Antidepressant Medication Does Not Contribute to the Elevated Circulating Concentrations of Acylethanolamides Found in Substance Use Disorder Patients
Abstract
:1. Introduction
2. Results
2.1. Sociodemographic Characteristics and Plasma Concentration of Acylethanolamides of Control and SUD Populations
2.2. Characteristics of the SUD Group Based in Antidepressant Treatment: Impact on Plasma Concentrations of Acylethanolamides
2.3. Plasma Concentrations of Acylethanolamides Based on Sex and Comorbid Use of Cannabis
2.4. Plasma Concentrations of Acylethanolamides Based on Type of Substance Use Disorder and Antidepressant Treatment
2.5. Plasma Concentration of Acylethanolamides as Predictors of Antidepressant Treatment
3. Discussion
4. Materials and Methods
4.1. Participants and Recruitment
4.2. Ethics Statements
4.3. Clinical Assessments
4.4. Collection of Plasma Samples
4.5. Quantification of Acylethanolamides in Plasma
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2001, 2, 119–128. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; (DSM-5); American Psychiatric Association: Washington, DC, USA, 2013; p. 280. [Google Scholar]
- Szerman, N.; Torrens, M.; Maldonado, R.; Balhara, Y.P.S.; Salom, C.; Maremmani, I.; Sher, L.; Didia-Attas, J.; Chen, J.; Baler, R.; et al. Addictive and other mental disorders: A call for a standardized definition of dual disorders. Transl. Psychiatry 2022, 12, 446. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Li, J.X. Drug addiction: A curable mental disorder? Acta Pharmacol. Sin. 2018, 39, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- De Fonseca, F.R.; Del Arco, I.; Bermudez-Silva, F.J.; Bilbao, A.; Cippitelli, A.; Navarro, M. The endocannabinoid system: Physiology and pharmacology. Alcohol Alcohol. 2005, 40, 2–14. [Google Scholar] [CrossRef]
- Manzanares, J.; Cabañero, D.; Puente, N.; García-Gutiérrez, M.S.; Grandes, P.; Maldonado, R. Role of the endocannabinoid system in drug addiction. Biochem. Pharmacol. 2018, 157, 108–121. [Google Scholar] [CrossRef]
- Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003, 4, 873–884. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef]
- Kleberg, K.; Hassing, H.A.; Hansen, H.S. Classical endocannabinoid-like compounds and their regulation by nutrients. Biofactors 2014, 40, 363–372. [Google Scholar] [CrossRef]
- Seabra, G.; Falvella, A.C.B.; Guest, P.C.; Martins-de-Souza, D.; de Almeida, V. Proteomics and Lipidomics in the Elucidation of Endocannabinoid Signaling in Healthy and Schizophrenia Brains. Proteomics 2018, 18, e1700270. [Google Scholar] [CrossRef]
- Tagliamonte, S.; Gill, C.I.R.; Pourshahidi, L.K.; Slevin, M.M.; Price, R.K.; Ferracane, R.; Lawther, R.; O’Connor, G.; Vitaglione, P. Endocannabinoids, endocannabinoid-like molecules and their precursors in human small intestinal lumen and plasma: Does diet affect them? Eur. J. Nutr. 2021, 60, 2203–2215. [Google Scholar] [CrossRef]
- Fu, J.; Gaetani, S.; Oveisi, F.; Lo Verme, J.; Serrano, A.; Rodríguez De Fonseca, F.; Rosengarth, A.; Luecke, H.; Di Giacomo, B.; Tarzia, G.; et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 2003, 425, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Zygmunt, P.M.; Petersson, J.; Andersson, D.A.; Chuang, H.; Sørgård, M.; Di Marzo, V.; Julius, D.; Högestätt, E.D. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999, 400, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Overton, H.A.; Babbs, A.J.; Doel, S.M.; Fyfe, M.C.; Gardner, L.S.; Griffin, G.; Jackson, H.C.; Procter, M.J.; Rasamison, C.M.; Tang-Christensen, M.; et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006, 3, 167–175. [Google Scholar] [CrossRef]
- Im, D.S. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide. Int. J. Mol. Sci. 2021, 22, 1034. [Google Scholar] [CrossRef]
