Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models
Abstract
:1. Introduction
2. Small Molecules in the Regulation of Cell Metabolism
3. Features of Neurovascular Unit Cell Metabolism and Local Microenvironment in the Regulation of Brain Plasticity
4. Biodegradable Biopolymers as a Source of Small Molecules in the Tissue In Vitro Models
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acetyl-CoA | acetyl coenzyme A |
ALT | alanine aminotransferase |
AMPK | adenosine monophosphate-activated protein kinase |
BBB | blood-brain barrier |
BMEC | brain microvascular endothelial cell |
CCL11 | C-C motif chemokine 11 |
CHA | cholic acid |
CPLA | cationic polylactides |
GPR81 | G protein-coupled receptor 81 |
HIF-1α | hypoxia-induced factor-1 |
HUVEC | Human umbilical vein endothelial cell |
iPSC | induced pluripotent stem cell |
La | lactate |
LDH | lactate dehydrogenase |
LTP | long-term potentiation |
Ma | malate |
MCT | monocarboxylate transporter |
MDH | malate dehydrogenase |
ME/CFS | myalgic encephalomyelitis/chronic fatigue syndrome |
MPC | mitochondrial pyruvate carrier |
MSC | mesenchymal stem cell |
NAD+ | Nicotinamide adenine dinucleotide, oxidized |
NADH | nicotinamide adenine dinucleotide, reduced |
NADP+ | Nicotinamide adenine dinucleotide phosphate, oxidized |
NADPH | nicotinamide adenine dinucleotide phosphate, reduced |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NVU | neurovascular unit |
Oa | oxaloacetate |
PCL | polycaprolactone |
PDMMLA | poly((R,S)-3,3-dimethylmalic acid) |
PEG | poly (ethylene glycol) |
PEP | phosphoenolpyruvate |
PGA | poly(glycolic acid) |
PGC1-α | peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
PLA | poly(lactic acid) |
PLGA | poly(lactic-co-glycolic acid) |
PLMA | poly(l-lactide-co-β-malic acid) |
PMA | poly(β-L- malic acid) |
PPAR-α | proliferator-activated receptor alpha |
PPP | pentose phosphate pathway |
PTMC | poly(trimethylene carbonate) |
PVA | polyvinyl alcohol |
Py | pyruvate |
RAGE | receptor for advanced glycation end products |
TCA | tricarboxylic acid cycle |
TENGS | tissue-engineered nerve transplants |
TLR | toll-like receptor |
VDAC | voltage-dependent anion channel |
References
- Piazza, I.; Kochanowski, K.; Cappelletti, V.; Fuhrer, T.; Noor, E.; Sauer, U.; Picotti, P. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell 2018, 172, 358–372.e23. [Google Scholar] [CrossRef]
- Luzarowski, M.; Skirycz, A. Emerging Strategies for the Identification of Protein–Metabolite Interactions. J. Exp. Bot. 2019, 70, 4605–4618. [Google Scholar] [CrossRef]
- Changeux, J.-P.; Christopoulos, A. Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell 2016, 166, 1084–1102. [Google Scholar] [CrossRef]
- Cournia, Z.; Chatzigoulas, A. Allostery in Membrane Proteins. Curr. Opin. Struct. Biol. 2020, 62, 197–204. [Google Scholar] [CrossRef]
- Motlagh, H.N.; Wrabl, J.O.; Li, J.; Hilser, V.J. The Ensemble Nature of Allostery. Nature 2014, 508, 331–339. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Snyder, M. Systematic Investigation of Protein-Small Molecule Interactions. IUBMB Life 2013, 65, 2–8. [Google Scholar] [CrossRef]
- Kurbatov, I.; Dolgalev, G.; Arzumanian, V.; Kiseleva, O.; Poverennaya, E. The Knowns and Unknowns in Protein–Metabolite Interactions. Int. J. Mol. Sci. 2023, 24, 4155. [Google Scholar] [CrossRef]
- Kolotyeva, N.A.; Gilmiyarova, F.N. The Role of Small Molecules in Metabolism Regulation (Review of Literature). Russ. Clin. Lab. Diagn. 2019, 64, 716–722. [Google Scholar] [CrossRef]
- Muralidhara, P.; Ewald, J.C. Protein–Metabolite Interactions Shape Cellular Metabolism and Physiology; Springer: New York, NY, USA, 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Castillo Ransanz, L.; Van Altena, P.F.J.; Heine, V.M.; Accardo, A. Engineered Cell Culture Microenvironments for Mechanobiology Studies of Brain Neural Cells. Front. Bioeng. Biotechnol. 2022, 10, 1096054. [Google Scholar] [CrossRef]
- Krycer, J.R.; Nayler, S.P. A Survey of the Metabolic Landscape of the Developing Cerebellum at Single-Cell Resolution. Cerebellum 2022, 21, 838–850. [Google Scholar] [CrossRef]
- Reyes, S.J.; Durocher, Y.; Pham, P.L.; Henry, O. Modern Sensor Tools and Techniques for Monitoring, Controlling, and Improving Cell Culture Processes. Processes 2022, 10, 189. [Google Scholar] [CrossRef]
- Hartley, F.; Walker, T.; Chung, V.; Morten, K. Mechanisms Driving the Lactate Switch in Chinese Hamster Ovary Cells. Biotechnol. Bioeng. 2018, 115, 1890–1903. [Google Scholar] [CrossRef]
- Rogatzki, M.J.; Ferguson, B.S.; Goodwin, M.L.; Gladden, L.B. Lactate Is Always the End Product of Glycolysis. Front. Neurosci. 2015, 9, 22. [Google Scholar] [CrossRef]
- Filiz, A.I.; Aladag, H.; Akin, M.L.; Sucullu, I.; Kurt, Y.; Yucel, E.; Uluutku, A.H. The Role of D-Lactate in Differential Diagnosis of Acute Appendicitis. J. Investig. Surg. 2010, 23, 218–223. [Google Scholar] [CrossRef]
- Rosenstein, P.G.; Tennent-Brown, B.S.; Hughes, D. Clinical Use of Plasma Lactate Concentration. Part 1: Physiology, Pathophysiology, and Measurement. J. Vet. Emerg. Crit. Care 2018, 28, 85–105. [Google Scholar] [CrossRef]
- Gilmiyarova, F.N.; Kolotyeva, N.A.; Gusyakova, O.A. Predicted and Experimentally Validated Lactate Characteristics: New Possibilities for Controlling Endothelial Cell Metabolism. J. Evol. Biochem. Physiol. 2022, 58, 841–848. [Google Scholar] [CrossRef]
- Halestrap, A.P. The SLC16 Gene Family–Structure, Role and Regulation in Health and Disease. Mol. Asp. Med. 2013, 34, 337–349. [Google Scholar] [CrossRef]
- San-Millán, I.; Brooks, G.A. Reexamining Cancer Metabolism: Lactate Production for Carcinogenesis Could Be the Purpose and Explanation of the Warburg Effect. Carcinogenesis 2016, 38, bgw127. [Google Scholar] [CrossRef]
- Hu, J.; Cai, M.; Liu, Y.; Liu, B.; Xue, X.; Ji, R.; Bian, X.; Lou, S. The Roles of GRP81 as a Metabolic Sensor and Inflammatory Mediator. J. Cell Physiol. 2020, 235, 8938–8950. [Google Scholar] [CrossRef]
- Lauritzen, K.H.; Morland, C.; Puchades, M.; Holm-Hansen, S.; Hagelin, E.M.; Lauritzen, F.; Attramadal, H.; Storm-Mathisen, J.; Gjedde, A.; Bergersen, L.H. Lactate Receptor Sites Link Neurotransmission, Neurovascular Coupling, and Brain Energy Metabolism. Cereb. Cortex 2014, 24, 2784–2795. [Google Scholar] [CrossRef] [PubMed]
- Dienel, G.A. Brain Lactate Metabolism: The Discoveries and the Controversies. J. Cereb. Blood Flow. Metab. 2012, 32, 1107–1138. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Brooks, G.A. Mitochondrial Lactate Oxidation Complex and an Adaptive Role for Lactate Production. Med. Sci. Sports Exerc. 2008, 40, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Sobral-Monteiro-Junior, R.; Maillot, P.; Gatica-Rojas, V.; Ávila, W.R.M.; de Paula, A.M.B.; Guimarães, A.L.S.; Santos, S.H.S.; Pupe, C.C.B.; Deslandes, A.C. Is the “Lactormone” a Key-Factor for Exercise-Related Neuroplasticity? A Hypothesis Based on an Alternative Lactate Neurobiological Pathway. Med. Hypotheses 2019, 123, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Bergersen, L.H. Lactate Transport and Signaling in the Brain: Potential Therapeutic Targets and Roles in Body—Brain Interaction. J. Cereb. Blood Flow. Metab. 2015, 35, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Deng, I.; Corrigan, F.; Zhai, G.; Zhou, X.-F.; Bobrovskaya, L. Lipopolysaccharide Animal Models of Parkinson’s Disease: Recent Progress and Relevance to Clinical Disease. Brain Behav. Immun. Health 2020, 4, 100060. [Google Scholar] [CrossRef] [PubMed]
