Mass Spectrometry-Based Proteomics for Discovering Salivary Biomarkers in Periodontitis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Literature Search
2.4. Study Selection
2.5. Risk-of-Bias Assessment
2.6. Data Analysis
3. Results
3.1. Results of Literature Search
3.2. Risk-of-Bias Assessment
3.3. Description of Included Studies
3.3.1. Study Population
3.3.2. Study Protocol
3.4. Biomarker Discovery
3.5. Replicable Candidate Biomarkers
3.5.1. Case–Control Studies
3.5.2. Pre-Post Treatment or Case Series Studies
4. Discussion
5. Limitations of Included Studies and Future Perspectives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S162–S170. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Eke, P.I.; Borgnakke, W.S.; Genco, R.J. Recent epidemiologic trends in periodontitis in the USA. Periodontology 2000 2020, 82, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M.; Wen, Y.F. Global, regional, and national burden of severe periodontitis, 1990-2019: An analysis of the Global Burden of Disease Study 2019. J. Clin. Periodontol. 2021, 48, 1165–1188. [Google Scholar] [CrossRef] [PubMed]
- Ramseier, C.A.; Anerud, A.; Dulac, M.; Lulic, M.; Cullinan, M.P.; Seymour, G.J.; Faddy, M.J.; Bürgin, W.; Schätzle, M.; Lang, N.P. Natural history of periodontitis: Disease progression and tooth loss over 40 years. J. Clin. Periodontol. 2017, 44, 1182–1191. [Google Scholar] [CrossRef]
- Ng, S.K.; Leung, W.K. Oral health-related quality of life and periodontal status. Community Dent. Oral Epidemiol. 2006, 34, 114–122. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef]
- Armitage, G.C. The complete periodontal examination. Periodontology 2000 2004, 34, 22–33. [Google Scholar] [CrossRef]
- Papapanou, P.N. Patterns of alveolar bone loss in the assessment of periodontal treatment priorities. Swed. Dent. J. Suppl. 1989, 66, 1–45. [Google Scholar]
- Haffajee, A.D.; Socransky, S.S.; Goodson, J.M. Clinical parameters as predictors of destructive periodontal disease activity. J. Clin. Periodontol. 1983, 10, 257–265. [Google Scholar] [CrossRef]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S149–S161. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.P.; Williams, R.; Offenbacher, S.; Morelli, T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontology 2000 2016, 70, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Eley, B.M.; Cox, S.W. Advances in periodontal diagnosis. 8. Commercial diagnostic kits based on GCF proteolytic and hydrolytic enzyme levels. Br. Dent. J. 1998, 184, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Lin, C.C.; Abemayor, E.; Wang, M.B.; Wong, D.T. The emerging landscape of salivary diagnostics. Periodontology 2000 2016, 70, 38–52. [Google Scholar] [CrossRef]
- Jin, L.; Yu, C.; Corbet, E.F. Granulocyte elastase activity in static and flow gingival crevicular fluid. J. Periodontal Res. 2003, 38, 303–310. [Google Scholar] [CrossRef]
- Zhang, L.; Henson, B.S.; Camargo, P.M.; Wong, D.T. The clinical value of salivary biomarkers for periodontal disease. Periodontology 2000 2009, 51, 25–37. [Google Scholar] [CrossRef]
- Kinney, J.S.; Morelli, T.; Braun, T.; Ramseier, C.A.; Herr, A.E.; Sugai, J.V.; Shelburne, C.E.; Rayburn, L.A.; Singh, A.K.; Giannobile, W.V. Saliva/pathogen biomarker signatures and periodontal disease progression. J. Dent. Res. 2011, 90, 752–758. [Google Scholar] [CrossRef]
- Fuentes, L.; Yakob, M.; Wong, D.T. Emerging horizons of salivary diagnostics for periodontal disease. Br. Dent. J. 2014, 217, 567–573. [Google Scholar] [CrossRef]
- Hirtz, C.; O’Flynn, R.; Voisin, P.M.; Deville de Périère, D.; Lehmann, S.; Guedes, S.; Amado, F.; Ferreira, R.; Trindade, F.; Vitorino, R. The potential impact of salivary peptides in periodontitis. Crit. Rev. Clin. Lab. Sci. 2021, 58, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.T. Salivaomics. J. Am. Dent. Assoc. 2012, 143, 19s–24s. [Google Scholar] [CrossRef] [PubMed]
- Al Kawas, S.; Rahim, Z.H.; Ferguson, D.B. Potential uses of human salivary protein and peptide analysis in the diagnosis of disease. Arch. Oral Biol. 2012, 57, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lescuyer, P.; Farina, A.; Hochstrasser, D.F. Proteomics in clinical chemistry: Will it be long? Trends Biotechnol. 2010, 28, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Amado, F.M.; Ferreira, R.P.; Vitorino, R. One decade of salivary proteomics: Current approaches and outstanding challenges. Clin. Biochem. 2013, 46, 506–517. [Google Scholar] [CrossRef]
