Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Major Depressive Disorder (MDD): A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. BDNF Levels as a Biormarker of Treatment Response in MDD
3.1.1. BDNF Levels and Treatment Response to Specific Pharmacological Treatments in MDD
3.1.2. BDNF Levels and Treatment Response to Non-Pharmacological Treatments in MDD
3.2. BDNF Polymorphisms as Biomarkers of Treatment Response in MDD
3.3. BDNF as a Biomarker of Response in Treatment-Resistant Depression (TRD)
3.3.1. BDNF Levels and Treatment Response to Pharmacological Treatments in TRD
3.3.2. BDNF Levels and Treatment Response to Non-Pharmacological Treatments in TRD
3.3.3. BDNF Polymorphisms and Treatment Response in TRD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nedic Erjavec, G.; Sagud, M.; Nikolac Perkovic, M.; Svob Strac, D.; Konjevod, M.; Tudor, L.; Uzun, S.; Pivac, N. Depression: Biological markers and treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 105, 110139. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.L.; Lin, C.C. Advances in biomarkers of major depressive disorder. Adv. Clin. Chem. 2015, 68, 177–204. [Google Scholar] [PubMed]
- Fabbri, C.; Hosak, L.; Mössner, R.; Giegling, I.; Mandelli, L.; Bellivier, F.; Claes, S.; Collier, D.; Corrales, A.; Delisi, L.; et al. Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World J. Biol. Psychiatry 2017, 18, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Busch, Y.; Menke, A. Blood-based biomarkers predicting response to antidepressants. J. Neural. Transm. 2019, 126, 47–63. [Google Scholar] [CrossRef]
- Liu, X.; Li, P.; Ma, X.; Zhang, J.; Sun, X.; Luo, X.; Zhang, Y. Association between plasma levels of BDNF and GDNF and the diagnosis, treatment response in first-episode MDD. J. Affect. Disord. 2022, 315, 190–197. [Google Scholar] [CrossRef]
- Wolkowitz, O.M.; Wolf, J.; Shelly, W.; Rosser, R.; Burke, H.M.; Lerner, G.K.; Reus, V.I.; Nelson, J.C.; Epel, E.S.; Mellon, S.H. Serum BDNF levels before treatment predict SSRI response in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2011, 35, 1623–1630. [Google Scholar] [CrossRef]
- Hacimusalar, Y.; Eşel, E. Suggested Biomarkers for Major Depressive Disorder. Noro Psikiyatr. Ars. 2018, 55, 280–290. [Google Scholar] [CrossRef]
- Mikoteit, T.; Beck, J.; Eckert, A.; Hemmeter, U.; Brand, S.; Bischof, R.; Holsboer-Trachsler, E.; Delini-Stula, A. High baseline BDNF serum levels and early psychopathological improvement are predictive of treatment outcome in major depression. Psychopharmacology 2014, 231, 2955–2965. [Google Scholar] [CrossRef]
- Cattaneo, A.; Gennarelli, M.; Uher, R.; Breen, G.; Farmer, A.; Aitchison, K.J.; Craig, I.W.; Anacker, C.; Zunsztain, P.A.; McGuffin, P.; et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: Differentiating between baseline “predictors” and longitudinal “targets”. Neuropsychopharmacology 2013, 38, 377–385. [Google Scholar] [CrossRef]
- Tadić, A.; Wagner, S.; Schlicht, K.F.; Peetz, D.; Borysenko, L.; Dreimüller, N.; Hiemke, C.; Lieb, K. The early non-increase of serum BDNF predicts failure of antidepressant treatment in patients with major depression: A pilot study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 415–420. [Google Scholar] [CrossRef]