- Heidari, A.; Yazdanpanah, N.; Rezaei, N. The Role of Toll-like Receptors and Neuroinflammation in Parkinson’s Disease. J. Neuroinflamm. 2022, 19, 135. [Google Scholar] [CrossRef]
- Hoque, R.; Farooq, A.; Ghani, A.; Gorelick, F.; Mehal, W.Z. Lactate Reduces Liver and Pancreatic Injury in Toll-Like Receptor– and Inflammasome-Mediated Inflammation via GPR81-Mediated Suppression of Innate Immunity. Gastroenterology 2014, 146, 1763–1774. [Google Scholar] [CrossRef]
- Harun-Or-Rashid, M.; Inman, D.M. Reduced AMPK Activation and Increased HCAR Activation Drive Anti-Inflammatory Response and Neuroprotection in Glaucoma. J. Neuroinflamm. 2018, 15, 313. [Google Scholar] [CrossRef]
- Yang, K.; Fan, M.; Wang, X.; Xu, J.; Wang, Y.; Tu, F.; Gill, P.S.; Ha, T.; Liu, L.; Williams, D.L.; et al. Lactate Promotes Macrophage HMGB1 Lactylation, Acetylation, and Exosomal Release in Polymicrobial Sepsis. Cell Death Differ. 2022, 29, 133–146. [Google Scholar] [CrossRef]
- Sundaramoorthy, P.; Sim, J.J.; Jang, Y.-S.; Mishra, S.K.; Jeong, K.-Y.; Mander, P.; Chul, O.B.; Shim, W.-S.; Oh, S.H.; Nam, K.-Y.; et al. Modulation of Intracellular Calcium Levels by Calcium Lactate Affects Colon Cancer Cell Motility through Calcium-Dependent Calpain. PLoS ONE 2015, 10, e0116984. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic Regulation of Gene Expression by Histone Lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, G.; Gao, V.; Steinman, M.Q.; Suzuki, A.; Alberini, C.M. Lactate from Astrocytes Fuels Learning-Induced MRNA Translation in Excitatory and Inhibitory Neurons. Commun. Biol. 2019, 2, 247. [Google Scholar] [CrossRef]
- Lee, T.-Y. Lactate: A Multifunctional Signaling Molecule. Yeungnam Univ. J. Med. 2021, 38, 183–193. [Google Scholar] [CrossRef]
- Murphy-Royal, C.; Johnston, A.D.; Boyce, A.K.J.; Diaz-Castro, B.; Institoris, A.; Peringod, G.; Zhang, O.; Stout, R.F.; Spray, D.C.; Thompson, R.J.; et al. Stress Gates an Astrocytic Energy Reservoir to Impair Synaptic Plasticity. Nat. Commun. 2020, 11, 2014. [Google Scholar] [CrossRef] [PubMed]
- Jourdain, P.; Allaman, I.; Rothenfusser, K.; Fiumelli, H.; Marquet, P.; Magistretti, P.J. L-Lactate Protects Neurons against Excitotoxicity: Implication of an ATP-Mediated Signaling Cascade. Sci. Rep. 2016, 6, 21250. [Google Scholar] [CrossRef] [PubMed]
- Roumes, H.; Dumont, U.; Sanchez, S.; Mazuel, L.; Blanc, J.; Raffard, G.; Chateil, J.-F.; Pellerin, L.; Bouzier-Sore, A.-K. Neuroprotective Role of Lactate in Rat Neonatal Hypoxia-Ischemia. J. Cereb. Blood Flow. Metab. 2021, 41, 342–358. [Google Scholar] [CrossRef]
- Certo, M.; Marone, G.; Paulis, A.; Mauro, C.; Pucino, V. Lactate: Fueling the Fire Starter. WIREs Syst. Biol. Med. 2020, 12, e1474. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Yang, J.; Zhou, F.-Q.; Zhao, L.; Zhou, H. Pyruvate Is a Prospective Alkalizer to Correct Hypoxic Lactic Acidosis. Mil. Med. Res. 2018, 5, 13. [Google Scholar] [CrossRef]
- Gylmiyarova, F.N.; Radomskaya, V.M.; Gusyakova, O.A.; Ryskina, E.A.; Kolotyeva, N.A.; Shahnovich, E.A.; Nefedova, N.S.; Sidorova, I.F.; Baisheva, G.M.; Pervova, Y.V.; et al. Modeling Role of Pyruvate in the Processes of Protein-Protein Interaction. Biomeditsinskaya Khimiya 2015, 61, 132–140. [Google Scholar] [CrossRef]
- Gilmiyarova, F.N.; Kolotyeva, N.A.; Kuzmicheva, V.I.; Remizov, V.V.; Gusyakova, O.A. Novel Approach to Protein-Protein Interaction Assessment. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 072046. [Google Scholar] [CrossRef]
- Bricker, D.K.; Taylor, E.B.; Schell, J.C.; Orsak, T.; Boutron, A.; Chen, Y.-C.; Cox, J.E.; Cardon, C.M.; Van Vranken, J.G.; Dephoure, N.; et al. A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans. Science 2012, 337, 96–100. [Google Scholar] [CrossRef]
- Herzig, S.; Raemy, E.; Montessuit, S.; Veuthey, J.-L.; Zamboni, N.; Westermann, B.; Kunji, E.R.S.; Martinou, J.-C. Identification and Functional Expression of the Mitochondrial Pyruvate Carrier. Science 2012, 337, 93–96. [Google Scholar] [CrossRef]
- Karsy, M.; Guan, J.; Huang, L.E. Prognostic Role of Mitochondrial Pyruvate Carrier in Isocitrate Dehydrogenase–Mutant Glioma. J. Neurosurg. 2018, 130, 56–66. [Google Scholar] [CrossRef]
- Cui, J.; Quan, M.; Xie, D.; Gao, Y.; Guha, S.; Fallon, M.B.; Chen, J.; Xie, K. A Novel KDM5A/MPC-1 Signaling Pathway Promotes Pancreatic Cancer Progression via Redirecting Mitochondrial Pyruvate Metabolism. Oncogene 2020, 39, 1140–1151. [Google Scholar] [CrossRef]
- Lu, H.; Forbes, R.A.; Verma, A. Hypoxia-Inducible Factor 1 Activation by Aerobic Glycolysis Implicates the Warburg Effect in Carcinogenesis. J. Biol. Chem. 2002, 277, 23111–23115. [Google Scholar] [CrossRef]
- Zhou, F.-Q. Pyruvate as a Potential Beneficial Anion in Resuscitation Fluids. Front. Med. 2022, 9, 905978. [Google Scholar] [CrossRef]
- Elia, I.; Rossi, M.; Stegen, S.; Broekaert, D.; Doglioni, G.; van Gorsel, M.; Boon, R.; Escalona-Noguero, C.; Torrekens, S.; Verfaillie, C.; et al. Breast Cancer Cells Rely on Environmental Pyruvate to Shape the Metastatic Niche. Nature 2019, 568, 117–121. [Google Scholar] [CrossRef]
- Birsoy, K.; Wang, T.; Chen, W.W.; Freinkman, E.; Abu-Remaileh, M.; Sabatini, D.M. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell 2015, 162, 540–551. [Google Scholar] [CrossRef]
- Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef]
- Kuo, M.M.; Kim, D.H.; Jandu, S.; Bergman, Y.; Tan, S.; Wang, H.; Pandey, D.R.; Abraham, T.P.; Shoukas, A.A.; Berkowitz, D.E.; et al. MPST but Not CSE Is the Primary Regulator of Hydrogen Sulfide Production and Function in the Coronary Artery. Am. J. Physiol.-Heart Circ. Physiol. 2016, 310, H71–H79. [Google Scholar] [CrossRef]
- Ricci, L.; Stanley, F.U.; Eberhart, T.; Mainini, F.; Sumpton, D.; Cardaci, S. Pyruvate Transamination and NAD Biosynthesis Enable Proliferation of Succinate Dehydrogenase-Deficient Cells by Supporting Aerobic Glycolysis. Cell Death Dis. 2023, 14, 403. [Google Scholar] [CrossRef] [PubMed]
- Denker, N.; Harders, A.R.; Arend, C.; Dringen, R. Consumption and Metabolism of Extracellular Pyruvate by Cultured Rat Brain Astrocytes. Neurochem. Res. 2023, 48, 1438–1454. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.V.; Nguyen, N.H.T.; Rise, F.; Hassel, B. Brain metabolism of exogenous pyruvate. J. Neurochem. 2005, 95, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.; Sobrino, T.; Ramos-Cabrer, P.; Castillo, J. Oxaloacetate: A Novel Neuroprotective for Acute Ischemic Stroke. Int. J. Biochem. Cell Biol. 2012, 44, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Borst, P. The Malate–Aspartate Shuttle (Borst Cycle): How It Started and Developed into a Major Metabolic Pathway. IUBMB Life 2020, 72, 2241–2259. [Google Scholar] [CrossRef]
- Muller, F.L.; Liu, Y.; Abdul-Ghani, M.A.; Lustgarten, M.S.; Bhattacharya, A.; Jang, Y.C.; Van Remmen, H. High Rates of Superoxide Production in Skeletal-Muscle Mitochondria Respiring on Both Complex I- and Complex II-Linked Substrates. Biochem. J. 2008, 409, 491–499. [Google Scholar] [CrossRef]