- Loo, J.A.; Yan, W.; Ramachandran, P.; Wong, D.T. Comparative human salivary and plasma proteomes. J. Dent. Res. 2010, 89, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.M.; Taylor, J.J.; Jaedicke, K.; Creese, A.; Gowland, C.; Burke, B.; Doudin, K.; Patel, U.; Weston, P.; Milward, M.; et al. Discovery, validation, and diagnostic ability of multiple protein-based biomarkers in saliva and gingival crevicular fluid to distinguish between health and periodontal diseases. J. Clin. Periodontol. 2022, 49, 622–632. [Google Scholar] [CrossRef]
- Ohshiro, K.; Rosenthal, D.I.; Koomen, J.M.; Streckfus, C.F.; Chambers, M.; Kobayashi, R.; El-Naggar, A.K. Pre-analytic saliva processing affect proteomic results and biomarker screening of head and neck squamous carcinoma. Int. J. Oncol. 2007, 30, 743–749. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, L.; Zhou, H.; Lee, J.M.; Garon, E.B.; Wong, D.T. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol. Cell. Proteom. 2012, 11, M111.012112. [Google Scholar] [CrossRef]
- Di Giorgi, N.; Cecchettini, A.; Michelucci, E.; Signore, G.; Ceccherini, E.; Ferro, F.; Elefante, E.; Tani, C.; Baldini, C.; Rocchiccioli, S. Salivary Proteomics Markers for Preclinical Sjögren’s Syndrome: A Pilot Study. Biomolecules 2022, 12, 738. [Google Scholar] [CrossRef]
- Ahmad, P.; Hussain, A.; Siqueira, W.L. Mass spectrometry-based proteomic approaches for salivary protein biomarkers discovery and dental caries diagnosis: A critical review. Mass Spectrom. Rev. 2022, e21822. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shu, R.; Luo, L.J.; Ge, L.H.; Xie, Y.F. Initial comparison of proteomic profiles of whole unstimulated saliva obtained from generalized aggressive periodontitis patients and healthy control subjects. J. Periodontal Res. 2009, 44, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.G.; Jehmlich, N.; Murr, A.; Dhople, V.M.; Holtfreter, B.; Hammer, E.; Völker, U.; Kocher, T. Identification of periodontitis associated changes in the proteome of whole human saliva by mass spectrometric analysis. J. Clin. Periodontol. 2013, 40, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Casarin, R.C.V.; Salmon, C.R.; Stolf, C.S.; Paz, H.E.S.; Rangel, T.P.; Domingues, R.R.; Pauletti, B.A.; Paes-Leme, A.F.; Araújo, C.; Santamaria, M.P.; et al. Salivary annexin A1: A candidate biomarker for periodontitis. J. Clin. Periodontol. 2023, 50, 942–951. [Google Scholar] [CrossRef]
- Rehiman, S.H.; Lim, S.M.; Neoh, C.F.; Majeed, A.B.A.; Chin, A.V.; Tan, M.P.; Kamaruzzaman, S.B.; Ramasamy, K. Proteomics as a reliable approach for discovery of blood-based Alzheimer’s disease biomarkers: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 60, 101066. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [CrossRef]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Kir, J.; Liu, D.; Bryant, D.; Guo, Y.; Stephens, R.; Baseler, M.W.; Lane, H.C.; et al. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007, 35, W169–W175. [Google Scholar] [CrossRef]
- Gonçalves Lda, R.; Soares, M.R.; Nogueira, F.C.; Garcia, C.; Camisasca, D.R.; Domont, G.; Feitosa, A.C.; Pereira Dde, A.; Zingali, R.B.; Alves, G. Comparative proteomic analysis of whole saliva from chronic periodontitis patients. J. Proteom. 2010, 73, 1334–1341. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, H.S.; Moon, K.S.; Cho, N.P. Detection of Biomarkers for Periodontal Diseases Using Salivary Proteomics. Korean Acad. Oral Maxillofac. Pathol. 2010, 34, 119–131. [Google Scholar]
- Mertens, B.; Orti, V.; Vialaret, J.; Gibert, P.; Relaño-Ginés, A.; Lehmann, S.; Deville de Périère, D.; Hirtz, C. Assessing a multiplex-targeted proteomics approach for the clinical diagnosis of periodontitis using saliva samples. Bioanalysis 2018, 10, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Bostanci, N.; Selevsek, N.; Wolski, W.; Grossmann, J.; Bao, K.; Wahlander, A.; Trachsel, C.; Schlapbach, R.; Öztürk, V.; Afacan, B.; et al. Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease. Mol. Cell. Proteom. 2018, 17, 1392–1409. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.; Kilsgård, O.; Åkerman, S.; Klinge, B.; Demmer, R.T.; Malmström, J.; Jönsson, D. The Human Salivary Antimicrobial Peptide Profile according to the Oral Microbiota in Health, Periodontitis and Smoking. J. Innate Immun. 2019, 11, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Yuan, C.; Ma, Z.; Zhu, C.; Tong, P.; Gallagher, J.E.; Sun, X.; Zheng, S. The potentiality of salivary peptide biomarkers for screening patients with periodontal diseases by mass spectrometry. Clin. Chim. Acta 2019, 495, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.S.; Kim, Y.G.; Shin, Y.J.; Ko, B.J.; Kim, S.; Kim, H.D. Deep sequencing salivary proteins for periodontitis using proteomics. Clin. Oral Investig. 2019, 23, 3571–3580. [Google Scholar] [CrossRef] [PubMed]
