate induces reactive oxygen species-related apoptosis in human myeloid leukemic HL60 cells. Int. J. Oncol. 2002, 20, 1071–1076. [Google Scholar] [CrossRef]
- Xie, Y.; Zhong, C.; Zeng, M.; Guan, L.; Luo, L. Effect of hexavalent chromium on electron leakage of respiratory chain in mitochondria isolated from rat liver. Cell. Physiol. Biochem. 2013, 31, 473–485. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Santos, M.S.; Alpoim, M.C.; Madeira, V.M.; Vicente, J.A. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: A comparative study. J. Biochem. Mol. Toxicol. 2002, 16, 53–63. [Google Scholar] [CrossRef]
- Rossi, S.C.; Gorman, N.; Wetterhahn, K.E. Mitochondrial reduction of the carcinogen chromate: Formation of chromium(V). Chem. Res. Toxicol. 1988, 1, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Feng, X.; Zeng, M.; Guan, L.; Hu, Q.; Zhong, C. Hexavalent chromium induces energy metabolism disturbance and p53-dependent cell cycle arrest via reactive oxygen species in L-02 hepatocytes. Mol. Cell. Biochem. 2012, 371, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, G.; Huang, S.; Yang, X.; Yuan, F.; Song, Y.; Liu, S.; Yu, X. Regulation of Cr(VI)-Induced Premature Senescence in L02 Hepatocytes by ROS-Ca2+-NF-κB Signaling. Oxid. Med. Cell. Longev. 2022, 2022, 7295224. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Li, S.; Liang, Y.; Ma, Y.; Tang, S.; Ye, S.; Xiao, F. Clusterin inhibits Cr(VI)-induced apoptosis via enhancing mitochondrial biogenesis through AKT-associated STAT3 activation in L02 hepatocytes. Ecotoxicol. Environ. Saf. 2021, 221, 112447. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Chen, M.; Zeng, M. Hexavalent chromium-induced apoptosis in Hep3B cells is accompanied by calcium overload, mitochondrial damage, and AIF translocation. Ecotoxicol. Environ. Saf. 2021, 208, 111391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bian, H.; Ma, Y.; Xiao, Y.; Xiao, F. Cr(VI)-induced overactive mitophagy contributes to mitochondrial loss and cytotoxicity in L02 hepatocytes. Biochem. J. 2020, 477, 2607–2619. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Liang, N.; Liang, Y.; Lu, C.; Xiao, F. Blockage of ROS-ERK-DLP1 signaling and mitochondrial fission alleviates Cr(VI)-induced mitochondrial dysfunction in L02 hepatocytes. Ecotoxicol. Environ. Saf. 2019, 186, 109749. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhang, Y.; Huang, M.; Xiao, Y.; Xiao, F. Role of mitochondrial damage in Cr(VI)-induced endoplasmic reticulum stress in L-02 hepatocytes. Mol. Med. Rep. 2019, 19, 1256–1265. [Google Scholar] [CrossRef]
- Xiao, F.; Li, Y.; Luo, L.; Xie, Y.; Zeng, M.; Wang, A.; Chen, H.; Zhong, C. Role of mitochondrial electron transport chain dysfunction in Cr(VI)-induced cytotoxicity in L-02 hepatocytes. Cell. Physiol. Biochem. 2014, 33, 1013–1025. [Google Scholar] [CrossRef]
- Xiao, F.; Li, Y.; Dai, L.; Deng, Y.; Zou, Y.; Li, P.; Yang, Y.; Zhong, C. Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes. Int. J. Mol. Med. 2012, 30, 629–635. [Google Scholar] [CrossRef]
- Xiao, J.W.; Zhong, C.G.; Li, B. Study of L-02 hepatocyte apoptosis induced by hexavalent chromium associated with mitochondria function damage. Wei Sheng Yan Jiu (J. Hyg. Res.) 2006, 35, 416–418. (In Chinese) [Google Scholar]
