Genetic Variant HLA-DRB1*0403 and Therapeutic Response to Disease-Modifying Therapies in Multiple Sclerosis: A Case-Control Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Study Population
4.3. Clinical Setting
4.4. Clinical Assessments
4.5. Genotyping
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noseworthy, J.H.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B.G. Multiple Sclerosis. N. Engl. J. Med. 2000, 343, 938–952. [Google Scholar] [CrossRef] [PubMed]
- Ramagopalan, S.V.; Sadovnick, A.D. Epidemiology of Multiple Sclerosis. Neurol. Clin. 2011, 29, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Ehtesham, N.; Rafie, M.Z.; Mosallaei, M. The global prevalence of familial multiple sclerosis: An updated systematic review and meta-analysis. BMC Neurol. 2021, 21, 246. [Google Scholar] [CrossRef] [PubMed]
- Gasperi, C.; Andlauer, T.F.; Keating, A.; Knier, B.; Klein, A.; Pernpeintner, V.; Lichtner, P.; Gold, R.; Zipp, F.; Bergh, F.T.; et al. Genetic determinants of the humoral immune response in MS. Neurol.—Neuroimmunol. Neuroinflam. 2020, 7, e827. [Google Scholar] [CrossRef]
- Patsopoulos, N.A.; Baranzini, S.E.; Santaniello, A.; Shoostari, P.; Cotsapas, C.; Wong, G.; International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365, eaav7188. [Google Scholar]
- Zhang, J.; Shi, S.; Zhang, Y.; Luo, J.; Xiao, Y.; Meng, L.; Yang, X. Alemtuzumab versus interferon beta 1a for relapsing-remitting multiple sclerosis. Cochrane Database Syst. Rev. 2017, 2018, CD010968. [Google Scholar] [CrossRef]
- Romero-Pinel, L.; Pujal, J.M.; Martínez-Yélamos, S.; Gubieras, L.; Matas, E.; Bau, L.; Torrabadella, M.; Azqueta, C.; Arbizu, T. HLA-DRB1: Genetic susceptibility and disability progression in a Spanish multiple sclerosis population. Eur. J. Neurol. 2011, 18, 337–342. [Google Scholar] [CrossRef]
- Zúñiga, J.; Yu, N.; Barquera, R.; Alosco, S.; Ohashi, M.; Lebedeva, T.; Acuña-Alonzo, V.; Yunis, M.; Granados-Montiel, J.; Cruz-Lagunas, A.; et al. HLA Class I and Class II Conserved Extended Haplotypes and Their Fragments or Blocks in Mexicans: Implications for the Study of Genetic Diversity in Admixed Populations. PLoS ONE 2013, 8, e74442. [Google Scholar] [CrossRef]
- Matzaraki, V.; Kumar, V.; Wijmenga, C.; Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017, 18, 76. [Google Scholar] [CrossRef]
- Samadzadeh, S.; Tabibian, E.; Sabokbar, T.; Shakoori, A.; Dehgolan, S.R.; Armaki, S.A.; Aslanbeigi, B.; Abolfazli, R. HLA-DRB1 does not have a role in clinical response to interferon-beta among Iranian multiple sclerosis patients. J. Neurol. Sci. 2015, 352, 37–40. [Google Scholar] [CrossRef]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis. JAMA 2021, 325, 765. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef] [PubMed]
- Bose, G.; Atkins, H.L.; Bowman, M.; Freedman, M.S. Autologous hematopoietic stem cell transplantation improves fatigue in multiple sclerosis. Mult. Scler. J. 2019, 25, 1764–1772. [Google Scholar] [CrossRef] [PubMed]