- Hartenbach, F.; Velasquez, É.; Nogueira, F.C.S.; Domont, G.B.; Ferreira, E.; Colombo, A.P.V. Proteomic analysis of whole saliva in chronic periodontitis. J. Proteom. 2020, 213, 103602. [Google Scholar] [CrossRef]
- Antezack, A.; Chaudet, H.; Tissot-Dupont, H.; Brouqui, P.; Monnet-Corti, V. Rapid diagnosis of periodontitis, a feasibility study using MALDI-TOF mass spectrometry. PLoS ONE 2020, 15, e0230334. [Google Scholar] [CrossRef]
- Haigh, B.J.; Stewart, K.W.; Whelan, J.R.; Barnett, M.P.; Smolenski, G.A.; Wheeler, T.T. Alterations in the salivary proteome associated with periodontitis. J. Clin. Periodontol. 2010, 37, 241–247. [Google Scholar] [CrossRef]
- Yuan, C.; Ma, Z.; Tong, P.; Yu, S.; Li, Y.; Gallagher, J.E.; Sun, X.; Zheng, S. Peptidomic changes of saliva after non-surgical treatment of stage I/II generalized periodontitis. Oral Dis. 2022, 28, 1640–1651. [Google Scholar] [CrossRef]
- Armitage, G.C. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 1999, 4, 1–6. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Claffey, N. Advances in the progression of periodontitis and proposal of definitions of a periodontitis case and disease progression for use in risk factor research. Group C consensus report of the 5th European Workshop in Periodontology. J. Clin. Periodontol. 2005, 32 (Suppl. S6), 210–213. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.L.; Cooper-White, J.; Punyadeera, C.K. Saliva proteome research: Current status and future outlook. Crit. Rev. Biotechnol. 2013, 33, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Loo, J.A.; Wong, D.T. Human saliva proteome analysis and disease biomarker discovery. Expert Rev. Proteom. 2007, 4, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Warnock, D.G.; Peck, C.C. A roadmap for biomarker qualification. Nat. Biotechnol. 2010, 28, 444–445. [Google Scholar] [CrossRef]
- Mattsson-Carlgren, N.; Palmqvist, S.; Blennow, K.; Hansson, O. Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies. Nat. Commun. 2020, 11, 6252. [Google Scholar] [CrossRef]
- Perry, G.H.; Dominy, N.J.; Claw, K.G.; Lee, A.S.; Fiegler, H.; Redon, R.; Werner, J.; Villanea, F.A.; Mountain, J.L.; Misra, R.; et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 2007, 39, 1256–1260. [Google Scholar] [CrossRef]
- Nater, U.M.; La Marca, R.; Florin, L.; Moses, A.; Langhans, W.; Koller, M.M.; Ehlert, U. Stress-induced changes in human salivary alpha-amylase activity—Associations with adrenergic activity. Psychoneuroendocrinology 2006, 31, 49–58. [Google Scholar] [CrossRef]
- Yorbik, O.; Mutlu, C.; Ozturk, O.; Altinay, D.K.; Tanju, I.A.; Kurt, I. Salivary alpha amylase levels in youths with anxiety disorders. Psychiatry Res. 2016, 235, 148–153. [Google Scholar] [CrossRef]
- Sánchez, G.A.; Miozza, V.; Delgado, A.; Busch, L. Determination of salivary levels of mucin and amylase in chronic periodontitis patients. J. Periodontal Res. 2011, 46, 221–227. [Google Scholar] [CrossRef]
- Parlak, H.M.; Buber, E.; Gur, A.T.; Karabulut, E.; Akalin, F.A. Statherin and alpha-amylase levels in saliva from patients with gingivitis and periodontitis. Arch. Oral Biol. 2023, 145, 105574. [Google Scholar] [CrossRef] [PubMed]
- Haririan, H.; Bertl, K.; Laky, M.; Rausch, W.D.; Böttcher, M.; Matejka, M.; Andrukhov, O.; Rausch-Fan, X. Salivary and serum chromogranin A and α-amylase in periodontal health and disease. J. Periodontol. 2012, 83, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Henskens, Y.M.; van den Keijbus, P.A.; Veerman, E.C.; Van der Weijden, G.A.; Timmerman, M.F.; Snoek, C.M.; Van der Velden, U.; Nieuw Amerongen, A.V. Protein composition of whole and parotid saliva in healthy and periodontitis subjects. Determination of cystatins, albumin, amylase and IgA. J. Periodontal Res. 1996, 31, 57–65. [Google Scholar] [CrossRef]