- Lv, Y.; Li, T.; Yang, M.; Su, L.; Zhu, Z.; Zhao, S.; Zeng, W.; Zheng, Y. Melatonin attenuates chromium(VI)-induced spermatogonial stem cell/progenitor mitophagy by restoration of METTL3-mediated RNA N6-methyladenosine modification. Front. Cell Dev. Biol. 2021, 9, 684398. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, M.B.; Gao, Z.; Hasenbilige; Jiang, L.; Geng, C.; Li, Q.; Shi, X.; Liu, Y.; Cao, J. The crosstalk between mitochondrial dysfunction and endoplasmic reticulum stress promoted ATF4-mediated mitophagy induced by hexavalent chromium. Environ. Toxicol. 2021, 36, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Ye, S.; Ma, Y.; Liang, Y.; Liang, N.; Xiao, F. Clusterin alleviates Cr(VI)-induced mitochondrial apoptosis in L02 hepatocytes via inhibition of Ca2+-ROS-Drp1-mitochondrial fission axis. Ecotoxicol. Environ. Saf. 2020, 205, 111326. [Google Scholar] [CrossRef]
- Fu, S.C.; Liu, J.M.; Lee, K.I.; Tang, F.C.; Fang, K.M.; Yang, C.Y.; Su, C.C.; Chen, H.H.; Hsu, R.J.; Chen, Y.W. Cr(VI) induces ROS-mediated mitochondrial-dependent apoptosis in neuronal cells via the activation of Akt/ERK/AMPK signaling pathway. Toxicol. In Vitro 2020, 65, 104795. [Google Scholar] [CrossRef]
- Clementino, M.; Kim, D.; Zhang, Z. Constitutive activation of NAD-dependent sirtuin 3 plays an important role in tumorigenesis of chromium(VI)-transformed cells. Toxicol. Sci. 2019, 169, 224–234. [Google Scholar] [CrossRef]
- Ge, H.; Li, Z.; Jiang, L.; Li, Q.; Geng, C.; Yao, X.; Shi, X.; Liu, Y.; Cao, J. Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells. Chem. Biol. Interact. 2019, 298, 35–42. [Google Scholar] [CrossRef]
- Dashti, A.; Soodi, M.; Amani, N. Cr (VI) induced oxidative stress and toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid. Environ. Toxicol. 2016, 31, 269–277. [Google Scholar] [CrossRef]
- Zeng, M.; Xiao, F.; Zhong, X.; Jin, F.; Guan, L.; Wang, A.; Liu, X.; Zhong, C. Reactive oxygen species play a central role in hexavalent chromium-induced apoptosis in Hep3B cells without the functional roles of p53 and caspase-3. Cell. Physiol. Biochem. 2013, 32, 279–290. [Google Scholar] [CrossRef]
- Banu, S.K.; Stanley, J.A.; Lee, J.; Stephen, S.D.; Arosh, J.A.; Hoyer, P.B.; Burghardt, R.C. Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53. Toxicol. Appl. Pharmacol. 2011, 251, 253–266. [Google Scholar] [CrossRef]
- Son, Y.O.; Hitron, J.A.; Wang, X.; Chang, Q.; Pan, J.; Zhang, Z.; Liu, J.; Wang, S.; Lee, J.C.; Shi, X. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells. Toxicol. Appl. Pharmacol. 2010, 245, 226–235. [Google Scholar] [CrossRef]
- Russo, P.; Catassi, A.; Cesario, A.; Imperatori, A.; Rotolo, N.; Fini, M.; Granone, P.; Dominioni, L. Molecular mechanisms of hexavalent chromium-induced apoptosis in human bronchoalveolar cells. Am. J. Respir. Cell Mol. Biol. 2005, 33, 589–600. [Google Scholar] [CrossRef]
- Hayashi, Y.; Kondo, T.; Zhao, Q.L.; Ogawa, R.; Cui, Z.G.; Feril, L.B., Jr.; Teranishi, H.; Kasuya, M. Signal transduction of p53-independent apoptotic pathway induced by hexavalent chromium in U937 cells. Toxicol. Appl. Pharmacol. 2004, 197, 96–106. [Google Scholar] [CrossRef]
- Rudolf, E.; Cervinka, M.; Cerman, J. Zinc has ambiguous effects on chromium (VI)-induced oxidative stress and apoptosis. J. Trace Elem. Med. Biol. 2005, 18, 251–260. [Google Scholar] [CrossRef]