- Qiang, F. Effect of Malate-Oligosaccharide Solution on Antioxidant Capacity of Endurance Athletes. Open Biomed. Eng. J. 2015, 9, 326–329. [Google Scholar] [CrossRef]
- Kolotyeva, N.A.; Gilmiyarova, F.N.; Gusyakova, O.A.; Komarova, M.V.; Remizov, N.V.; Ryskina, E.A. Mathematical Modelling of the Influence of Different Concentrations of Oxaloacetate to Glycerol-3-Phosphate Dehydrogenase Structure. J. Biomed. Photonics Eng. 2022, 8, 010302. [Google Scholar] [CrossRef]
- Tower, R.J.; Busse, E.; Jaramillo, J.; Lacey, M.; Hoffseth, K.; Guntur, A.R.; Simkin, J.; Sammarco, M.C. Spatial Transcriptomics Reveals Metabolic Changes Underly Age-Dependent Declines in Digit Regeneration. Elife 2022, 11, e71542. [Google Scholar] [CrossRef]
- Kolotyeva, N.A.; Limareva, L.V.; Gilmiyarova, F.N.; Boltovskaya, V.V.; Ilyasov, P.V.; Gusyakova, O.A.; Remizov, V.V. Predicted Oxaloacetate Activity, Gene Expression And Viability Of Human Dermal Fibroblasts. Russ. Open Med. J. 2022, 11, 405. [Google Scholar] [CrossRef]
- Campos, F.; Sobrino, T.; Ramos-Cabrer, P.; Argibay, B.; Agulla, J.; Pérez-Mato, M.; Rodríguez-González, R.; Brea, D.; Castillo, J. Neuroprotection by Glutamate Oxaloacetate Transaminase in Ischemic Stroke: An Experimental Study. J. Cereb. Blood Flow. Metab. 2011, 31, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Mohanan, P.V. Effect of α-Ketoglutarate and Oxaloacetate on Brain Mitochondrial DNA Damage and Seizures Induced by Kainic Acid in Mice. Toxicol. Lett. 2003, 143, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Knapp, L.; Gellért, L.; Kocsis, K.; Kis, Z.; Farkas, T.; Vécsei, L.; Toldi, J. Neuroprotective Effect of Oxaloacetate in a Focal Brain Ischemic Model in the Rat. Cell Mol. Neurobiol. 2015, 35, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, R.H.; Bothwell, R.; Hutfles, L.; Burns, J.M.; Reed, G.A. Tolerability and Pharmacokinetics of Oxaloacetate 100 mg Capsules in Alzheimer’s Subjects. BBA Clin. 2016, 5, 120–123. [Google Scholar] [CrossRef]
- Vidoni, E.D.; Choi, I.; Lee, P.; Reed, G.; Zhang, N.; Pleen, J.; Mahnken, J.D.; Clutton, J.; Becker, A.; Sherry, E.; et al. Safety and Target Engagement Profile of Two Oxaloacetate Doses in Alzheimer’s Patients. Alzheimer’s Dement. 2021, 17, 7–17. [Google Scholar] [CrossRef]
- Cash, A.; Kaufman, D.L. Oxaloacetate Treatment For Mental And Physical Fatigue In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Long-COVID Fatigue Patients: A Non-Randomized Controlled Clinical Trial. J. Transl. Med. 2022, 20, 295. [Google Scholar] [CrossRef]
- Williams, D.S.; Cash, A.; Hamadani, L.; Diemer, T. Oxaloacetate Supplementation Increases Lifespan in Caenorhabditis Elegans through an AMPK/FOXO-Dependent Pathway. Aging Cell 2009, 8, 765–768. [Google Scholar] [CrossRef]
- Edwards, C.B.; Copes, N.; Brito, A.G.; Canfield, J.; Bradshaw, P.C. Malate and Fumarate Extend Lifespan in Caenorhabditis Elegans. PLoS ONE 2013, 8, e58345. [Google Scholar] [CrossRef]
- Kim, E.; Annibal, A.; Lee, Y.; Park, H.-E.H.; Ham, S.; Jeong, D.-E.; Kim, Y.; Park, S.; Kwon, S.; Jung, Y.; et al. Mitochondrial Aconitase Suppresses Immunity by Modulating Oxaloacetate and the Mitochondrial Unfolded Protein Response. Nat. Commun. 2023, 14, 3716. [Google Scholar] [CrossRef]
- Swerdlow, R.H. Bioenergetic Medicine. Br. J. Pharmacol. 2014, 171, 1854–1869. [Google Scholar] [CrossRef]
- Compagno, C.; Brambilla, L.; Capitanio, D.; Boschi, F.; Maria Ranzi, B.; Porro, D. Alterations of the Glucose Metabolism in a Triose Phosphate Isomerase-NegativeSaccharomyces Cerevisiae Mutant. Yeast 2001, 18, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, W.; Lu, H.; Cai, S. Methylglyoxal in the Brain: From Glycolytic Metabolite to Signalling Molecule. Molecules 2022, 27, 7905. [Google Scholar] [CrossRef]
- Mráček, T.; Drahota, Z.; Houštěk, J. The Function and the Role of the Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Mammalian Tissues. Biochim. Et. Biophys. Acta BBA-Bioenerg. 2013, 1827, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Prentki, M.; Madiraju, S.R.M. Glycerolipid/Free Fatty Acid Cycle and Islet β-Cell Function in Health, Obesity and Diabetes. Mol. Cell Endocrinol. 2012, 353, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Syngkli, S.; Das, B. Purification and Characterization of Human Glycerol 3-Phosphate Dehydrogenases (Mitochondrial and Cytosolic) by NAD+/NADH Redox Method. Biochimie, 2023; in press. [Google Scholar] [CrossRef]
- Martano, G.; Murru, L.; Moretto, E.; Gerosa, L.; Garrone, G.; Krogh, V.; Passafaro, M. Biosynthesis of glycerol phosphate is associated with long-term potentiation in hippocampal neurons. Metabolomics 2016, 12, 133. [Google Scholar] [CrossRef]
- Subramani, P.A.; Panati, K.; Narala, V.R. Molecular Docking of Glyceroneogenesis Pathway Intermediates with Peroxisome Proliferator-Activated Receptor-Alpha (PPAR-α). Bioinformation 2013, 9, 629–632. [Google Scholar] [CrossRef]
- Wójtowicz, S.; Strosznajder, A.K.; Jeżyna, M.; Strosznajder, J.B. The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochem. Res. 2020, 45, 972–988. [Google Scholar] [CrossRef]
- Passarella, S.; Schurr, A.; Portincasa, P. Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives. Int. J. Mol. Sci. 2021, 22, 12620. [Google Scholar] [CrossRef]
- Zamani-Nour, S.; Lin, H.-C.; Walker, B.J.; Mettler-Altmann, T.; Khoshravesh, R.; Karki, S.; Bagunu, E.; Sage, T.L.; Quick, W.P.; Weber, A.P.M. Overexpression of the Chloroplastic 2-Oxoglutarate/Malate Transporter Disturbs Carbon and Nitrogen Homeostasis in Rice. J. Exp. Bot. 2021, 72, 137–152. [Google Scholar] [CrossRef]
- Runswick, M.J.; Walker, J.E.; Bisaccia, F.; Iacobazzi, V.; Palmieri, F. Sequence of the Bovine 2-Oxoglutarate/Malate Carrier Protein: Structural Relationship to Other Mitochondrial Transport Proteins. Biochemistry 1990, 29, 11033–11040. [Google Scholar] [CrossRef] [PubMed]
- Selinski, J.; Scheibe, R. Malate Valves: Old Shuttles with New Perspectives. Plant Biol. 2019, 21 (Suppl. S1), 21–30. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Roles of Malate and Aspartate in Gluconeogenesis in Various Physiological and Pathological States. Metabolism 2023, 145, 155614. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, J.; Zhu, J.; Kuei, C.; Yu, J.; Shelton, J.; Sutton, S.W.; Li, X.; Yun, S.J.; Mirzadegan, T.; et al. Lactate Inhibits Lipolysis in Fat Cells through Activation of an Orphan G-Protein-Coupled Receptor, GPR81. J. Biol. Chem. 2009, 284, 2811–2822. [Google Scholar] [CrossRef]
- Liu, Q.; Umemoto, E.; Morita, N.; Kayama, H.; Baba, Y.; Kurosaki, T.; Okumura, R.; Takeda, K. Pyruvate Enhances Oral Tolerance via GPR31. Int. Immunol. 2022, 34, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Mashiko, M.; Kurosawa, A.; Tani, Y.; Tsuji, T.; Takeda, S. GPR31 and GPR151 Are Activated under Acidic Conditions. J. Biochem. 2019, 166, 317–322. [Google Scholar] [CrossRef]
- Runge, K.; Cardoso, C.; de Chevigny, A. Dendritic Spine Plasticity: Function and Mechanisms. Front. Synaptic Neurosci. 2020, 12, 36. [Google Scholar] [CrossRef]