- Sánchez, G.A.; Miozza, V.A.; Delgado, A.; Busch, L. Relationship between salivary mucin or amylase and the periodontal status. Oral Dis. 2013, 19, 585–591. [Google Scholar] [CrossRef]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef] [PubMed]
- Meurman, J.H.; Rantonen, P.; Pajukoski, H.; Sulkava, R. Salivary albumin and other constituents and their relation to oral and general health in the elderly. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 94, 432–438. [Google Scholar] [CrossRef]
- Henskens, Y.M.; van der Velden, U.; Veerman, E.C.; Nieuw Amerongen, A.V. Protein, albumin and cystatin concentrations in saliva of healthy subjects and of patients with gingivitis or periodontitis. J. Periodontal Res. 1993, 28, 43–48. [Google Scholar] [CrossRef]
- Koduru, M.R.; Ramesh, A.; Adapa, S.; Shetty, J. Salivary Albumin as a Biomarker for Oral Squamous Cell Carcinoma and Chronic Periodontitis. Ann. Med. Health Sci. Res. 2017, 7, 337–340. [Google Scholar]
- Gora, K.; Soni, S.; Gupta, K.; Agarwal, C.; Bhandari, K. A comparative evaluation of serum and salivary albumin in normal, gingivitis and periodontitis patients—A clinico biochemical study. IP Int. J. Periodontol. Implantol. 2019, 4, 53–55. [Google Scholar] [CrossRef]
- Ruhl, S. The scientific exploration of saliva in the post-proteomic era: From database back to basic function. Expert Rev. Proteom. 2012, 9, 85–96. [Google Scholar] [CrossRef]
- Kivela, J.; Parkkila, S.; Parkkila, A.K.; Leinonen, J.; Rajaniemi, H. Salivary carbonic anhydrase isoenzyme VI. J. Physiol. 1999, 520 Pt 2, 315–320. [Google Scholar] [CrossRef]
- Patrikainen, M.; Pan, P.; Kulesskaya, N.; Voikar, V.; Parkkila, S. The role of carbonic anhydrase VI in bitter taste perception: Evidence from the Car6−/− mouse model. J. Biomed. Sci. 2014, 21, 82. [Google Scholar] [CrossRef] [PubMed]
- Thiry, A.; Dogné, J.M.; Masereel, B.; Supuran, C.T. Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol. Sci. 2006, 27, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Kivelä, J.; Parkkila, S.; Parkkila, A.K.; Rajaniemi, H. A low concentration of carbonic anhydrase isoenzyme VI in whole saliva is associated with caries prevalence. Caries Res. 1999, 33, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Picco, D.C.R.; Marangoni-Lopes, L.; Parisotto, T.M.; Mattos-Graner, R.; Nobre-Dos-Santos, M. Activity of Carbonic Anhydrase VI is Higher in Dental Biofilm of Children with Caries. Int. J. Mol. Sci. 2019, 20, 2673. [Google Scholar] [CrossRef]
- Jung, J.Y.; Kim, J.W.; Kim, H.A.; Suh, C.H. Salivary Biomarkers in Patients with Sjögren’s Syndrome—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 12903. [Google Scholar] [CrossRef]
- Johansen, F.E.; Braathen, R.; Brandtzaeg, P. The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J. Immunol. 2001, 167, 5185–5192. [Google Scholar] [CrossRef]
- Matsumoto, M.L. Molecular Mechanisms of Multimeric Assembly of IgM and IgA. Annu. Rev. Immunol. 2022, 40, 221–247. [Google Scholar] [CrossRef]
- Koss, M.A.; Castro, C.E.; Gramajo, A.M.; López, M.E. sIgA, peroxidase and collagenase in saliva of smokers aggressive periodontal patients. J. Oral Biol. Craniofac. Res. 2016, 6, S24–S28. [Google Scholar] [CrossRef]
- Güven, O.; De Visscher, J.G. Salivary IgA in periodontal disease. J. Periodontol. 1982, 53, 334–335. [Google Scholar] [CrossRef]
- Sandholm, L.; Tolo, K.; Olsen, I. Salivary IgG, a parameter of periodontal disease activity? High responders to Actinobacillus actinomycetemcomitans Y4 in juvenile and adult periodontitis. J. Clin. Periodontol. 1987, 14, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.H.; Rahim, Z.H.A.; Jessie, K.; Hashim, O.H.; Taiyeb-Ali, T.B. Salivary proteins associated with periodontitis in patients with Type 2 diabetes mellitus. Int. J. Mol. Sci. 2012, 13, 4642–4654. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Lactoferrin: Structure, function, denaturation and digestion. Crit. Rev. Food Sci. Nutr. 2019, 59, 580–596. [Google Scholar] [CrossRef] [PubMed]
- Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 2017, 8, 1438. [Google Scholar] [CrossRef]
- Dashper, S.G.; Pan, Y.; Veith, P.D.; Chen, Y.Y.; Toh, E.C.; Liu, S.W.; Cross, K.J.; Reynolds, E.C. Lactoferrin inhibits Porphyromonas gingivalis proteinases and has sustained biofilm inhibitory activity. Antimicrob. Agents Chemother. 2012, 56, 1548–1556. [Google Scholar] [CrossRef]