- Azad, N.; Iyer, A.K.; Wang, L.; Lu, Y.; Medan, D.; Castranova, V.; Rojanasakul, Y. Nitric oxide-mediated bcl-2 stabilization potentiates malignant transformation of human lung epithelial cells. Am. J. Respir. Cell Mol. Biol. 2010, 42, 578–585. [Google Scholar] [CrossRef]
- Belosludtsev, K.N.; Garmash, S.A.; Belosludtseva, N.V.; Belova, S.P.; Berezhnov, A.V.; Gudkov, S.V. Study of the mechanisms of cytotoxic effect of uranyl nitrate. Biophysics 2012, 57, 607–612. [Google Scholar] [CrossRef]
- Shaki, F.; Hosseini, M.J.; Ghazi-Khansari, M.; Pourahmad, J. Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim. Biophys. Acta 2012, 1820, 1940–1950. [Google Scholar] [CrossRef]
- Pourahmad, J.; Ghashang, M.; Ettehadi, H.A.; Ghalandari, R. A search for cellular and molecular mechanisms involved indepleted uranium (DU) toxicity. Environ. Toxicol. 2006, 21, 349–354. [Google Scholar] [CrossRef]
- Guéguen, Y.; Frerejacques, M. Review of knowledge of uranium-induced kidney toxicity for the development of an adverse outcome pathway to renal impairment. Int. J. Mol. Sci. 2022, 23, 4397. [Google Scholar] [CrossRef]
- Daraie, B.; Pourahmad, J.; Hamidi-Pour, N.; Hosseini, M.J.; Shaki, F.; Soleimani, M. Uranyl acetate induces oxidative stress and mitochondrial membrane potential collapse in the human dermal fibroblast primary cells. Iran. J. Pharm. Res. 2012, 11, 495–501. [Google Scholar]
- Shaki, F.; Pourahmad, J. Mitochondrial toxicity of depleted uranium: Protection by Beta-glucan. Iran. J. Pharm. Res. 2013, 12, 131–140. [Google Scholar]
- Sun, M.H.; Liu, S.Q.; Du, K.J.; Nie, C.M.; Lin, Y.W. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 130–137. [Google Scholar] [CrossRef]
- Thiébault, C.; Carriere, M.; Milgram, S.; Simon, A.; Avoscan, L.; Gouget, B. Uranium induces apoptosis and is genotoxic to normal rat kidney (NRK-52E) proximal cells. Toxicol. Sci. 2007, 98, 479–487. [Google Scholar] [CrossRef]
- Liu, F.; Du, K.J.; Fang, Z.; You, Y.; Wen, G.B.; Lin, Y.W. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line. Radiat. Environ. Biophys. 2015, 54, 207–216. [Google Scholar] [CrossRef]
- Hao, Y.; Ren, J.; Liu, C.; Li, H.; Liu, J.; Yang, Z.; Li, R.; Su, Y. Zinc protects human kidney cells from depleted uranium-induced apoptosis. Basic Clin. Pharmacol. Toxicol. 2013, 114, 271–280. [Google Scholar] [CrossRef]
- Burbank, K.A.; Walker, R.A.; Peyton, B.M. A molecular level mechanism for uranium (VI) toxicity through Ca2+ displacement in pyrroloquinoline quinone-dependent bacterial dehydrogenase. J. Inorg. Biochem. 2015, 149, 59–67. [Google Scholar] [CrossRef]
- Tipping, E.; Lofts, S. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environ. Toxicol. Chem. 2015, 34, 788–798. [Google Scholar] [CrossRef]
- Khan, M.J.; Mukhtiar, M.; Qureshi, M.M.; Jan, S.U.; Ullah, I.; Hussain, A.; Khan, M.F.; Gul, R.; Shahwani, N.A.; Rabbani, I. Spectrophotometric investigation of glutathione modulation by thallium chloride in aqueous medium. Pak. J. Pharm. Sci. 2018, 31, 1463–1467. [Google Scholar]
- Miranda, R.R.; Bezerra, A.G., Jr.; Oliveira Ribeiro, C.A.; Randi, M.A.; Voigt, C.L.; Skytte, L.; Rasmussen, K.L.; Kjeldsen, F.; Filipak Neto, F. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicol. In Vitro 2017, 40, 134–143. [Google Scholar] [CrossRef]