- Kim, K.; Jang, E.H.; Kim, A.Y.; Fava, M.; Mischoulon, D.; Papakostas, G.I.; Kim, H.; Na, E.J.; Yu, Y.H.; Jeon, H.J. Pre-treatment peripheral biomarkers associated with treatment response in panic symptoms in patients with major depressive disorder and panic disorder: A 12-week follow-up study. Compr. Psychiatry 2019, 95, 152140. [Google Scholar] [CrossRef] [PubMed]
- Buttenschøn, H.N.; Foldager, L.; Elfving, B.; Poulsen, P.H.P.; Uher, R.; Mors, O. Neurotrophic factors in depression in response to treatment. J. Affect. Disord. 2015, 183, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, R.; Kishi, T.; Hori, H.; Katsuki, A.; Sugita-Ikenouchi, A.; Umene-Nakano, W.; Atake, K.; Iwata, N.; Nakamura, J. Serum Levels of Brain-Derived Neurotrophic Factor at 4 Weeks and Response to Treatment with SSRIs. Psychiatry Investig. 2014, 11, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Gkesoglou, T.; Bargiota, S.I.; Iordanidou, E.; Vasiliadis, M.; Bozikas, V.P.; Agorastos, A. Prognostic Significance of Blood-Based Baseline Biomarkers in Treatment-Resistant Depression: A Literature Review of Available Studies on Treatment Response. Brain Sci. 2022, 12, 940. [Google Scholar] [CrossRef] [PubMed]
- Sagud, M.; Nikolac Perkovic, M.; Dvojkovic, A.; Jaksic, N.; Vuksan-Cusa, B.; Zivkovic, M.; Kusevic, Z.; Mihaljevic-Peles, A.; Pivac, N. Distinct association of plasma BDNF concentration and cognitive function in depressed patients treated with vortioxetine or escitalopram. Psychopharmacology 2021, 238, 1575–1584. [Google Scholar] [CrossRef]
- Rojas, P.S.; Fritsch, R.; Rojas, R.A.; Jara, P.; Fiedler, J.L. Serum brain-derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive patients: A pilot study. Psychiatry Res. 2011, 189, 239–245. [Google Scholar] [CrossRef]
- Ghosh, R.; Gupta, R.; Bhatia, M.S.; Tripathi, A.K.; Gupta, L.K. Comparison of efficacy, safety and brain derived neurotrophic factor (BDNF) levels in patients of major depressive disorder, treated with fluoxetine and desvenlafaxine. Asian J. Psychiatry 2015, 18, 37–41. [Google Scholar] [CrossRef]
- Ramesh, V.; Venkatesan, V.; Chellathai, D.; Silamban, S. Association of Serum Biomarker Levels and BDNF Gene Polymorphism with Response to Selective Serotonin Reuptake Inhibitors in Indian Patients with Major Depressive Disorder. Neuropsychobiology 2021, 80, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, K.H.; Kim, S.H.; Han, J.Y.; Hong, S.B.; Cho, S.C.; Kim, J.W.; Brent, D. Early changes of serum BDNF and SSRI response in adolescents with major depressive disorder. J. Affect. Disord. 2020, 265, 325–332. [Google Scholar] [CrossRef]
- Carboni, L.; McCarthy, D.J.; Delafont, B.; Filosi, M.; Ivanchenko, E.; Ratti, E.; Learned, S.M.; Alexander, R.; Domenici, E. Biomarkers for response in major depression: Comparing paroxetine and venlafaxine from two randomised placebo-controlled clinical studies. Transl. Psychiatry 2019, 9, 182. [Google Scholar] [CrossRef]
- Dvojkovic, A.; Nikolac Perkovic, M.; Sagud, M.; Nedic Erjavec, G.; Mihaljevic Peles, A.; Svob Strac, D.; Vuksan Cusa, B.; Tudor, L.; Kusevic, Z.; Konjevod, M.; et al. Effect of vortioxetine vs. escitalopram on plasma BDNF and platelet serotonin in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 105, 110016. [Google Scholar] [CrossRef]