- Sczepanik, F.S.C.; Grossi, M.L.; Casati, M.; Goldberg, M.; Glogauer, M.; Fine, N.; Tenenbaum, H.C. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontology 2000 2020, 84, 45–68. [Google Scholar] [CrossRef]
- González-Sánchez, M.; Bartolome, F.; Antequera, D.; Puertas-Martín, V.; González, P.; Gómez-Grande, A.; Llamas-Velasco, S.; Herrero-San Martín, A.; Pérez-Martínez, D.; Villarejo-Galende, A.; et al. Decreased salivary lactoferrin levels are specific to Alzheimer’s disease. EBioMedicine 2020, 57, 102834. [Google Scholar] [CrossRef]
- Antequera, D.; Moneo, D.; Carrero, L.; Bartolome, F.; Ferrer, I.; Proctor, G.; Carro, E. Salivary Lactoferrin Expression in a Mouse Model of Alzheimer’s Disease. Front. Immunol. 2021, 12, 749468. [Google Scholar] [CrossRef]
- Olsen, I.; Singhrao, S.K. Low levels of salivary lactoferrin may affect oral dysbiosis and contribute to Alzheimer’s disease: A hypothesis. Med. Hypotheses 2021, 146, 110393. [Google Scholar] [CrossRef]
- Fine, D.H.; Furgang, D.; Beydouin, F. Lactoferrin iron levels are reduced in saliva of patients with localized aggressive periodontitis. J. Periodontol. 2002, 73, 624–630. [Google Scholar] [CrossRef]
- Glimvall, P.; Wickström, C.; Jansson, H. Elevated levels of salivary lactoferrin, a marker for chronic periodontitis? J. Periodontal Res. 2012, 47, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Ramenzoni, L.L.; Lehner, M.P.; Kaufmann, M.E.; Wiedemeier, D.; Attin, T.; Schmidlin, P.R. Oral Diagnostic Methods for the Detection of Periodontal Disease. Diagnostics 2021, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Reis, E.S.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Novel mechanisms and functions of complement. Nat. Immunol. 2017, 18, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Grande, M.A.; Belstrøm, D.; Damgaard, C.; Holmstrup, P.; Thangaraj, S.S.; Nielsen, C.H.; Palarasah, Y. Complement split product C3c in saliva as biomarker for periodontitis and response to periodontal treatment. J. Periodontal Res. 2021, 56, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Niekrash, C.E.; Patters, M.R. Simultaneous assessment of complement components C3, C4, and B and their cleavage products in human gingival fluid. II. Longitudinal changes during periodontal therapy. J. Periodontal Res. 1985, 20, 268–275. [Google Scholar] [CrossRef]
- Damgaard, C.; Massarenti, L.; Danielsen, A.K.; Graversen, J.H.; Holmstrup, P.; Nielsen, C.H.; Palarasah, Y. Complement component 3 and its activation split-products in saliva associate with periodontitis. J. Periodontol. 2022, 93, 1294–1301. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Hasturk, H.; Lambris, J.D. C3-targeted therapy in periodontal disease: Moving closer to the clinic. Trends Immunol. 2021, 42, 856–864. [Google Scholar] [CrossRef]
- Kajikawa, T.; Mastellos, D.C.; Hasturk, H.; Kotsakis, G.A.; Yancopoulou, D.; Lambris, J.D.; Hajishengallis, G. C3-targeted host-modulation approaches to oral inflammatory conditions. Semin. Immunol. 2022, 59, 101608. [Google Scholar] [CrossRef]
- Hasturk, H.; Hajishengallis, G.; Lambris, J.D.; Mastellos, D.C.; Yancopoulou, D. Phase IIa clinical trial of complement C3 inhibitor AMY-101 in adults with periodontal inflammation. J. Clin. Investig. 2021, 131, e152973. [Google Scholar] [CrossRef]
- Rice, W.G.; Ganz, T.; Kinkade, J.M., Jr.; Selsted, M.E.; Lehrer, R.I.; Parmley, R.T. Defensin-rich dense granules of human neutrophils. Blood 1987, 70, 757–765. [Google Scholar] [CrossRef]
- Goebel, C.; Mackay, L.G.; Vickers, E.R.; Mather, L.E. Determination of defensin HNP-1, HNP-2, and HNP-3 in human saliva by using LC/MS. Peptides 2000, 21, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Mizukawa, N.; Sugiyama, K.; Ueno, T.; Mishima, K.; Takagi, S.; Sugahara, T. Defensin-1, an antimicrobial peptide present in the saliva of patients with oral diseases. Oral Dis. 1999, 5, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Mizukawa, N.; Sugiyama, K.; Ueno, T.; Mishima, K.; Takagi, S.; Sugahara, T. Levels of human defensin-1, an antimicrobial peptide, in saliva of patients with oral inflammation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999, 87, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Mizukawa, N.; Sugiyama, K.; Fukunaga, J.; Ueno, T.; Mishima, K.; Takagi, S.; Sugahara, T. Defensin-1, a peptide detected in the saliva of oral squamous cell carcinoma patients. Anticancer Res. 1998, 18, 4645–4649. [Google Scholar] [PubMed]