- Río, J.; Nos, C.; Tintoré, M.; Borrás, C.; Galán, I.; Comabella, M.; Montalban, X. Assessment of different treatment failure criteria in a cohort of relapsing-remitting multiple sclerosis patients treated with interferon β: Implications for clinical trials. Ann. Neurol. 2002, 52, 400–406. [Google Scholar] [CrossRef]
- Stürner, K.H.; Borgmeyer, U.; Schulze, C.; Pless, O.; Martin, R. A Multiple Sclerosis–Associated Variant of CBLB Links Genetic Risk with Type I IFN Function. J. Immunol. 2014, 193, 4439–4447. [Google Scholar] [CrossRef] [PubMed]
- Ernstsson, O.; Gyllensten, H.; Alexanderson, K.; Tinghög, P.; Friberg, E.; Norlund, A. Cost of Illness of Multiple Sclerosis—A Systematic Review. PLoS ONE 2016, 11, e0159129. [Google Scholar] [CrossRef]
- Kasper, L.H.; Reder, A.T. Immunomodulatory activity of interferon-beta. Ann. Clin. Transl. Neurol. 2014, 1, 622–631. [Google Scholar] [CrossRef]
- Hoffmann, S.; Cepok, S.; Grummel, V.; Lehmann-Horn, K.; Hackermueller, J.; Stadler, P.F.; Hartung, H.-P.; Berthele, A.; Deisenhammer, F.; Wassmuth, R.; et al. HLA-DRB1*0401 and HLA-DRB1*0408 Are Strongly Associated with the Development of Antibodies against Interferon-β Therapy in Multiple Sclerosis. Am. J. Hum. Genet. 2008, 83, 219–227. [Google Scholar] [CrossRef]
- Alaez, C.; Corona, T.; Ruano, L.; Flores, H.; Loyola, M.; Gorodezky, C. Mediterranean and Amerindian MHC class II alleles are associated with multiple sclerosis in Mexicans. Acta Neurol. Scand. 2005, 112, 317–322. [Google Scholar] [CrossRef]
- de la Concha, E.; Arroyo, R.; Crusius, J.; Campillo, J.; Martin, C.; de Seijas, E.V.; Peña, A.; Claverıa, L.; Fernandez-Arquero, M. Combined effect of HLA-DRB1*1501 and interleukin-1 receptor antagonist gene allele 2 in susceptibility to relapsing/remitting multiple sclerosis. J. Neuroimmunol. 1997, 80, 172–178. [Google Scholar] [CrossRef]
- Rojas, O.-L.; Rojas-Villarraga, A.; Cruz-Tapias, P.; Sánchez, J.L.; Suárez-Escudero, J.-C.; Patarroyo, M.-A.; Anaya, J.-M. HLA class II polymorphism in Latin American patients with multiple sclerosis. Autoimmun. Rev. 2010, 9, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, N.; Chen, C.; Zhang, W.; Zhu, F. Characterization of the novel HLA-DRB1 allele, HLA-DRB1*04:328 in a Chinese individual. HLA 2023, 102, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Buck, D.; Andlauer, T.F.; Igl, W.; Wicklein, E.-M.; Mühlau, M.; Weber, F.; Köchert, K.; Pohl, C.; Arnason, B.; Comi, G.; et al. Effect of HLA-DRB1 alleles and genetic variants on the development of neutralizing antibodies to interferon beta in the BEYOND and BENEFIT trials. Mult. Scler. 2019, 25, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Schellekens, H. Immunogenicity of therapeutic proteins: Clinical implications and future prospects. Clin. Ther. 2002, 24, 1720–1740. [Google Scholar] [CrossRef]
- Sorensen, P.S.; Ross, C.; Clemmesen, K.M.; Bendtzen, K.; Frederiksen, J.L.; Jensen, K.; Kristensen, O.; Petersen, T.; Rasmussen, S.; Ravnborg, M.; et al. Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. Lancet 2003, 362, 1184–1191. [Google Scholar] [CrossRef]
- Mazdeh, M.; Taheri, M.; Sayad, A.; Bahram, S.; Omrani, M.D.; Movafagh, A.; Inoko, H.; Akbari, M.T.; Noroozi, R.; Hajilooi, M.; et al. HLA genes as modifiers of response to IFN-β-1a therapy in relapsing-remitting multiple sclerosis. Pharmacogenomics 2016, 17, 489–498. [Google Scholar] [CrossRef]