- Buchholz, M.O.; Gastone Guilabert, A.; Ehret, B.; Schuhknecht, G.F.P. How Synaptic Strength, Short-Term Plasticity, and Input Synchrony Contribute to Neuronal Spike Output. PLoS Comput. Biol. 2023, 19, e1011046. [Google Scholar] [CrossRef]
- Uspenskaya, Y.A.; Morgun, A.V.; Osipova, E.D.; Pozhilenkova, E.A.; Salmina, A.B. Mechanisms of Cerebral Angiogenesis in Health and Brain Pathology. Neurosci. Behav. Physiol. 2022, 52, 453–461. [Google Scholar] [CrossRef]
- Salmina, A.B.; Kapkaeva, M.R.; Vetchinova, A.S.; Illarioshkin, S.N. Novel Approaches Used to Examine and Control Neurogenesis in Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 9608. [Google Scholar] [CrossRef]
- Pozhilenkova, E.A.; Lopatina, O.L.; Komleva, Y.K.; Salmin, V.V.; Salmina, A.B. Blood-Brain Barrier-Supported Neurogenesis in Healthy and Diseased Brain. Rev. Neurosci. 2017, 28, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Guedes, J.R.; Ferreira, P.A.; Costa, J.M.; Cardoso, A.L.; Peça, J. Microglia-dependent Remodeling of Neuronal Circuits. J. Neurochem. 2022, 163, 74–93. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, M. The Role of Lipid Metabolism for Neural Stem Cell Regulation. Brain Plast. 2017, 3, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Ramosaj, M.; Madsen, S.; Maillard, V.; Scandella, V.; Sudria-Lopez, D.; Yuizumi, N.; Telley, L.; Knobloch, M. Lipid Droplet Availability Affects Neural Stem/Progenitor Cell Metabolism and Proliferation. Nat. Commun. 2021, 12, 7362. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Dubreuil, V.; Arai, Y.; Wilsch-Bräuninger, M.; Schwudke, D.; Saher, G.; Miyata, T.; Breier, G.; Thiele, C.; Shevchenko, A.; et al. Ablation of Cholesterol Biosynthesis in Neural Stem Cells Increases Their VEGF Expression and Angiogenesis but Causes Neuron Apoptosis. Proc. Natl. Acad. Sci. USA 2009, 106, 8350–8355. [Google Scholar] [CrossRef]
- Salmina, A.B.; Gorina, Y.V.; Komleva, Y.K.; Panina, Y.A.; Malinovskaya, N.A.; Lopatina, O.L. Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis. Biomedicines 2021, 9, 1092. [Google Scholar] [CrossRef]
- Knobloch, M.; Pilz, G.-A.; Ghesquière, B.; Kovacs, W.J.; Wegleiter, T.; Moore, D.L.; Hruzova, M.; Zamboni, N.; Carmeliet, P.; Jessberger, S. A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity. Cell Rep. 2017, 20, 2144–2155. [Google Scholar] [CrossRef]
- Zheng, X.; Boyer, L.; Jin, M.; Mertens, J.; Kim, Y.; Ma, L.; Ma, L.; Hamm, M.; Gage, F.H.; Hunter, T. Metabolic reprogramming during Neuronal Differentiation from Aerobic Glycolysis to Neuronal Oxidative Phosphorylation. Elife 2016, 5, e13374. [Google Scholar] [CrossRef]
- Chen, A.; Wang, M.; Xu, C.; Zhao, Y.; Xian, P.; Li, Y.; Zheng, W.; Yi, X.; Wu, S.; Wang, Y. Glycolysis Mediates Neuron Specific Histone Acetylation in Valproic Acid-Induced Human Excitatory Neuron Differentiation. Front. Mol. Neurosci. 2023, 16, 1151162. [Google Scholar] [CrossRef]
- Gkini, V.; Namba, T. Glutaminolysis and the Control of Neural Progenitors in Neocortical Development and Evolution. Neuroscientist 2023, 29, 177–189. [Google Scholar] [CrossRef]
- Pötzsch, A.; Zocher, S.; Bernas, S.N.; Leiter, O.; Rünker, A.E.; Kempermann, G. L-Lactate Exerts a pro-Proliferative Effect on Adult Hippocampal Precursor Cells in Vitro. iScience 2021, 24, 102126. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine Reliance in Cell Metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef] [PubMed]
- Devine, M.J.; Kittler, J.T. Mitochondria at the Neuronal Presynapse in Health and Disease. Nat. Rev. Neurosci. 2018, 19, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Van Steenbergen, V.; Lavoie-Cardinal, F.; Kazwiny, Y.; Decet, M.; Martens, T.; Verstreken, P.; Boesmans, W.; De Koninck, P.; Vanden Berghe, P. Nano-Positioning and Tubulin Conformation Contribute to Axonal Transport Regulation of Mitochondria along Microtubules. Proc. Natl. Acad. Sci. USA 2022, 119, e2203499119. [Google Scholar] [CrossRef]
- Yellen, G. Fueling Thought: Management of Glycolysis and Oxidative Phosphorylation in Neuronal Metabolism. J. Cell Biol. 2018, 217, 2235–2246. [Google Scholar] [CrossRef]
- Karagiannis, A.; Gallopin, T.; Lacroix, A.; Plaisier, F.; Piquet, J.; Geoffroy, H.; Hepp, R.; Naudé, J.; Le Gac, B.; Egger, R.; et al. Lactate Is an Energy Substrate for Rodent Cortical Neurons and Enhances Their Firing Activity. Elife 2021, 10, e71424. [Google Scholar] [CrossRef]
- Dembitskaya, Y.; Piette, C.; Perez, S.; Berry, H.; Magistretti, P.J.; Venance, L. Lactate Supply Overtakes Glucose When Neural Computational and Cognitive Loads Scale Up. Proc. Natl. Acad. Sci. USA 2022, 119, e2212004119. [Google Scholar] [CrossRef]
- Motori, E.; Atanassov, I.; Kochan, S.M.V.; Folz-Donahue, K.; Sakthivelu, V.; Giavalisco, P.; Toni, N.; Puyal, J.; Larsson, N.-G. Neuronal Metabolic Rewiring Promotes Resilience to Neurodegeneration Caused by Mitochondrial Dysfunction. Sci. Adv. 2020, 6, eaba8271. [Google Scholar] [CrossRef]
- Hertz, L.; Rothman, D. Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase. Biology 2017, 6, 17. [Google Scholar] [CrossRef]
- Selivanov, V.A.; Zagubnaya, O.A.; Nartsissov, Y.R.; Cascante, M. Unveiling a Key Role of Oxaloacetate-Glutamate Interaction in Regulation of Respiration and ROS Generation in Nonsynaptic Brain Mitochondria Using a Kinetic Model. PLoS ONE 2021, 16, e0255164. [Google Scholar] [CrossRef]
- Herrero-Mendez, A.; Almeida, A.; Fernández, E.; Maestre, C.; Moncada, S.; Bolaños, J.P. The Bioenergetic and Antioxidant Status of Neurons Is Controlled by Continuous Degradation of a Key Glycolytic Enzyme by APC/C–Cdh1. Nat. Cell Biol. 2009, 11, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S. Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 6568. [Google Scholar] [CrossRef]
- Garcia Corrales, A.V.; Haidar, M.; Bogie, J.F.J.; Hendriks, J.J.A. Fatty Acid Synthesis in Glial Cells of the CNS. Int. J. Mol. Sci. 2021, 22, 8159. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.V.; Westi, E.W.; Jakobsen, E.; Urruticoechea, N.; Borges, K.; Aldana, B.I. Astrocyte Metabolism of the Medium-Chain Fatty Acids Octanoic Acid and Decanoic Acid Promotes GABA Synthesis in Neurons via Elevated Glutamine Supply. Mol. Brain 2021, 14, 132. [Google Scholar] [CrossRef] [PubMed]
- Morant-Ferrando, B.; Jimenez-Blasco, D.; Alonso-Batan, P.; Agulla, J.; Lapresa, R.; Garcia-Rodriguez, D.; Yunta-Sanchez, S.; Lopez-Fabuel, I.; Fernandez, E.; Carmeliet, P.; et al. Fatty Acid Oxidation Organizes Mitochondrial Supercomplexes to Sustain Astrocytic ROS and Cognition. Nat. Metab. 2023, 5, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S. Metabolic Compartmentalization between Astroglia and Neurons in Physiological and Pathophysiological Conditions of the Neurovascular Unit. Neuropathology 2020, 40, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.-A.; Rodrigues, L.; Bobermin, L.D.; Zanotto, C.; Vizuete, A.; Quincozes-Santos, A.; Souza, D.O.; Leite, M.C. Glycolysis-Derived Compounds From Astrocytes That Modulate Synaptic Communication. Front. Neurosci. 2019, 12, 1035. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzaki, S.; Ediga, R.D.; Okun, J.G.; Kölker, S.; Sauer, S.W. Impairment of Astrocytic Glutaminolysis in Glutaric Aciduria Type I. J. Inherit. Metab. Dis. 2018, 41, 91–99. [Google Scholar] [CrossRef]