- Gürsoy, M.; Könönen, E.; He, Q.; Liukkonen, A.; Huumonen, S.; Gürsoy, U.K. Toll-like receptor-1, -2, and -6 genotypes in relation to salivary human beta-defensin-1, -2, -3 and human neutrophilic peptide-1. J. Clin. Periodontol. 2022, 49, 1185–1191. [Google Scholar] [CrossRef]
- Gürsoy, U.K.; Gürsoy, M.; Liukkonen, A.; Suominen, A.L.; Könönen, E. Salivary Human β-Defensin 1-3 and Human α-Defensin-1 Levels in Relation to the Extent of Periodontal Disease and Tooth Loss in the Elderly. J. Clin. Med. 2023, 12, 976. [Google Scholar] [CrossRef]
- Güncü, G.N.; Yilmaz, D.; Könönen, E.; Gürsoy, U.K. Salivary Antimicrobial Peptides in Early Detection of Periodontitis. Front. Cell. Infect. Microbiol. 2015, 5, 99. [Google Scholar] [CrossRef]
- Nejedlá, M.; Klebanovych, A.; Sulimenko, V.; Sulimenko, T.; Dráberová, E.; Dráber, P.; Karlsson, R. The actin regulator profilin 1 is functionally associated with the mammalian centrosome. Life Sci. Alliance 2021, 4, e202000655. [Google Scholar] [CrossRef]
- Gonzalez, L.L.; Garrie, K.; Turner, M.D. Role of S100 proteins in health and disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118677. [Google Scholar] [CrossRef]
- Al-Tarawneh, S.K.; Border, M.B.; Dibble, C.F.; Bencharit, S. Defining salivary biomarkers using mass spectrometry-based proteomics: A systematic review. Omics 2011, 15, 353–361. [Google Scholar] [CrossRef]
- Golatowski, C.; Salazar, M.G.; Dhople, V.M.; Hammer, E.; Kocher, T.; Jehmlich, N.; Völker, U. Comparative evaluation of saliva collection methods for proteome analysis. Clin. Chim. Acta 2013, 419, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Foratori-Junior, G.A.; Ventura, T.M.O.; Grizzo, L.T.; Jesuino, B.G.; Castilho, A.; Buzalaf, M.A.R.; Sales-Peres, S.H.C. Is There a Difference in the Proteomic Profile of Stimulated and Unstimulated Saliva Samples from Pregnant Women with/without Obesity and Periodontitis? Cells 2023, 12, 1389. [Google Scholar] [CrossRef] [PubMed]
- Arias-Bujanda, N.; Regueira-Iglesias, A.; Balsa-Castro, C.; Nibali, L.; Donos, N.; Tomás, I. Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 2–18. [Google Scholar] [CrossRef]
- Szájli, E.; Fehér, T.; Medzihradszky, K.F. Investigating the quantitative nature of MALDI-TOF MS. Mol. Cell. Proteom. 2008, 7, 2410–2418. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Q.; Lin, Q.; Duan, Y. Emerging salivary biomarkers by mass spectrometry. Clin. Chim. Acta 2015, 438, 214–221. [Google Scholar] [CrossRef]
- Messana, I.; Cabras, T.; Iavarone, F.; Manconi, B.; Huang, L.; Martelli, C.; Olianas, A.; Sanna, M.T.; Pisano, E.; Sanna, M.; et al. Chrono-proteomics of human saliva: Variations of the salivary proteome during human development. J. Proteome Res. 2015, 14, 1666–1677. [Google Scholar] [CrossRef] [PubMed]
- Percival, R.S.; Challacombe, S.J.; Marsh, P.D. Flow rates of resting whole and stimulated parotid saliva in relation to age and gender. J. Dent. Res. 1994, 73, 1416–1420. [Google Scholar] [CrossRef]
- Yeh, C.K.; Johnson, D.A.; Dodds, M.W. Impact of aging on human salivary gland function: A community-based study. Aging 1998, 10, 421–428. [Google Scholar] [CrossRef]
- Denny, P.C.; Denny, P.A.; Klauser, D.K.; Hong, S.H.; Navazesh, M.; Tabak, L.A. Age-related changes in mucins from human whole saliva. J. Dent. Res. 1991, 70, 1320–1327. [Google Scholar] [CrossRef]
- Rayment, S.A.; Liu, B.; Offner, G.D.; Oppenheim, F.G.; Troxler, R.F. Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: Factors influencing mucin levels. J. Dent. Res. 2000, 79, 1765–1772. [Google Scholar] [CrossRef]
- Murr, A.; Pink, C.; Hammer, E.; Michalik, S.; Dhople, V.M.; Holtfreter, B.; Völker, U.; Kocher, T.; Gesell Salazar, M. Cross-Sectional Association of Salivary Proteins with Age, Sex, Body Mass Index, Smoking, and Education. J. Proteome Res. 2017, 16, 2273–2281. [Google Scholar] [CrossRef] [PubMed]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Grimshaw, J.M.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Cohort (n, F/M, Age Country/Ethnicity) | Sample | Proteomic Platform | DEP (n, Highlight) 2 | Note |
---|---|---|---|---|---|
Diagnosis/Disease Association | |||||