- Tellez, L.A.; Medina, S.; Han, W.; Ferreira, J.G.; Licona-Limón, P.; Ren, X.; Lam, T.T.; Schwartz, G.J.; de Araujo, I.E. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 2013, 341, 800–802. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Marchena, N.; Pavon, F.J.; Pastor, A.; Araos, P.; Pedraz, M.; Romero-Sanchiz, P.; Calado, M.; Suarez, J.; Castilla-Ortega, E.; Orio, L.; et al. Plasma concentrations of oleoylethanolamide and other acylethanolamides are altered in alcohol-dependent patients: Effect of length of abstinence. Addict. Biol. 2017, 22, 1366–1377. [Google Scholar] [CrossRef]
- Bassir Nia, A.; Gibson, C.L.; Spriggs, S.A.; Jankowski, S.E.; De Francisco, D.; Swift, A.; Perkel, C.; Galynker, I.; Honrao, C.; Makriyannis, A.; et al. Cannabis use is associated with low plasma endocannabinoid Anandamide in individuals with psychosis. J. Psychopharmacol. 2023, 37, 484–489. [Google Scholar] [CrossRef]
- Torrens, M.; Fonseca, F.; Mateu, G.; Farré, M. Efficacy of antidepressants in substance use disorders with and without comorbid depression. A systematic review and meta-analysis. Drug Alcohol Depend. 2005, 78, 1–22. [Google Scholar] [CrossRef]
- Torrens, M.; Mestre-Pintó, J.I.; Montanari, L.; Vicente, J.; Domingo-Salvany, A. Dual diagnosis: An European perspective. Adicciones 2017, 29, 3–5. [Google Scholar] [CrossRef]
- Fonseca, F.; Mestre-Pinto, J.I.; Rodríguez-Minguela, R.; Papaseit, E.; Pérez-Mañá, C.; Langohr, K.; Barbuti, M.; Farré, M.; Torrens, M.; NEURODEP Group. BDNF and Cortisol in the Diagnosis of Cocaine-Induced Depression. Front. Psychiatry 2022, 13, 836771. [Google Scholar] [CrossRef]
- Sowers, W.; Golden, S. Psychotropic medication management in persons with co-occurring psychiatric and substance use disorders. J. Psychoact. Drugs 2012, 31, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.W. Pharmacotherapy for Substance Use Disorders. Med. Clin. N. Am. 2016, 100, 891–910. [Google Scholar] [CrossRef]
- Douaihy, A.B.; Kelly, T.M.; Sullivan, C. Medications for Substance Use Disorders. Soc. Work Public Health 2013, 28, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Indave, B.I.; Minozzi, S.; Pani, P.P.; Amato, L. Antipsychotic medications for cocaine dependence. Cochrane Database Syst. Rev. 2016, 2016, CD006306. [Google Scholar] [CrossRef] [PubMed]
- Colangeli, R.; Teskey, G.C.; Di Giovanni, G. Endocannabinoid-serotonin systems interaction in health and disease. Prog. Brain Res. 2021, 259, 83–134. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, A.; Parsons, L.H.; Kerr, T.M.; Rodríguez de Fonseca, F.; Navarro, M.; Piomelli, D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat. Neurosci. 1999, 2, 358–363. [Google Scholar] [CrossRef]
- Urquhart, M.A.; Ross, J.A.; Reyes, B.A.S.; Nitikman, M.; Thomas, S.A.; Mackie, K.; Van Bockstaele, E.J. Noradrenergic depletion causes sex specific alterations in the endocannabinoid system in the Murine prefrontal cortex. Neurobiol. Stress 2019, 10, 100164. [Google Scholar] [CrossRef]
- Herrera-Imbroda, J.; Flores-López, M.; Requena-Ocaña, N.; Araos, P.; Ropero, J.; García-Marchena, N.; Bordallo, A.; Suarez, J.; Pavón-Morón, F.J.; Serrano, A.; et al. Antipsychotic Medication Influences the Discriminative Value of Acylethanolamides as Biomarkers of Substance Use Disorder. Int. J. Mol. Sci. 2023, 24, 9371. [Google Scholar] [CrossRef]