- Gibbs, M.E.; Hutchinson, D.; Hertz, L. Astrocytic Involvement in Learning and Memory Consolidation. Neurosci. Biobehav. Rev. 2008, 32, 927–944. [Google Scholar] [CrossRef]
- Schousboe, A.; Scafidi, S.; Bak, L.K.; Waagepetersen, H.S.; McKenna, M.C. Glutamate Metabolism in the Brain Focusing on Astrocytes; Springer: Cham, Switzerland, 2014; pp. 13–30. [Google Scholar] [CrossRef]
- de Tredern, E.; Rabah, Y.; Pasquer, L.; Minatchy, J.; Plaçais, P.-Y.; Preat, T. Glial Glucose Fuels the Neuronal Pentose Phosphate Pathway for Long-Term Memory. Cell Rep. 2021, 36, 109620. [Google Scholar] [CrossRef]
- Amaral, A.I.; Hadera, M.G.; Tavares, J.M.; Kotter, M.R.N.; Sonnewald, U. Characterization of Glucose-related Metabolic Pathways in Differentiated Rat Oligodendrocyte Lineage Cells. Glia 2016, 64, 21–34. [Google Scholar] [CrossRef]
- McNair, L.M.; Mason, G.F.; Chowdhury, G.M.; Jiang, L.; Ma, X.; Rothman, D.L.; Waagepetersen, H.S.; Behar, K.L. Rates of Pyruvate Carboxylase, Glutamate and GABA Neurotransmitter Cycling, and Glucose Oxidation in Multiple Brain Regions of the Awake Rat Using a Combination of [2- 13 C]/[1- 13 C]Glucose Infusion and 1 H-[ 13C]NMR Ex Vivo. J. Cereb. Blood Flow. Metab. 2022, 42, 1507–1523. [Google Scholar] [CrossRef]
- Voss, C.M.; Andersen, J.V.; Jakobsen, E.; Siamka, O.; Karaca, M.; Maechler, P.; Waagepetersen, H.S. AMP-activated Protein Kinase (AMPK) Regulates Astrocyte Oxidative Metabolism by Balancing TCA Cycle Dynamics. Glia 2020, 68, 1824–1839. [Google Scholar] [CrossRef]
- Aldana, B.I.; Zhang, Y.; Jensen, P.; Chandrasekaran, A.; Christensen, S.K.; Nielsen, T.T.; Nielsen, J.E.; Hyttel, P.; Larsen, M.R.; Waagepetersen, H.S.; et al. Glutamate-Glutamine Homeostasis Is Perturbed in Neurons and Astrocytes Derived from Patient IPSC Models of Frontotemporal Dementia. Mol. Brain 2020, 13, 125. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, R.; Xu, Z.; Ke, Y.; Sun, R.; Yang, H.; Zhang, X.; Zhen, X.; Zheng, L.-T. Early Glycolytic Reprogramming Controls Microglial Inflammatory Activation. J. Neuroinflamm. 2021, 18, 129. [Google Scholar] [CrossRef]
- Pan, R.-Y.; He, L.; Zhang, J.; Liu, X.; Liao, Y.; Gao, J.; Liao, Y.; Yan, Y.; Li, Q.; Zhou, X.; et al. Positive Feedback Regulation of Microglial Glucose Metabolism by Histone H4 Lysine 12 Lactylation in Alzheimer’s Disease. Cell Metab. 2022, 34, 634–648.e6. [Google Scholar] [CrossRef]
- Song, S.; Yu, L.; Hasan, M.N.; Paruchuri, S.S.; Mullett, S.J.; Sullivan, M.L.G.; Fiesler, V.M.; Young, C.B.; Stolz, D.B.; Wendell, S.G.; et al. Elevated Microglial Oxidative Phosphorylation and Phagocytosis Stimulate Post-Stroke Brain Remodeling and Cognitive Function Recovery in Mice. Commun. Biol. 2022, 5, 35. [Google Scholar] [CrossRef]
- Bielanin, J.P.; Sun, D. Significance of Microglial Energy Metabolism in Maintaining Brain Homeostasis. Transl. Stroke Res. 2023, 14, 435–437. [Google Scholar] [CrossRef]
- Desale, S.E.; Chinnathambi, S. Role of Dietary Fatty Acids in Microglial Polarization in Alzheimer’s Disease. J. Neuroinflamm. 2020, 17, 93. [Google Scholar] [CrossRef]
- Tu, D.; Gao, Y.; Yang, R.; Guan, T.; Hong, J.-S.; Gao, H.-M. The Pentose Phosphate Pathway Regulates Chronic Neuroinflammation and Dopaminergic Neurodegeneration. J. Neuroinflamm. 2019, 16, 255. [Google Scholar] [CrossRef]
- Bernier, L.-P.; York, E.M.; Kamyabi, A.; Choi, H.B.; Weilinger, N.L.; MacVicar, B.A. Microglial Metabolic Flexibility Supports Immune Surveillance of the Brain Parenchyma. Nat. Commun. 2020, 11, 1559. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Fan, N.; Zhou, C.; Li, D.; Macvicar, T.; Dong, Q.; Bruns, C.J.; Zhao, Y. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Front. Oncol. 2020, 10, 589508. [Google Scholar] [CrossRef]
- Ye, L.; Huang, Y.; Zhao, L.; Li, Y.; Sun, L.; Zhou, Y.; Qian, G.; Zheng, J.C. IL-1β and TNF-α Induce Neurotoxicity through Glutamate Production: A Potential Role for Neuronal Glutaminase. J. Neurochem. 2013, 125, 897–908. [Google Scholar] [CrossRef]
- Kvamme, E.; Torgner, I.A.; Roberg, B. Kinetics and Localization of Brain Phosphate Activated Glutaminase. J. Neurosci. Res. 2001, 66, 951–958. [Google Scholar] [CrossRef]
- Metzler, B.; Gfeller, P.; Guinet, E. Restricting Glutamine or Glutamine-Dependent Purine and Pyrimidine Syntheses Promotes Human T Cells with High FOXP3 Expression and Regulatory Properties. J. Immunol. 2016, 196, 3618–3630. [Google Scholar] [CrossRef]
- Spaas, J.; van Veggel, L.; Schepers, M.; Tiane, A.; van Horssen, J.; Wilson, D.M.; Moya, P.R.; Piccart, E.; Hellings, N.; Eijnde, B.O.; et al. Oxidative Stress and Impaired Oligodendrocyte Precursor Cell Differentiation in Neurological Disorders. Cell. Mol. Life Sci. 2021, 78, 4615–4637. [Google Scholar] [CrossRef]
- Philips, T.; Rothstein, J.D. Oligodendroglia: Metabolic Supporters of Neurons. J. Clin. Investig. 2017, 127, 3271–3280. [Google Scholar] [CrossRef]
- Fünfschilling, U.; Supplie, L.M.; Mahad, D.; Boretius, S.; Saab, A.S.; Edgar, J.; Brinkmann, B.G.; Kassmann, C.M.; Tzvetanova, I.D.; Möbius, W.; et al. Glycolytic Oligodendrocytes Maintain Myelin and Long-Term Axonal Integrity. Nature 2012, 485, 517–521. [Google Scholar] [CrossRef]
- Rinholm, J.E.; Hamilton, N.B.; Kessaris, N.; Richardson, W.D.; Bergersen, L.H.; Attwell, D. Regulation of Oligodendrocyte Development and Myelination by Glucose and Lactate. J. Neurosci. 2011, 31, 538–548. [Google Scholar] [CrossRef]
- Chamberlain, K.A.; Huang, N.; Xie, Y.; LiCausi, F.; Li, S.; Li, Y.; Sheng, Z.-H. Oligodendrocytes Enhance Axonal Energy Metabolism by Deacetylation of Mitochondrial Proteins through Transcellular Delivery of SIRT2. Neuron 2021, 109, 3456–3472.e8. [Google Scholar] [CrossRef]
- Philips, T.; Mironova, Y.A.; Jouroukhin, Y.; Chew, J.; Vidensky, S.; Farah, M.H.; Pletnikov, M.V.; Bergles, D.E.; Morrison, B.M.; Rothstein, J.D. MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degeneration. Cell Rep. 2021, 34, 108610. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, S.; Wu, Q.-F.; Mu, W.-H. Ketogenic Diet Promotes the Proliferation of Oligodendrocyte Precursor Cells in ME Region by Activating Fatty Acid Oxidation. Yi Chuan 2023, 45, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-W.; Wang, D.-X.; Ma, X.-R.; Dong, Z.-J.; Wu, J.-B.; Wang, F.; Wu, Y. Impaired Metabolism of Oligodendrocyte Progenitor Cells and Axons in Demyelinated Lesion and in the Aged CNS. Curr. Opin. Pharmacol. 2022, 64, 102205. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Abarca, L.I.; Tabernero, A.; Medina, J.M. Oligodendrocytes Use Lactate as a Source of Energy and as a Precursor of Lipids. Glia 2001, 36, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Zwain, I.H.; Yen, S.S.C. Neurosteroidogenesis in Astrocytes, Oligodendrocytes, and Neurons of Cerebral Cortex of Rat Brain. Endocrinology 1999, 140, 3843–3852. [Google Scholar] [CrossRef] [PubMed]
- Salmina, A.B.; Kuvacheva, N.V.; Morgun, A.V.; Komleva, Y.K.; Pozhilenkova, E.A.; Lopatina, O.L.; Gorina, Y.V.; Taranushenko, T.E.; Petrova, L.L. Glycolysis-Mediated Control of Blood-Brain Barrier Development and Function. Int. J. Biochem. Cell Biol. 2015, 64, 174–184. [Google Scholar] [CrossRef]