Wu et al., 2009 [32] | Healthy (n = 5, 2/3, 24.8 ± 3.83 years), Generalized AP (n = 5, 2/3, 24 ± 0.71 years) China | UWS | 2DE-LC-MS/MS | n = 11 (protein spots) Increased (n = 7): lung and nasal epithelium carcinoma-associated protein 2, serum albumin, IgA2, zinc-α2 glycoprotein, IgC2, α-amylase (ranked 7th). Reduced (n = 4): elongation factor 2, carbonic anhydrase 6, 14-3-3σ, lactoferrin. | No result deposition in public domain or appendix to paper |
Gonçalves et al., 2010 [39] | Healthy (n = 10, 5/5, 35.6 ± 9.5 years), CP (n = 10, 5/5, 45 ± 5.1 years). Brazil | UWS | SDS-PAGE, MALDI-TOF/TOF-MS | n = 4 Increased (n = 3): Ig heavy chain V-III region, α-amylase, serum albumin. Reduced (n = 1): cystatin-SN precursor. | No result deposition in public domain or appendix to paper |
Kim et al., 2010 [40] | Healthy (n = 5, 3/2, 34.8 ± 2.9 years AP (n = 5, 3/2, 34.0 ± 4.0 years) CP (n = 5, 3/2, 34.6 ± 7.8 years) South Korea | UWS | 2-DE-MALDI-TOF/TOF-MS | n = 4 (AP); 3 (CP) AP vs. H, increased: (n = 3): S100A9; serum albumin; lipocalin 1, reduced (n = 1): cystatin SN. CP vs. H, increased (n = 3): serum albumin; α-amylase, profilin 1, reduced: none. | No result deposition in public domain or appendix to paper |
Salazar et al., 2013 [33] | Healthy (n = 20, 10/10, 48.6 ± 11.4 years), CP (n = 20, 10/10, 49.6 ± 10.2 years) Caucasian, German | SWS | LC-MS/MS | n = 20 Increased (n = 19): S100-P, plastin-2, neutrophil defensin, Rho GDP-dissociation inhibitor 2, catalase, complement C3 (ranked 16th). Reduced (n = 1): lactoperoxidase. | Suppl. info.: doi/10.1111/jcpe.12130 |
Mertens et al., 2018 [41] | Healthy (n = 12, 8/4, 26.3 ± 4 years), AP (n = 11, 5/6, 33.3 ± 9 years), CP (n = 10, 4/6, 60.5 ± 9 years) France | UWS | LC-MRM | n = 2 (AP); 3 (CP) AP vs. H, increased (n = 2): hemopexin, fibrinogen α chain; reduced: none. CP vs. H, increased (n = 1): hemopexin; reduced (n = 2): polipoprotein H, plasminogen. | Suppl. info.: doi/suppl/10.4155/bio-2017-0218 |
Bostanci et al., 2018 [42] | Healthy (n = 16, unknown gender/age), AP (n = 17, ditto), CP (n = 17, ditto), Gingivitis (n = 17, ditto), Türkiye | UWS | LC-MS/MS, LC-SRM-MS | n = 100 (AP); 67 (CP) AP vs. H, increased (n = 37): RAS GTPase-activating-like protein, hemoglobin subunit alpha, glutaredoxin-1, S100-A4, hypoxanthine-guanine phosphoribosyl transferase; reduced (n = 63): Extracellular glycoprotein lacritin, isoform 1 of alpha-1-antichymotrypsin, calmodulin-like protein 5, isoform 1 of liver carboxylesterase 1, 1 family member 6, carbonic anhydrase 6 (ranked 46th), Immunoglobulin J chain (ranked 60th). CP vs. H, increased (n = 5): Band 3 anion transport protein, ribonuclease R, ras gtpase-activating-like protein, proteasome activator complex subunit 2, metallo-beta-lactamase; reduced (n = 62): Isocitrate dehydrogenase cytoplasmic, isoform 1 of serpin b5, isoform 1 of histone deacetylase 5, calmodulin-like protein 5, isoform 1 of phospholipid transfer protein, carbonic anhydrase 6 (ranked 34th). | Suppl. info.: doi/10.1074/mcp.RA118.000718 |
Grant et al., 2019 [43] | Healthy (non-smoker = 11, 6/5, 44.8 ± 12.3 years; smoker = 11, 5/6, 33.2 ± 11.2 years), Periodontal disease (non-smoker = 10, 5/5, 51.3 ± 17.8 years; smoker = 9, 4/5, 51.3 ± 15.0 years) Sweden | SWS | SRM-MS | n = 14 Increased (n = 8): neutrophil defensin 1, histone H2A type 2A, histone H2A type 2E, histone H2A type F-S, adrenomedullin. Reduced (n = 6): Ribonuclease 7, protachykinin 1, β-defensin 128, lipocalin 1, BPI fold-containing family B member 3. | Suppl. info.: doi/10.1159/000494146 |
Tang et al., 2019 [44] | Healthy (n = 16, 11/5, 33.1 ± 10.6 years), CP (n = 17, 9/8, 40.1 ± 10.9 years) China | UWS | MALDI-TOF/TOF-MS | n = 7 (peptide peaks) Increased (n = 2): Ig kappa variable 4-1, haptoglobin. Reduced: none. | Suppl. info.: doi.org/10.1016/j.cca.2019.04.076 |
Shin et al., 2019 [45] | Healthy (n = 100, 35/65, 64.2 ± 9.3 years), Periodontitis (n = 107, 36/71, 64.2 ± 9.0 years) South Korea | UWS | LC-MS/MS | n = 68 Increased (n = 33): neutrophil defensin 3, vitronectin, desmoplakin, vasodilator-stimulated phosphoprotein, Alpha-1B-glycoprotein. Reduced (n = 35): nucleobindin-2, poly polymerase 4, Ig kappa chain V-III region, hemopexin, 78 kDa glucose-regulated protein, carbonic anhydrase 6 (ranked 24th) | Suppl. info.: doi.org/10.1007/s00784-018-2779-1 |
Hartenbach et al., 2020 [46] | Healthy (n = 10, 7/3, 29.9 ± 4.4 years, pooled 5 samples), CP (n = 30, 14/16, 42.0 ± 2.6 years, pooled 15 samples) Brazil | SWS | LC-MS/MS | n = 30 Increased (n = 3): cystatin-SA, salivary acidic PRP, submaxillary gland androgen-regulated protein 3B. Reduced (n = 27): keratin, type I cytoskeletal 13/4/2/9/16, cathepsin G, BPI fold-containing family B member 1, MMP9, annexin A1. | Suppl. info.: doi.org/10.1016/j.jprot.2019.103602 |