- Zafar, A.; AlShamrani, F.J.G. No evidence of disease activity-3 (NEDA-3) status in patients with relapsing remitting multiple sclerosis: Evidence from Saudi cohort receiving mainly Interferon. Mult. Scler. Relat. Disord. 2021, 51, 102875. [Google Scholar] [CrossRef]
- Havrdová, E.; Arnold, D.L.; Bar-Or, A.; Comi, G.; Hartung, H.-P.; Kappos, L.; Lublin, F.; Selmaj, K.; Traboulsee, A.; Belachew, S.; et al. No evidence of disease activity (NEDA) analysis by epochs in patients with relapsing multiple sclerosis treated with ocrelizumab vs interferon beta-1a. Mult. Scler. J. Exp. Transl. Clin. 2018, 4, 205521731876064. [Google Scholar] [CrossRef]
- Rotstein, D.; Solomon, J.M.; Sormani, M.P.; Montalban, X.; Ye, X.Y.; Dababneh, D.; Muccilli, A.; Saab, G.; Shah, P. Association of NEDA-4 With No Long-term Disability Progression in Multiple Sclerosis and Comparison With NEDA-3: A Systematic Review and Meta-analysis. Neurol. Neuroimmunol. Neuroinflam. 2022, 9, e200032. [Google Scholar] [CrossRef]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Sánchez-Serrano, C. Mestizaje E Historia De La Población En México; México Desconocido: Mexico City, Mexico, 1996; pp. 173–193. [Google Scholar]
- Bakshi, R.; Thompson, A.J.; Rocca, M.A.; Pelletier, D.; Dousset, V.; Barkhof, F.; Inglese, M.; Guttmann, C.R.; Horsfield, M.A.; Filippi, M. MRI in multiple sclerosis: Current status and future prospects. Lancet Neurol. 2008, 7, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Arrambide, G.; Tintore, M.; Espejo, C.; Auger, C.; Castillo, M.; Río, J.; Castilló, J.; Vidal-Jordana, A.; Galán, I.; Nos, C.; et al. The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain 2018, 141, 1075–1084. [Google Scholar] [CrossRef]
- Kurtzke, J.F. On the origin of EDSS. Mult. Scler. Relat. Disord. 2015, 4, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 1999, 14, 143–149. [Google Scholar] [CrossRef] [PubMed]
Variables | Multiple Sclerosis n = 105 |
---|---|
Age (years), mean ± SD | 38.9 ± 10.2 |
Female, n (%) | 70 (66.7) |
Disease characteristics | |
Disease duration (years), mean ± SD | 8.8 ± 5.8 |
EDSS score, mean ± SD | 2.9 ± 1.9 |
EDSS ≤ 4, n (%) | 75 (71.4) |
EDSS > 4, n (%) | 30 (28.6) |
NEDA-3 achieved, n (%) | 91 (86.7) |
NEDA-3 not achieved, n (%) | 14 (13.3) |
Disease-modifying therapies | |
Glatiramer acetate, use, n (%) | 39 (37.1) |
Interferon beta, n (%) | 30 (28.6) |
Rituximab, n (%) | 9 (8.6) |
Fingolimod, n (%) | 14 (13.3) |
Azathioprine, n (%) | 5 (4.8) |
Natalizumab, n (%) | 3 (2.9) |
Dimethyl fumarate, n (%) | 5 (4.8) |
Genetic Variant HLA-DRB1*0403 | |
Genotype | |
G/G, n (%) | 53 (50.5) |
G/A, n (%) | 36 (34.3) |
A/A, n (%) | 16 (15.2) |
Allele | |
G, 2n = 142 (%) | 142 (67.6) |
A, 2n = 68 (%) | 68 (32.4) |
NEDA-3 Not Achieved (Case Group) n = 14 | NEDA-3 Achieved (Control Group) n = 91 | p | |
---|---|---|---|
Female, n (%) | 12 (85.7) | 59 (53.7) | 0.1 |
Age (years), mean ± SD | 37.7 ± 10.1 | 39.1 ± 10.3 | 0.6 |
EDSS score, mean ± SD | 3.6 ± 2.3 | 2.8 ± 1.9 | 0.2 |