- Bares, M.; Novak, T.; Brunovsky, M.; Kopecek, M.; Höschl, C. The Comparison of Effectiveness of Various Potential Predictors of Response to Treatment with SSRIs in Patients with Depressive Disorder. J. Nerv. Ment. Dis. 2017, 205, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Ninan, P.T.; Shelton, R.C.; Bao, W.; Guico-Pabia, C.J. BDNF, interleukin-6, and salivary cortisol levels in depressed patients treated with desvenlafaxine. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, M.; van den Brink, R.H.S.; Comijs, H.C.; Oude Voshaar, R.C. Prognostic effect of serum BDNF levels in late-life depression: Moderated by childhood trauma and SSRI usage? Psychoneuroendocrinology 2019, 103, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Correll, C.U.; Feng, L.; Xiang, Y.T.; Feng, Y.; Hu, C.Q.; Li, R.; Wang, G. Rhythmic low-field magnetic stimulation may improve depression by increasing brain-derived neurotrophic factor. CNS Spectr. 2019, 24, 313–321. [Google Scholar] [CrossRef]
- Huuhka, K.; Anttila, S.; Huuhka, M.; Leinonen, E.; Rontu, R.; Mattila, K.; Lehtimäki, T. Brain-derived neurotrophic factor (BDNF) polymorphisms G196A and C270T are not associated with response to electroconvulsive therapy in major depressive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2007, 257, 31–35. [Google Scholar]
- Sorri, A.; Järventausta, K.; Kampman, O.; Lehtimäki, K.; Björkqvist, M.; Tuohimaa, K.; Hämäläinen, M.; Moilanen, E.; Leinonen, E. Effect of electroconvulsive therapy on brain-derived neurotrophic factor levels in patients with major depressive disorder. Brain Behav. 2018, 8, e01101. [Google Scholar] [CrossRef]
- Van Zutphen, E.M.; Rhebergen, D.; van Exel, E.; Oudega, M.L.; Bouckaert, F.; Sienaert, P.; Vandenbulcke, M.; Stek, M.; Dols, A. Brain-derived neurotrophic factor as a possible predictor of electroconvulsive therapy outcome. Transl. Psychiatry 2019, 9, 155. [Google Scholar] [CrossRef]
- Bumb, J.M.; Aksay, S.S.; Janke, C.; Kranaster, L.; Geisel, O.; Gass, P.; Hellweg, R.; Sartorius, A. Focus on ECT seizure quality: Serum BDNF as a peripheral biomarker in depressed patients. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 227–232. [Google Scholar] [CrossRef]
- Maffioletti, E.; Carvalho Silva, R.; Bortolomasi, M.; Baune, B.T.; Gennarelli, M.; Minelli, A. Molecular Biomarkers of Electroconvulsive Therapy Effects and Clinical Response: Understanding the Present to Shape the Future. Brain Sci. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Padberg, F.; Vieira, E.L.M.; Teixeira, A.L.; Carvalho, A.F.; Lotufo, P.A.; Gattaz, W.F.; Martins Benseñor, I. Plasma biomarkers in a placebo-controlled trial comparing tDCS and escitalopram efficacy in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 211–217. [Google Scholar] [CrossRef]
- Lu, H.; Chan, S.S.M.; Ma, S.; Lin, C.; Mok, V.C.T.; Shi, L.; Wang, D.; Mak, R.-D.; Lam, L.C.W. Clinical and radiomic features for predicting the treatment response of repetitive transcranial magnetic stimulation in major neurocognitive disorder: Results from a randomized controlled trial. Hum. Brain Mapp. 2022, 43, 5579–5592. [Google Scholar] [CrossRef] [PubMed]
- Szuhany, K.L.; Otto, M.W. Assessing BDNF as a mediator of the effects of exercise on depression. J. Psychiatry Res. 2020, 123, 114–118. [Google Scholar] [CrossRef]