- Khilazheva, E.D.; Kuvacheva, N.V.; Morgun, A.V.; Boitsova, E.B.; Malinovskaya, N.A.; Pozhilenkova, E.A.; Salmina, A.B. Modulation of Lactate Production, Transport and Reception by Cells in the Model of Brain Neurovascul. Unit I. Eksp. Klin. Farmakol. 2016, 79, 7–12. [Google Scholar]
- Sakamuri, S.S.V.P.; Sure, V.N.; Kolli, L.; Liu, N.; Evans, W.R.; Sperling, J.A.; Busija, D.W.; Wang, X.; Lindsey, S.H.; Murfee, W.L.; et al. Glycolytic and Oxidative Phosphorylation Defects Precede the Development of Senescence in Primary Human Brain Microvascular Endothelial Cells. Geroscience 2022, 44, 1975–1994. [Google Scholar] [CrossRef]
- Sakamuri, S.S.; Sure, V.N.; Kolli, L.; Evans, W.R.; Sperling, J.A.; Bix, G.J.; Wang, X.; Atochin, D.N.; Murfee, W.L.; Mostany, R.; et al. Aging Related Impairment of Brain Microvascular Bioenergetics Involves Oxidative Phosphorylation and Glycolytic Pathways. J. Cereb. Blood Flow. Metab. 2022, 42, 1410–1424. [Google Scholar] [CrossRef]
- Chandra, P.K.; Cikic, S.; Rutkai, I.; Guidry, J.J.; Katakam, P.V.G.; Mostany, R.; Busija, D.W. Effects of Aging on Protein Expression in Mice Brain Microvessels: ROS Scavengers, MRNA/Protein Stability, Glycolytic Enzymes, Mitochondrial Complexes, and Basement Membrane Components. Geroscience 2022, 44, 371–388. [Google Scholar] [CrossRef]
- Tregub, P.P.; Averchuk, A.S.; Baranich, T.I.; Ryazanova, M.V.; Salmina, A.B. Physiological and Pathological Remodeling of Cerebral Microvessels. Int. J. Mol. Sci. 2022, 23, 12683. [Google Scholar] [CrossRef]
- Veys, K.; Fan, Z.; Ghobrial, M.; Bouché, A.; García-Caballero, M.; Vriens, K.; Conchinha, N.V.; Seuwen, A.; Schlegel, F.; Gorski, T.; et al. Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity. Circ. Res. 2020, 127, 466–482. [Google Scholar] [CrossRef]
- Malinovskaya, N.A.; Komleva, Y.K.; Salmin, V.V.; Morgun, A.V.; Shuvaev, A.N.; Panina, Y.A.; Boitsova, E.B.; Salmina, A.B. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling. Front. Physiol. 2016, 7, 599. [Google Scholar] [CrossRef] [PubMed]
- Stapor, P.; Wang, X.; Goveia, J.; Moens, S.; Carmeliet, P. Angiogenesis Revisited–Role and Therapeutic Potential of Targeting Endothelial Metabolism. J. Cell Sci. 2014, 27, 4331–4341. [Google Scholar] [CrossRef]
- Yetkin-Arik, B.; Vogels, I.M.C.; Neyazi, N.; van Duinen, V.; Houtkooper, R.H.; van Noorden, C.J.F.; Klaassen, I.; Schlingemann, R.O. Endothelial Tip Cells in Vitro Are Less Glycolytic and Have a More Flexible Response to Metabolic Stress than Non-Tip Cells. Sci. Rep. 2019, 9, 10414. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Vandekeere, S.; Kalucka, J.; Bierhansl, L.; Zecchin, A.; Brüning, U.; Visnagri, A.; Yuldasheva, N.; Goveia, J.; Cruys, B.; et al. Role of Glutamine and Interlinked Asparagine Metabolism in Vessel Formation. EMBO J. 2017, 36, 2334–2352. [Google Scholar] [CrossRef] [PubMed]
- Salmina, A.B.; Morgun, A.V.; Kuvacheva, N.V.; Lopatina, O.L.; Komleva, Y.K.; Malinovskaya, N.A.; Pozhilenkova, E.A. Establishment of Neurogenic Microenvironment in the Neurovascular Unit: The Connexin 43 Story. Rev. Neurosci. 2014, 25, 97–111. [Google Scholar] [CrossRef]
- Herrera-López, G.; Griego, E.; Galván, E.J. Lactate Induces Synapse-Specific Potentiation on CA3 Pyramidal Cells of Rat Hippocampus. PLoS ONE 2020, 15, e0242309. [Google Scholar] [CrossRef]
- Suzuki, A.; Stern, S.A.; Bozdagi, O.; Huntley, G.W.; Walker, R.H.; Magistretti, P.J.; Alberini, C.M. Astrocyte-Neuron Lactate Transport Is Required for Long-Term Memory Formation. Cell 2011, 144, 810–823. [Google Scholar] [CrossRef]
- Lev-Vachnish, Y.; Cadury, S.; Rotter-Maskowitz, A.; Feldman, N.; Roichman, A.; Illouz, T.; Varvak, A.; Nicola, R.; Madar, R.; Okun, E. L-Lactate Promotes Adult Hippocampal Neurogenesis. Front. Neurosci. 2019, 13, 403. [Google Scholar] [CrossRef]
- Hu, J.; Cai, M.; Shang, Q.; Li, Z.; Feng, Y.; Liu, B.; Xue, X.; Lou, S. Elevated Lactate by High-Intensity Interval Training Regulates the Hippocampal BDNF Expression and the Mitochondrial Quality Control System. Front. Physiol. 2021, 12, 629914. [Google Scholar] [CrossRef] [PubMed]
- Mahan, V. Effects of Lactate and Carbon Monoxide Interactions on Neuroprotection and Neuropreservation. Med. Gas. Res. 2021, 11, 158. [Google Scholar] [CrossRef] [PubMed]
- Gaisler-Salomon, I.; Miller, G.M.; Chuhma, N.; Lee, S.; Zhang, H.; Ghoddoussi, F.; Lewandowski, N.; Fairhurst, S.; Wang, Y.; Conjard-Duplany, A.; et al. Glutaminase-Deficient Mice Display Hippocampal Hypoactivity, Insensitivity to Pro-Psychotic Drugs and Potentiated Latent Inhibition: Relevance to Schizophrenia. Neuropsychopharmacology 2009, 34, 2305–2322. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Zhao, R.; Wu, B.; Lanoha, B.; Tong, Z.; Peer, J.; Liu, J.; Xiong, H.; Huang, Y.; et al. Glutaminase C Overexpression in the Brain Induces Learning Deficits, Synaptic Dysfunctions, and Neuroinflammation in Mice. Brain Behav. Immun. 2017, 66, 135–145. [Google Scholar] [CrossRef]
- Wilkins, H.M.; Harris, J.L.; Carl, S.M.; E, L.; Lu, J.; Eva Selfridge, J.; Roy, N.; Hutfles, L.; Koppel, S.; Morris, J.; et al. Oxaloacetate Activates Brain Mitochondrial Biogenesis, Enhances the Insulin Pathway, Reduces Inflammation and Stimulates Neurogenesis. Hum. Mol. Genet. 2014, 23, 6528–6541. [Google Scholar] [CrossRef]
- Pereira, S.; Kildegaard, H.F.; Andersen, M.R. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients. Biotechnol. J. 2018, 13, 1700499. [Google Scholar] [CrossRef]
- Vis, M.A.M.; Ito, K.; Hofmann, S. Impact of Culture Medium on Cellular Interactions in in Vitro Co-Culture Systems. Front. Bioeng. Biotechnol. 2020, 8, 911. [Google Scholar] [CrossRef]
- Shimba, K.; Chang, C.-H.; Asahina, T.; Moriya, F.; Kotani, K.; Jimbo, Y.; Gladkov, A.; Antipova, O.; Pigareva, Y.; Kolpakov, V.; et al. Functional Scaffolding for Brain Implants: Engineered Neuronal Network by Microfabrication and IPSC Technology. Front. Neurosci. 2019, 13, 890. [Google Scholar] [CrossRef]
- Xu, J.; Hsu, S. Self-Healing Hydrogel as an Injectable Implant: Translation in Brain Diseases. J. Biomed. Sci. 2023, 30, 43. [Google Scholar] [CrossRef]
- Sivandzade, F.; Cucullo, L. In-Vitro Blood–Brain Barrier Modeling: A Review of Modern and Fast-Advancing Technologies. J. Cereb. Blood Flow. Metab. 2018, 38, 1667–1681. [Google Scholar] [CrossRef]
- Aazmi, A.; Zhou, H.; Lv, W.; Yu, M.; Xu, X.; Yang, H.; Zhang, Y.S.; Ma, L. Vascularizing the Brain in Vitro. iScience 2022, 25, 104110. [Google Scholar] [CrossRef] [PubMed]
- Salmina, A.B. Modern Methods and Materials for Modeling Brain Tissue and Blood-Brain Barrier In Vitro. J. Sib. Fed. Univ. Biol. 2021, 14, 510–525. [Google Scholar] [CrossRef]
- Boni, R.; Ali, A.; Shavandi, A.; Clarkson, A.N. Current and Novel Polymeric Biomaterials for Neural Tissue Engineering. J. Biomed. Sci. 2018, 25, 90. [Google Scholar] [CrossRef] [PubMed]
- Cadotte, A.J.; DeMarse, T.B. Poly-HEMA as a Drug Delivery Device for in Vitro Neural Networks on Micro-Electrode Arrays. J. Neural Eng. 2005, 2, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.; Ahmed, N.; ur Rehman, A. Recent Applications of PLGA Based Nanostructures in Drug Delivery. Colloids Surf. B Biointerfaces 2017, 159, 217–231. [Google Scholar] [CrossRef]