- Herrera-Imbroda, J.; Flores-López, M.; Ruiz-Sastre, P.; Gómez-Sánchez-Lafuente, C.; Bordallo-Aragón, A.; Rodríguez de Fonseca, F.; Mayoral-Cleríes, F. The Inflammatory Signals Associated with Psychosis: Impact of Comorbid Drug Abuse. Biomedicines 2023, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Romero-Sanchiz, P.; Nogueira-Arjona, R.; Pastor, A.; Araos, P.; Serrano, A.; Boronat, A.; García-Marchena, N.; Mayoral, F.; Bordallo, A.; Alen, F.; et al. Plasma concentrations of oleoylethanolamide in a primary care sample of depressed patients are increased in those treated with selective serotonin reuptake inhibitor-type antidepressants. Neuropharmacology 2019, 149, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Antón, M.; Alén, F.; Gómez de Heras, R.; Serrano, A.; Pavón, F.J.; Leza, J.C.; García-Bueno, B.; Rodríguez de Fonseca, F.; Orio, L. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior induced by ethanol binge administration. Addict. Biol. 2017, 22, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martín, E.; Pérez-Revuelta, L.; Barahona-López, C.; Pérez-Boyero, D.; Alonso, J.R.; Díaz, D.; Weruaga, E. Oleoylethanolamide Treatment Modulates Both Neuroinflammation and Microgliosis, and Prevents Massive Leukocyte Infiltration to the Cerebellum in a Mouse Model of Neuronal Degeneration. Int. J. Mol. Sci. 2023, 24, 9691. [Google Scholar] [CrossRef] [PubMed]
- Nunes, E.V.; Donovan, S.J.; Brady, R.; Quitkin, F.M. Evaluation and treatment of mood and anxiety disorders in opioid-dependent patients. J. Psychoact. Drugs 1994, 26, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Thase, M.E.; Cornelius, J.D. Comorbid Alcoholism and Depression: Treatment Issues. J. Clin. Psychiatry 2001, 62, 3375. [Google Scholar]
- Minami, S.; Satoyoshi, H.; Ide, S.; Inoue, T.; Yoshioka, M.; Minami, M. Suppression of reward-induced dopamine release in the nucleus accumbens in animal models of depression: Differential responses to drug treatment. Neurosci. Lett. 2017, 650, 72–76. [Google Scholar] [CrossRef]
- Koob, G.F. Anhedonia, Hyperkatifeia, and Negative Reinforcement in Substance Use Disorders. Curr. Top. Behav. Neurosci. 2022, 58, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Le Moal, M. Drug abuse: Hedonic homeostatic dysregulation. Science 1997, 278, 52–58. [Google Scholar] [CrossRef]
- Bystrowska, B.; Smaga, I.; Frankowska, M.; Filip, M. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 50, 1–10. [Google Scholar] [CrossRef]
- Romano, A.; Micioni Di Bonaventura, M.V.; Gallelli, C.A.; Koczwara, J.B.; Smeets, D.; Giusepponi, M.E.; De Ceglia, M.; Friuli, M.; Micioni Di Bonaventura, E.; Scuderi, C.; et al. Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: A novel potential treatment for binge eating disorder. Neuropsychopharmacology 2020, 45, 1931–1941. [Google Scholar] [CrossRef]
- Buczynski, M.W.; Polis, I.Y.; Parsons, L.H. The volitional nature of nicotine exposure alters anandamide and oleoylethanolamide levels in the ventral tegmental area. Neuropsychopharmacology 2013, 38, 574–584. [Google Scholar] [CrossRef]
- Mock, E.D.; Gagestein, B.; van der Stelt, M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog. Lipid Res. 2023, 89, 101194. [Google Scholar] [CrossRef] [PubMed]
- Alhouayek, M.; Bottemanne, P.; Makriyannis, A.; Muccioli, G.G. N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.B.W.; Spitzer, R.L.; Linzer, M.; Kroenke, K.; Hahn, S.R.; deGruy, F.V.; Lazev, A. Gender differences in depression in primary care. Am. J. Obstet. Gynecol. 1995, 173, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Freudenreich, O.; Kontos, N.; Querques, J. Psychiatric polypharmacy: A clinical approach based on etiology and differential diagnosis. Harv. Rev. Psychiatry 2012, 20, 79–85. [Google Scholar] [CrossRef]
- Gruber, A.J.; Pope, J.; Brown, M.E. Do patients use marijuana as an antidepressant? Depression 1996, 4, 77–80. [Google Scholar] [CrossRef]
- Fan, J.; Upadhye, S.; Worster, A. Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 2006, 8, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA Relevance). 2016. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj (accessed on 19 September 2023).