Antezack et al., 2020 [47] | Healthy (n = 74, 49/25, 24.50 ± 3.28 years), Periodontitis (n = 67, 53/14, 50.18 ± 13.85 years) France | UWS | MALDI-TOF/TOF-MS | n = 114 (peptide peaks) Only peptide peaks were analysed. | Suppl. info.: doi/10.1371/journal.pone.0230334 |
Grant et al., 2022 [27] | Birmingham cohort: Healthy (n = 10, 4/6, 39 ± 9 years), Stage I/II periodontitis (n = 10, 5/5, 47 ± 6 years), Stage III/IV periodontitis (n = 10, 6/4, 49 ± 7 years) Newcastle cohort: Healthy (n = 29, 16/13, 35 ± 11.9 years), Stage I/II periodontitis (n = 32, 15/17, 43.8 ± 7.2 years), Stage III/IV periodontitis (n = 28, 16/12, 43.8 ± 7.2 years) The United Kingdom | SWS | iTRAQ 8-plex labelling MS | n = 278 (protein clusters) Increased (n = 190): Haemoglobin subunit beta, Haemoglobin subunit alpha, Haemoglobin subunit delta, Haemoglobin subunit zata, AngRem52, S100-P (ranked 40th), complement C3 (ranked 128th). Reduced (n = 88): Isoform V1 of Versican core protein, salivary proline-rich protein 2, 14-3-3σ isoform 2, actin-like protein, 14-3-3σ isoform 1. | Suppl. info.: doi.org/10.25500/edata.bham.00000684. |
Casarin et al., 2023 [34] | Healthy (n = 13, 11/2, 37.0 ± 4.9 years), Generalized AP (n = 12, 10/2, 38.9 ± 14.4 years) Brazil | UWS | LC-MS/MS | n = 36 Increased (n = 21): Fibrinogen gamma chain, lactoperoxidase, profilin-1, heat shock protein beta-1, keratin, type I cytoskeletal 10, α-amylase (ranked 20th) Reduced (n = 15): Glutathione S-transferase P, keratin, type II cytoskeletal 4, leukocyte elastase inhibitor, alpha-2-macroglobulin, immunoglobulin J chain, lactoferrin (ranked 10th) | Suppl. info.: doi/10.1111/jcpe.13803 |
Protein profile changes after treatment | |||||
Haigh et al., 2010 [48] | Generalized periodontitis before vs. after treatment (n = 9, 2/7, 35–66 years) New Zealand | SWS | SDS-PAGE, LC-MS/MS | n = 15 (protein spots) Increased (n = 8): transketolase, haptoglobin α-chain subunit, S100A8, S100-A9, S100-A6. Reduced (n = 2): parotid secretory protein, prolactin-inducible protein. | No result deposition in public domain or appendix to paper |
Yuan et al., 2022 [49] | Stage I/II generalized periodontitis before vs. after treatment (n = 17, 8/9, 40.12 ± 11.60 years) China | UWS | LC-ESI-MS/MS | n = 9 (peptides) Increased (n = 3): Ig kappa variable 4-1, α-1-antitrypsin, haptoglobin. Reduced: none. | No result deposition in public domain or appendix to paper |
Unstimulated Whole Saliva | Stimulated Whole Saliva | |||
---|---|---|---|---|
Replicable Biomarkers | Expression (Fold Change 2) | Replicable Biomarkers | Expression (Fold Change 2) | References |
Aggressive periodontitis | ||||
Alpha-amylase | ↑ (1.6, 1.4) | [32,34] | ||
Serum albumin | ↑ (1.5, 4.3) | [32,40] | ||
Carbonic anhydrase 6 | ↓ (3.6, 2.3) | [32,42] | ||
Immunoglobulin J chain | ↓ (1.6, 1.8) | [34,42] | ||
Lactoferrin | ↓ (1.7, 1.3) | [32,34] | ||
Chronic periodontitis | ||||
Alpha-amylase | ↑ (2.6, 6.1) | [39,40] | ||
Serum albumin | ↑ (2.17, 11.9) | [39,40] | ||
Carbonic anhydrase 6 | ↓ (2.5, 1.4) | [42,45] | ||
Complement C3 | ↑ (1.7, 1.5) | [27,33] | ||
Neutrophil defensin | ↑ (2.1, 3.3) | [33,43] | ||
Profilin-1 | ↑ (6.7, 1.6) | [27,33] | ||
S100-P | ↑ (3.9, 2.4) | [27,33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Leung, W.K. Mass Spectrometry-Based Proteomics for Discovering Salivary Biomarkers in Periodontitis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 14599. https://doi.org/10.3390/ijms241914599
Hu H, Leung WK. Mass Spectrometry-Based Proteomics for Discovering Salivary Biomarkers in Periodontitis: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(19):14599. https://doi.org/10.3390/ijms241914599
Chicago/Turabian StyleHu, Hongying, and Wai Keung Leung. 2023. "Mass Spectrometry-Based Proteomics for Discovering Salivary Biomarkers in Periodontitis: A Systematic Review" International Journal of Molecular Sciences 24, no. 19: 14599. https://doi.org/10.3390/ijms241914599
APA StyleHu, H., & Leung, W. K. (2023). Mass Spectrometry-Based Proteomics for Discovering Salivary Biomarkers in Periodontitis: A Systematic Review. International Journal of Molecular Sciences, 24(19), 14599. https://doi.org/10.3390/ijms241914599