- Lacroix, C.; Humanes, A.; Coiffier, C.; Gigmes, D.; Verrier, B.; Trimaille, T. Polylactide-Based Reactive Micelles as a Robust Platform for MRNA Delivery. Pharm. Res. 2020, 37, 30. [Google Scholar] [CrossRef]
- Cai, X.; Dou, R.; Guo, C.; Tang, J.; Li, X.; Chen, J.; Zhang, J. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics 2023, 15, 1502. [Google Scholar] [CrossRef]
- Capuana, E.; Lopresti, F.; Ceraulo, M.; La Carrubba, V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers 2022, 14, 1153. [Google Scholar] [CrossRef]
- Lopes, M.S.; Jardini, A.L.; Filho, R.M. Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Eng. 2012, 42, 1402–1413. [Google Scholar] [CrossRef]
- Schaub, N.J.; Le Beux, C.; Miao, J.; Linhardt, R.J.; Alauzun, J.G.; Laurencin, D.; Gilbert, R.J. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension. PLoS ONE 2015, 10, e0136780. [Google Scholar] [CrossRef]
- D’Amato, A.R.; Puhl, D.L.; Ziemba, A.M.; Johnson, C.D.L.; Doedee, J.; Bao, J.; Gilbert, R.J. Exploring the Effects of Electrospun Fiber Surface Nanotopography on Neurite Outgrowth and Branching in Neuron Cultures. PLoS ONE 2019, 14, e0211731. [Google Scholar] [CrossRef] [PubMed]
- Zuidema, J.M.; Desmond, G.P.; Rivet, C.J.; Kearns, K.R.; Thompson, D.M.; Gilbert, R.J. Nebulized Solvent Ablation of Aligned PLLA Fibers for the Study of Neurite Response to Anisotropic-to-Isotropic Fiber/Film Transition (AFFT) Boundaries in Astrocyte–Neuron Co-Cultures. Biomaterials 2015, 46, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Chereddy, K.K.; Payen, V.L.; Préat, V. PLGA: From a Classic Drug Carrier to a Novel Therapeutic Activity Contributor. J. Control. Release 2018, 289, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Lavik, E.; Teng, Y.D.; Snyder, E.; Langer, R. Seeding Neural Stem Cells on Scaffolds of PGA, PLA, and Their Copolymers. In Neural Stem Cells; Humana Press: Totowa, NJ, USA, 2002; pp. 89–98. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Barros, M.T. Formulation of Functionalized PLGA Polymeric Nanoparticles for Targeted Drug Delivery. Polymer 2015, 68, 41–46. [Google Scholar] [CrossRef]
- Malinovskaya, Y.; Melnikov, P.; Baklaushev, V.; Gabashvili, A.; Osipova, N.; Mantrov, S.; Ermolenko, Y.; Maksimenko, O.; Gorshkova, M.; Balabanyan, V.; et al. Delivery of Doxorubicin-Loaded PLGA Nanoparticles into U87 Human Glioblastoma Cells. Int. J. Pharm. 2017, 524, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, J.; Zhao, G.; Huang, N.; Tan, Y.; Pi, L.; Huang, Q.; Wang, F.; Wang, Z.; Wang, Z.; et al. PEGylated PLGA-Based Phase Shift Nanodroplets Combined with Focused Ultrasound for Blood Brain Barrier Opening in Rats. Oncotarget 2017, 8, 38927–38936. [Google Scholar] [CrossRef]
- Razavi, M.S.; Abdollahi, A.; Malek-Khatabi, A.; Ejarestaghi, N.M.; Atashi, A.; Yousefi, N.; Ebrahimnejad, P.; Elsawy, M.A.; Dinarvand, R. Recent Advances in PLGA-Based Nanofibers as Anticancer Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2023, 85, 104587. [Google Scholar] [CrossRef]
- Koerner, J.; Horvath, D.; Groettrup, M. Harnessing Dendritic Cells for Poly (D,L-Lactide-Co-Glycolide) Microspheres (PLGA MS)—Mediated Anti-Tumor Therapy. Front. Immunol. 2019, 10, 707. [Google Scholar] [CrossRef]
- Proulx, J.; Joshi, C.; Vijayaraghavalu, S.; Saraswathy, M.; Labhasetwar, V.; Ghorpade, A.; Borgmann, K. Arginine-Modified Polymers Facilitate Poly (Lactide-Co-Glycolide)-Based Nanoparticle Gene Delivery to Primary Human Astrocytes. Int. J. Nanomed. 2020, 15, 3639–3647. [Google Scholar] [CrossRef]
- Gwak, S.-J.; Yun, Y.; Yoon, D.H.; Kim, K.N.; Ha, Y. Therapeutic Use of 3β-[N-(N′,N′-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury. PLoS ONE 2016, 11, e0147389. [Google Scholar] [CrossRef]
- Jia, L.; Nie, X.; Ji, H.; Yuan, Z.; Li, R. Multiple-Coated PLGA Nanoparticles Loading Triptolide Attenuate Injury of a Cellular Model of Alzheimer’s Disease. Biomed. Res. Int. 2021, 2021, 8825640. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Simo, G.M.; Gao, T.; Alhindi, N.; Xu, N.; Graham, D.J.; Gamble, L.J.; Nance, E. Surfactants Influence Polymer Nanoparticle Fate within the Brain. Biomaterials 2021, 277, 121086. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, J.W.; Hyun, J.K. Development of Schwann Cell-Seeded Multichannel Scaffolds for Peripheral Nerve Regeneration. J. Neurol. Sci. 2017, 381, 612–613. [Google Scholar] [CrossRef]
- Gu, X.; Ding, F.; Williams, D.F. Neural Tissue Engineering Options for Peripheral Nerve Regeneration. Biomaterials 2014, 35, 6143–6156. [Google Scholar] [CrossRef]
- Wang, Z.; Mithieux, S.M.; Weiss, A.S. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv. Health Mater. 2019, 8, 1900742. [Google Scholar] [CrossRef]
- François, S.; Chakfé, N.; Durand, B.; Laroche, G. A Poly(l-Lactic Acid) Nanofibre Mesh Scaffold for Endothelial Cells on Vascular Prostheses. Acta Biomater. 2009, 5, 2418–2428. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, N.; Qiu, Z.; Wang, L.; Wan, C.; Luo, X.; Li, S. Behavior of Endothelial Cells Regulated by a Dynamically Changed Microenvironment of Biodegradable PLLA-PC. Macromol. Biosci. 2009, 9, 413–420. [Google Scholar] [CrossRef]
- Huang, J.-H.; Kim, J.; Ding, Y.; Jayaraman, A.; Ugaz, V.M. Embedding Synthetic Microvascular Networks in Poly(Lactic Acid) Substrates with Rounded Cross-Sections for Cell Culture Applications. PLoS ONE 2013, 8, e73188. [Google Scholar] [CrossRef]
- Biagini, G.; Senegaglia, A.C.; Pereira, T.; Berti, L.F.; Marcon, B.H.; Stimamiglio, M.A. 3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison with Standard 2D Cultures. Front. Bioeng. Biotechnol. 2021, 9, 862. [Google Scholar] [CrossRef]
- Lewitus, D.Y.; Smith, K.L.; Shain, W.; Bolikal, D.; Kohn, J. The Fate of Ultrafast Degrading Polymeric Implants in the Brain. Biomaterials 2011, 32, 5543–5550. [Google Scholar] [CrossRef]
- Zou, X.; Cheng, C.; Feng, J.; Song, X.; Lin, M.; Yang, S.-T. Biosynthesis of Polymalic Acid in Fermentation: Advances and Prospects for Industrial Application. Crit. Rev. Biotechnol. 2019, 39, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Liu, G.-L.; Liu, C.-G.; Chi, Z.-M. Poly(β-l-Malic Acid) (PMLA) from Aureobasidium Spp. and Its Current Proceedings. Appl. Microbiol. Biotechnol. 2016, 100, 3841–3851. [Google Scholar] [CrossRef] [PubMed]
- Holler, E. Biological and Biosynthetic Properties of Poly-L-Malate. FEMS Microbiol. Lett. 1992, 103, 109–118. [Google Scholar] [CrossRef]
- Caruelle, J.-P.; Barritault, D.; Jeanbat-Mimaud, V.; Cammas-Marion, S.; Langlois, V.; Guerin, P.; Barbaud, C. Bioactive Functionalized Polymer of Malic Acid for Bone Repair and Muscle Regeneration. J. Biomater. Sci. Polym. Ed. 2000, 11, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Feng, G.; Shen, F.H.; Balian, G.; Laurencin, C.T.; Li, X. Novel Biodegradable Poly(1,8-Octanediol Malate) for Annulus Fibrosus Regeneration. Macromol. Biosci. 2007, 7, 1217–1224. [Google Scholar] [CrossRef]
- Huang, Z.W.; Laurent, V.; Chetouani, G.; Ljubimova, J.Y.; Holler, E.; Benvegnu, T.; Loyer, P.; Cammas-Marion, S. New Functional Degradable and Bio-Compatible Nanoparticles Based on Poly(Malic Acid) Derivatives for Site-Specific Anti-Cancer Drug Delivery. Int. J. Pharm. 2012, 423, 84–92. [Google Scholar] [CrossRef]