- Article 94—Repeal of Directive 95/46/EC. 2018. Available online: https://advisera.com/gdpr/repeal-of-directive-95-46-ec/ (accessed on 19 September 2023).
- Torrens, M.; Serrano, D.; Astals, M.; Perez-Dominguez, G.; Martin-Santos, R. Diagnosing comorbid psychiatric disorders in substance abusers: Validity of the Spanish versions of the Psychiatric Research Interview for Substance and Mental Disorders and the Structured Clinical Interview for DSM-IV. Am. J. Psychiatry 2004, 161, 1231–1237. [Google Scholar] [CrossRef]
- Pastor, A.; Farré, M.; Fitó, M.; Fernandez-Aranda, F.; De La Torre, R. Analysis of ECs and Related Compounds in Plasma: Artifactual Isomerization and Ex Vivo Enzymatic Generation of 2-MGs. J. Lipid Res. 2014, 55, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Dickens, A.M.; Borgan, F.; Laurikainen, H.; Lamichhane, S.; Marques, T.; Rönkkö, T.; Veronese, M.; Lindeman, T.; Hyötyläinen, T.; Howes, O.; et al. Links between central CB1-receptor availability and peripheral endocannabinoids in patients with first episode psychosis. NPJ Schizophr. 2020, 6, 21. [Google Scholar] [CrossRef]
Variable | SUD Group (N = 201) | SUD + SSRI Antidepressant (N = 132) | p Value | |
---|---|---|---|---|
SEX [N (%)] | Men | 169 (84.1) | 97 (73.5) | 0.018 a |
Women | 32 (15.9) | 35 (26.5) | ||
AGE (mean ± SD) | 43.81 ± 11.22 | 43.03 ± 11.10 | 0.528 b | |
BMI (mean ± SD) | 26.15 ± 4.79 | 26.67 ± 4.96 | 0.338 b | |
Psychiatric comorbidity [N (%)] | Mood Disorders | 71 (35.3) | 72 (54.5) | 0.001 a |
Anxiety Disorders | 50 (24.9) | 45 (34.1) | 0.069 a | |
Psychotic Disorders | 19 (9.5) | 17 (12.9) | 0.325 a | |
Personality Disorders | 41 (20.4) | 44 (33.3) | 0.008 a | |
ADHD | 32 (15.9) | 34 (25.8) | 0.028 a | |
>2 psychiatric disorders | 122 (60.7) | 110 (83.3) | <0.001 a | |
Substance use disorders [N (%)] | Alcohol | 165 (82.1) | 116 (87.9) | 0.155 a |
Cocaine | 122 (60.7) | 79 (59.8) | 0.877 a | |
Cannabis | 39 (19.4) | 39 (29.5) | 0.033 a | |
>2 substances | 102 (50.7) | 76 (57.6) | 0.222 a | |
Psychotropic medication [N (%)] | Antidepressants | - | 132 (100.0) | - |
Anxiolytics | 83 (41.3) | 73 (55.3) | 0.027 a | |
Antipsychotics | 18 (9.0) | 22 (16.7) | 0.034 a | |
Disulfiram | 71 (35.3) | 62 (47.0) | 0.034 a | |
SUD duration years [median (IQR)] | AUD | 10 (4–16.25) | 10 (4–18.5) | 0.894 c |
CUD | 6 (2–12) | 5 (2–11) | 0.640 c | |
Days of abstinence [median (IQR)] | AUD | 70 (0–240) | 64.5 (7.75–157.5) | 0.991 c |