- Guan, S.; Tao, S.; Huang, Y.; Jin, Y.; Hu, Y.; Lu, J. Combined toxic effects of CBNPs and Pb on rat alveolar macrophage apoptosis and autophagy flux. Ecotoxicol. Environ. Saf. 2020, 205, 111062. [Google Scholar] [CrossRef]
- Fiocchetti, M.; Cipolletti, M.; Leone, S.; Naldini, A.; Carraro, F.; Giordano, D.; Verde, C.; Ascenzi, P.; Marino, M. Neuroglobin in breast cancer cells: Effect of hypoxia and oxidative stress on protein level, localization, and anti-apoptotic function. PLoS ONE 2016, 11, e0154959. [Google Scholar] [CrossRef] [PubMed]
- Bragadin, M.; Marton, D.; Murgia, M.; Rizzoli, V.; Scutari, G.; Deana, R. Interactions of trialkyllead compounds with rat liver mitochondria. J. Inorg. Biochem. 1998, 69, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, W.N.; Street, B.W.; Skilleter, D.N. Oxidative phosphorylation. Halide-dependent and halide-independent effects of triorganotin and trioganolead compounds on mitochondrial functions. Biochem. J. 1977, 168, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Skilleter, D.N. The decrease of mitochondrial substrate uptake caused by trialkyltin and trialkyl-lead compounds in chloride media and its relevance to inhibition of oxidative phosphorylation. Biochem. J. 1975, 146, 465–4671. [Google Scholar] [CrossRef]
- Kapetana, M.; Banti, C.N.; Papachristodoulou, C.; Psycharis, V.; Raptopoulou, C.P.; Hadjikakou, S.K. Conjugation of triphenylantimony(V) with carvacrol against human breast cancer cells. J. Biol. Inorg. Chem. 2022, 27, 373–389. [Google Scholar] [CrossRef]
- Issartel, J.P.; Dupuis, A.; Lunardi, J.; Vignais, P.V. Fluoroaluminum and fluoroberyllium nucleoside diphosphate complexes as probes of the enzymatic mechanism of the mitochondrial F1-ATPase. Biochemistry 1991, 30, 4726–4733. [Google Scholar] [CrossRef]
- Missiaen, L.; Wuytack, F.; De Smedt, H.; Vrolix, M.; Casteels, R. AlF4− reversibly inhibits ‘P’-type cation-transport ATPases, possibly by interacting with the phosphate-binding site of the ATPase. Biochem. J. 1988, 253, 827–833. [Google Scholar] [CrossRef]
- Braig, K.; Menz, R.I.; Montgomery, M.G.; Leslie, A.G.; Walker, J.E. Structure of bovine mitochondrial F1-ATPase inhibited by Mg2+ ADP and aluminium fluoride. Structure 2000, 8, 567–573. [Google Scholar] [CrossRef]
- Tunes, L.G.; Morato, R.E.; Garcia, A.; Schmitz, V.; Steindel, M.; Corrêa-Junior, J.D.; Dos Santos, H.F.; Frézard, F.; de Almeida, M.V.; Silva, H.; et al. Preclinical gold complexes as oral drug candidates to treat leishmaniasis are potent trypanothione reductase inhibitors. ACS Infect. Dis. 2020, 6, 1121–1139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotkov, S.M. Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. Int. J. Mol. Sci. 2023, 24, 14459. https://doi.org/10.3390/ijms241914459
Korotkov SM. Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. International Journal of Molecular Sciences. 2023; 24(19):14459. https://doi.org/10.3390/ijms241914459
Chicago/Turabian StyleKorotkov, Sergey M. 2023. "Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria" International Journal of Molecular Sciences 24, no. 19: 14459. https://doi.org/10.3390/ijms241914459
APA StyleKorotkov, S. M. (2023). Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. International Journal of Molecular Sciences, 24(19), 14459. https://doi.org/10.3390/ijms241914459