- Wang, Y.-K.; Chi, Z.; Zhou, H.-X.; Liu, G.-L.; Chi, Z.-M. Enhanced Production of Ca2+-Polymalate (PMA) with High Molecular Mass by Aureobasidium Pullulans Var. Pullulans MCW. Microb. Cell Fact. 2015, 14, 115. [Google Scholar] [CrossRef]
- Ljubimova, J.Y.; Sun, T.; Mashouf, L.; Ljubimov, A.V.; Israel, L.L.; Ljubimov, V.A.; Falahatian, V.; Holler, E. Covalent Nano Delivery Systems for Selective Imaging and Treatment of Brain Tumors. Adv. Drug Deliv. Rev. 2017, 113, 177–200. [Google Scholar] [CrossRef]
- Patil, R.; Gangalum, P.R.; Wagner, S.; Portilla-Arias, J.; Ding, H.; Rekechenetskiy, A.; Konda, B.; Inoue, S.; Black, K.L.; Ljubimova, J.Y.; et al. Curcumin Targeted, Polymalic Acid-Based MRI Contrast Agent for the Detection of Aβ Plaques in Alzheimer’s Disease. Macromol. Biosci. 2015, 15, 1212–1217. [Google Scholar] [CrossRef]
- Israel, L.L.; Braubach, O.; Galstyan, A.; Chiechi, A.; Shatalova, E.S.; Grodzinski, Z.; Ding, H.; Black, K.L.; Ljubimova, J.Y.; Holler, E. A Combination of Tri-Leucine and Angiopep-2 Drives a Polyanionic Polymalic Acid Nanodrug Platform Across the Blood–Brain Barrier. ACS Nano 2019, 13, 1253–1271. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, D.; Liang, G.; Xu, W.; Tao, Z. Biosynthetic Polymalic Acid as a Delivery Nanoplatform for Translational Cancer Medicine. Trends Biochem. Sci. 2021, 46, 213–224. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wan, Y.; Bei, J.; Wang, S. Synthesis and Cell Affinity of Functionalized Poly(l-Lactide-Co-β-Malic Acid) with High Molecular Weight. Biomaterials 2004, 25, 5239–5247. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Xu, W.; Zhang, W.; Jin, X. Preparation and Characterization of Biomorphic Poly(l-Lactide-Co-β-Malic Acid) Scaffolds. Mater. Lett. 2014, 124, 313–317. [Google Scholar] [CrossRef]
- Wang, J.; Ni, C.; Zhang, Y.; Zhang, M.; Li, W.; Yao, B.; Zhang, L. Preparation and PH Controlled Release of Polyelectrolyte Complex of Poly(l-Malic Acid-Co-d,l-Lactic Acid) and Chitosan. Colloids Surf. B Biointerfaces 2014, 115, 275–279. [Google Scholar] [CrossRef]
- Mozafari, M.; Gholipourmalekabadi, M.; Chauhan, N.P.S.; Jalali, N.; Asgari, S.; Caicedoa, J.C.; Hamlekhan, A.; Urbanska, A.M. Synthesis and Characterization of Nanocrystalline Forsterite Coated Poly(l-Lactide-Co-β-Malic Acid) Scaffolds for Bone Tissue Engineering Applications. Mater. Sci. Eng. C 2015, 50, 117–123. [Google Scholar] [CrossRef]
- Huang, X.; Xu, L.; Qian, H.; Wang, X.; Tao, Z. Polymalic Acid for Translational Nanomedicine. J. Nanobiotechnol. 2022, 20, 295. [Google Scholar] [CrossRef]
- Belibel, R.; Sali, S.; Marinval, N.; Garcia-Sanchez, A.; Barbaud, C.; Hlawaty, H. PDMMLA Derivatives as a Promising Cardiovascular Metallic Stent Coating: Physicochemical and Biological Evaluation. Mater. Sci. Eng. C 2020, 117, 111284. [Google Scholar] [CrossRef]
- Gholizadeh, E.; Belibel, R.; Mora, L.; Letourneur, D.; Barbaud, C. Small Changes in PDMMLA Structure Influence the Adsorption Behavior of ECM Proteins and Syndecan-4 on PDMMLA Derivative Surfaces: Experimental Validation by Tensiometric Surface Force Measurements. Colloids Surf. B Biointerfaces 2020, 193, 111031. [Google Scholar] [CrossRef]
- Wang, X.; Chan, V.; Corridon, P.R. Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers 2022, 14, 4825. [Google Scholar] [CrossRef]
- Baillargeon, A.L.; Mequanint, K. Biodegradable Polyphosphazene Biomaterials for Tissue Engineering and Delivery of Therapeutics. Biomed. Res. Int. 2014, 2014, 761373. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, K.; He, Y.; Hu, W. Fast-Scanning Chip-Calorimetry Measurement of Crystallization Kinetics of Poly(Glycolic Acid). Polymers 2021, 13, 891. [Google Scholar] [CrossRef] [PubMed]
Metabolites | ||||
---|---|---|---|---|
Lactate (La) | Pyruvate (Py) | Oxaloacetate (Oa) | Malate (Ma) | |
Synthesis pathways |
|
|
|
|
Impact on other metabolic pathways |
|
|
|
|
Transporters | ||||
Receptors | GPR81 [85] | GPR31 [86,87] |
Characterization | Production Technologies, Application | Peculiarities | References | |
---|---|---|---|---|
Poly(lactic acid) PLA | MP 170–180 °C; TS 60–70 MPa; M 2–4 Gpa; TG 60–65 °C; E 2–6%; Mechanical strength about 4.8 GPa; Density 1.0 L/g; Degradation time 40 weeks in vitro, 30 weeks in vivo; Monomer—lactic acid |
| Hydrophobic polymer of a synthetic nature, limits biological signaling and protein absorptionPLA scaffolds are unstable in size/structure, often breaking and wrinkling | [175,222] |
Poly(lactic-co-glycolic acid) (PLGA) | Permeability, swelling, deformation, degradation rate, can be controlled by altering the ratio of PLA:PGATG 45–55 °C; Monomers—glycolic and lactic acids |
| PLGA has great strength and biodegradability. It is limited by their hydrophobicity and lack of cell recognition sites | [175,177,185] |
Poly(glycolic acid) (PGA) | TG 35–40 °C; MP 225–230 °C; M 7 GPa; Crystallinity 45–55%; Monomer—glycolic acid |
| PGAs gradually lose strength 1–2 months after implantation. PGA-based nanowires are limited to bridging a small nerve gap. Fibers of PGA exhibit high strength and are particularly stiff. The degradation product, glycolic acid, is nontoxic, but it is metabolized to oxalic acid, which could make it dangerous | [223,224] |
β-Poly(malic acid) (PMA), poly(1,8-octanediol malic acid) (POM) | TS: 7–25 MPa; Elongation 3–14% Compressive stress 6–14 kPa; Compressive Young’s modulus 0.12–0.25 kPa; Degradation in PBS at 37 °C from 2 to 13 weeks; Monomer—malic acid |
| Surface chemistry and hydrophilicity/hydrophobicity may control cell attachment and subsequent cell proliferation A highly hydrophilic surface with large amounts of polar groups such as carboxyl and hydroxyl groups may impair cell adhesion POM and its degradation products are not toxic, biocompatible in vivo | [204,205,208,216] |
poly(l-lactide-co-β-malic acid) (PLMA) | TG 49 °C; porosity of 85.5%; compressive modulus 766 ± 36 kPa; Monomers—malic and lactic acids. The degradation was accelerated upon heating |
| High capability for cell uptake and for their stability in the blood stream | [216,218,219] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolotyeva, N.A.; Gilmiyarova, F.N.; Averchuk, A.S.; Baranich, T.I.; Rozanova, N.A.; Kukla, M.V.; Tregub, P.P.; Salmina, A.B. Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. Int. J. Mol. Sci. 2023, 24, 14709. https://doi.org/10.3390/ijms241914709
Kolotyeva NA, Gilmiyarova FN, Averchuk AS, Baranich TI, Rozanova NA, Kukla MV, Tregub PP, Salmina AB. Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. International Journal of Molecular Sciences. 2023; 24(19):14709. https://doi.org/10.3390/ijms241914709
Chicago/Turabian StyleKolotyeva, Nataliya A., Frida N. Gilmiyarova, Anton S. Averchuk, Tatiana I. Baranich, Nataliya A. Rozanova, Maria V. Kukla, Pavel P. Tregub, and Alla B. Salmina. 2023. "Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models" International Journal of Molecular Sciences 24, no. 19: 14709. https://doi.org/10.3390/ijms241914709
APA StyleKolotyeva, N. A., Gilmiyarova, F. N., Averchuk, A. S., Baranich, T. I., Rozanova, N. A., Kukla, M. V., Tregub, P. P., & Salmina, A. B. (2023). Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. International Journal of Molecular Sciences, 24(19), 14709. https://doi.org/10.3390/ijms241914709