CUD | 30 (0.75–157.5) | 15 (0.25–90) | 0.208 c |
NAEs a | SUD (N = 201) | SUD + SSRI Antidepressant (N = 132) | U-Statistic | p Value b |
---|---|---|---|---|
AEA median (IQR) | 0.44 (0.30–0.64) | 0.44 (0.31–0.65) | 12,834.00 | 0.615 |
DEA median (IQR) | 0.12 (0.09–0.16) | 0.14 (0.10–0.19) | 6189.00 | 0.008 |
DGLEA median (IQR) | 0.08 (0.06–0.13) | 0.08 (0.06–0.12) | 12,984.00 | 0.742 |
DHEA median (IQR) | 0,54 (0.36–0.74) | 0.51 (0.38–0.70) | 12,441.00 | 0.337 |
LEA median (IQR) | 1.07 (0.86–1.35) | 1.12 (0.86–1.42) | 12,117.00 | 0.181 |
OEA median (IQR) | 3.26 (2.47–4.26) | 3.66 (2.59–4.76) | 9518.00 | 0.051 |
PEA median (IQR) | 3.02 (2.22–4.96) | 4.12 (2.38–6.60) | 5209.00 | 0.012 |
POEA median (IQR) | 0.27 (0.18–0.42) | 0.33 (0.23–0.50) | 4585.00 | 0.054 |
SEA median (IQR) | 2.07 (1.21–4.22) | 1.97 (1.47–4.15) | 6298.00 | 0.740 |
NAEs a | Men | Women | ||||
---|---|---|---|---|---|---|
SUD | SUD + SSRI-AD | p Value b | SUD | SUD + SSRI-AD | p Value b | |
AEA median (IQR) | 0.45 (0.31–0.64) | 0.52 (0.36–0.73) | 0.066 | 0.40 (0.26–0.55) | 0.34 (0.26–0.43) | 0.294 |
DEA median (IQR) | 0.12 (0.10–0.17) | 0.16 (0.12–0.22) | 0.001 | 0.11 (0.08–0.15) | 0.11 (0.09–0.15) | 0.647 |
DGLEA median (IQR) | 0.08 (0.06–0.13) | 0.09 (0.06–0.12) | 0.391 | 0.08 (0.06–0.13) | 0.08 (0.06–0.10) | 0.641 |
DHEA median (IQR) | 0.54 (0.36–0.74) | 0.53 (0.41–0.72) | 0.980 | 0.52 (0.39–0.67) | 0.42 (0.30–0.57) | 0.077 |
LEA median (IQR) | 1.07 (0.86–1.35) | 1.09 (0.89–1.46) | 0.101 | 1.09 (0.87–1.24) | 1.20 (0.73–1.37) | 0.851 |
OEA median (IQR) | 3.24 (2.47–4.29) | 3.86 (2.62–5.15) | 0.017 | 3.42 (2.49–4.00) | 3.17 (2.55–4.30) | 0.829 |
PEA median (IQR) | 3.08 (2.23–4.98) | 4.31 (2.28–6.92) | 0.012 | 2.83 (1.87–4.89) | 3.79 (2.54–4.49) | 0.583 |
POEA median (IQR) | 0.25 (0.18–0.38) | 0.34 (0.24–0.43) | 0.035 | 0.38 (0.18–0.54) | 0.32 (0.22–0.56) | 0.859 |
SEA median (IQR) | 2.06 (1.21–4.36) | 2.26 (1.54–4.55) | 0.323 | 2.62 (1.19–3.67) | 1.49 (1.19–1.90) | 0.284 |
NAEs a | Cannabis + | Cannabis − | ||||
---|---|---|---|---|---|---|
SUD | SUD + SSRI AD | p Value | SUD | SUD + SSRI AD | p Value b | |
AEA median (IQR) | 0.46 (0.27–0.64) | 0.56 (0.33–0.73) | 0.215 | 0.44 (0.30–0.63) | 0.42 (0.30–0.59) | 0.732 |
DEA median (IQR) | 0.10 (0.08–0.15) | 0.16 (0.12–0.23) | 0.022 | 0.12 (0.10–0.16) | 0.13 (0.10–0.18) | 0.108 |
DGLEA median (IQR) | 0.09 (0.05–0.15) | 0.10 (0.07–0.13) | 0.641 | 0.08 (0.06–0.12) | 0.08 (0.06–0.11) | 0.783 |