Disease duration (years), mean ± SD | 8.8 ± 5.4 | 8.8 ± 5.9 | 0.9 |
Disease-modifying therapies | |||
Glatiramer acetate, n (%) | 2 (14.3) | 37 (40.6) | 0.05 |
Dimethyl fumarate, n (%) | 1 (7.1) | 4 (4.4) | 0.5 |
Fingolimod, n (%) | 3 (21.4) | 11 (12.1) | 0.3 |
Interferon beta, n (%) | 4 (28.6) | 26 (28.6) | 1.0 |
Natalizumab, n (%) | 1 (7.1) | 2 (2.2) | 0.3 |
Rituximab, n (%) | 2 (14.3) | 7 (7.7) | 0.4 |
Azathioprine, n (%) | 1 (7.1) | 4 (4.4) | 0.7 |
Multiple Sclerosis (n = 81) | NEDA-3 Not Achieved (Case Group) n = 14 | NEDA-3 Achieved (Control Group) n = 91 | OR | 95%CI | p |
---|---|---|---|---|---|
Genotypes | |||||
GG, n = 53 (%) | 8 (57.1) | 45 (49.5) | - | - | |
GA, n = 36 (%) | 5 (35.7) | 31 (34.1) | - | - | 0.6 |
AA, n = 16 (%) | 1 (7.2) | 15 (16.4) | - | - | |
Genetic models | |||||
Dominant Model (GG vs. GA + AA) | - | - | 0.73 | 0.23–2.28 | 0.80 |
Recessive Model (GG + GA vs. AA) | - | - | 2.56 | 0.31–2.12 | 0.36 |
Alleles, 2n = 210 | 2n = 28 | 2n = 182 | |||
G allele, 2n = 142 (%) | 21 (75) | 121 (66.5) | Referent | ||
A allele, 2n = 68 (%) | 7 (25) | 61 (33.5) | 1.51 | 0.61–3.75 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Gaitan, E.A.; Garcia-Ortega, Y.E.; Saldaña-Cruz, A.M.; Contreras-Haro, B.; Gamez-Nava, J.I.; Perez-Guerrero, E.E.; Nava-Valdivia, C.A.; Gallardo-Moya, S.; Martinez-Hernandez, A.; Gonzalez Lopez, L.; et al. Genetic Variant HLA-DRB1*0403 and Therapeutic Response to Disease-Modifying Therapies in Multiple Sclerosis: A Case-Control Study. Int. J. Mol. Sci. 2023, 24, 14594. https://doi.org/10.3390/ijms241914594
Gomez-Gaitan EA, Garcia-Ortega YE, Saldaña-Cruz AM, Contreras-Haro B, Gamez-Nava JI, Perez-Guerrero EE, Nava-Valdivia CA, Gallardo-Moya S, Martinez-Hernandez A, Gonzalez Lopez L, et al. Genetic Variant HLA-DRB1*0403 and Therapeutic Response to Disease-Modifying Therapies in Multiple Sclerosis: A Case-Control Study. International Journal of Molecular Sciences. 2023; 24(19):14594. https://doi.org/10.3390/ijms241914594
Chicago/Turabian StyleGomez-Gaitan, Esteban Alejandro, Yessica Eleanet Garcia-Ortega, Ana Miriam Saldaña-Cruz, Betsabe Contreras-Haro, Jorge Ivan Gamez-Nava, Emilio Edsaul Perez-Guerrero, Cesar Arturo Nava-Valdivia, Sergio Gallardo-Moya, Alejandra Martinez-Hernandez, Laura Gonzalez Lopez, and et al. 2023. "Genetic Variant HLA-DRB1*0403 and Therapeutic Response to Disease-Modifying Therapies in Multiple Sclerosis: A Case-Control Study" International Journal of Molecular Sciences 24, no. 19: 14594. https://doi.org/10.3390/ijms241914594
APA StyleGomez-Gaitan, E. A., Garcia-Ortega, Y. E., Saldaña-Cruz, A. M., Contreras-Haro, B., Gamez-Nava, J. I., Perez-Guerrero, E. E., Nava-Valdivia, C. A., Gallardo-Moya, S., Martinez-Hernandez, A., Gonzalez Lopez, L., Rios-Gonzalez, B. E., Marquez-Pedroza, J., Mendez-del Villar, M., Esparza-Guerrero, Y., Villagomez-Vega, A., & Macias Islas, M. A. (2023). Genetic Variant HLA-DRB1*0403 and Therapeutic Response to Disease-Modifying Therapies in Multiple Sclerosis: A Case-Control Study. International Journal of Molecular Sciences, 24(19), 14594. https://doi.org/10.3390/ijms241914594