DHEA median (IQR) | 0.54 (0.36–0.77) | 0.54 (0.41–0.72) | 0.865 | 0.54 (0.37–0.74) | 0.49 (0.38–0.65) | 0.250 |
LEA median (IQR) | 0.99 (0.88–1.25) | 1.35 (0.92–1.64) | 0.032 | 1.10 (0.85–1.38) | 1.07 (0.85–1.37) | 0.907 |
OEA median (IQR) | 2.93 (2.44–3.53) | 3.86 (2.78–4.82) | 0.010 | 3.38 (2.48–4.44) | 3.62 (2.55–4.73) | 0.354 |
PEA median (IQR) | 2.57 (2.10–3.61) | 4.71 (2.48–7.02) | 0.005 | 3.30 (2.23–5.46) | 4.01 (2.30–6.05) | 0.230 |
POEA median (IQR) | 0.18 (0.14–0.35) | 0.35 (0.25–0.43) | 0.006 | 0.28 (0.18–0.43) | 0.33 (0.22–0.50) | 0.320 |
SEA median (IQR) | 3.21 (1.21–4.65) | 2.70 (1.78–6.57) | 0.432 | 2.00 (1.21–4.01) | 1.73 (1.38–3.34) | 0.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Imbroda, J.; Flores-López, M.; Requena-Ocaña, N.; Araos, P.; García-Marchena, N.; Ropero, J.; Bordallo, A.; Suarez, J.; Pavón-Morón, F.J.; Serrano, A.; et al. Antidepressant Medication Does Not Contribute to the Elevated Circulating Concentrations of Acylethanolamides Found in Substance Use Disorder Patients. Int. J. Mol. Sci. 2023, 24, 14788. https://doi.org/10.3390/ijms241914788
Herrera-Imbroda J, Flores-López M, Requena-Ocaña N, Araos P, García-Marchena N, Ropero J, Bordallo A, Suarez J, Pavón-Morón FJ, Serrano A, et al. Antidepressant Medication Does Not Contribute to the Elevated Circulating Concentrations of Acylethanolamides Found in Substance Use Disorder Patients. International Journal of Molecular Sciences. 2023; 24(19):14788. https://doi.org/10.3390/ijms241914788
Chicago/Turabian StyleHerrera-Imbroda, Jesús, María Flores-López, Nerea Requena-Ocaña, Pedro Araos, Nuria García-Marchena, Jessica Ropero, Antonio Bordallo, Juan Suarez, Francisco J. Pavón-Morón, Antonia Serrano, and et al. 2023. "Antidepressant Medication Does Not Contribute to the Elevated Circulating Concentrations of Acylethanolamides Found in Substance Use Disorder Patients" International Journal of Molecular Sciences 24, no. 19: 14788. https://doi.org/10.3390/ijms241914788
APA StyleHerrera-Imbroda, J., Flores-López, M., Requena-Ocaña, N., Araos, P., García-Marchena, N., Ropero, J., Bordallo, A., Suarez, J., Pavón-Morón, F. J., Serrano, A., Mayoral, F., & Rodríguez de Fonseca, F. (2023). Antidepressant Medication Does Not Contribute to the Elevated Circulating Concentrations of Acylethanolamides Found in Substance Use Disorder Patients. International Journal of Molecular Sciences, 24(19), 14788. https://doi.org/10.3390/ijms241914788