- Bruijniks, S.J.E.; van Grootheest, G.; Cuijpers, P.; de Kluiver, H.; Vinkers, C.H.; Peeters, F.; Pennix, B.; Teunissen, C.E.; Huibers, M.J.H. Working memory moderates the relation between the brain-derived neurotropic factor (BDNF) and psychotherapy outcome for depression. J. Psychiatry Res. 2020, 130, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Galvão-Coelho, N.L.; de Menezes Galvão, A.C.; de Almeida, R.N.; Palhano-Fontes, F.; Campos Braga, I.; Lobão Soares, B.; Maia-de-Oliveira, J.P.; Perkins, D.; Sarris, J.; Barros de Araujo, D. Changes in inflammatory biomarkers are related to the antidepressant effects of Ayahuasca. J. Psychopharmacol. 2020, 34, 1125–1133. [Google Scholar] [CrossRef]
- Van der Burg, K.P.; Cribb, L.; Firth, J.; Karmacoska, D.; Mischoulon, D.; Byrne, G.J.; Bousman, C.; Stough, C.; Murphy, J.; Oliver, G.; et al. EPA and DHA as markers of nutraceutical treatment response in major depressive disorder. Eur. J. Nutr. 2020, 59, 2439–2447. [Google Scholar] [CrossRef] [PubMed]
- Jabbi, M.; Nemeroff, C.B. Convergent neurobiological predictors of mood and anxiety symptoms and treatment response. Expert Rev. Neurother. 2019, 19, 587–597. [Google Scholar] [CrossRef]
- Amare, A.T.; Schubert, K.O.; Baune, B.T. Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry. EPMA J. 2017, 8, 211–227. [Google Scholar] [CrossRef]
- Schosser, A.; Fischer-Hansal, D.; Swoboda, M.M.; Ludwig, B.; Carlberg, L.; Swoboda, P.; Kienesberger, K.; Bernegger, A.; Fuxjäger, M.; Zotter, M.; et al. Corrigendum to “BDNF gene polymorphisms predicting treatment response to CBT-based rehabilitation of depression”. Eur. Neuropsychopharmacol. 2022, 58, 103–108. [Google Scholar] [CrossRef]
- Spronk, D.; Arns, M.; Barnett, K.J.; Cooper, N.J.; Gordon, E. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: A pilot study. J. Affect. Disord. 2011, 128, 41–48. [Google Scholar] [CrossRef]
- Beuzon, G.; Timour, Q.; Saoud, M. Predictors of response to repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder. Encephale 2017, 43, 3–9. [Google Scholar] [CrossRef]
- Ramos, M.; Berrogain, C.; Concha, J.; Lomba, L.; García, C.B.; Ribate, M.P. Pharmacogenetic studies: A tool to improve antidepressant therapy. Drug. Metab. Pers. Ther. 2016, 31, 197–204. [Google Scholar] [CrossRef]
- Marshe, V.S.; Islam, F.; Maciukiewicz, M.; Bousman, C.; Eyre, H.A.; Lavretsky, H.; Mulsant, B.H.; Reynolds, C.F.; Lenze, E.J.; Müller, D.J. Pharmacogenetic Implications for Antidepressant Pharmacotherapy in Late-Life Depression: A Systematic Review of the Literature for Response, Pharmacokinetics and Adverse Drug Reactions. Am. J. Geriatr. Psychiatry 2020, 28, 609–629. [Google Scholar] [CrossRef]
- Yoshida, K.; Higuchi, H.; Kamata, M.; Takahashi, H.; Inoue, K.; Suzuki, T.; Itoh, K.; Ozaki, N. The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J. Psychopharmacol. 2007, 21, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Lanctôt, K.L.; Rapoport, M.J.; Chan, F.; Rajaram, R.D.; Strauss, J.; Sicard, T.; McCullagh, S.; Feinstein, A.; Kiss, A.; Kennedy, J.L.; et al. Genetic predictors of response to treatment with citalopram in depression secondary to traumatic brain injury. Brain Inj. 2010, 24, 959–969. [Google Scholar] [CrossRef]
- Colle, R.; Gressier, F.; Verstuyft, C.; Deflesselle, E.; Lépine, J.P.; Ferreri, F.; Hardy, P.; Guilloux, J.P.; Petit, A.C.; Fève, B.; et al. Brain-derived neurotrophic factor Val66Met polymorphism and 6-month antidepressant remission in depressed Caucasian patients. J. Affect. Disord. 2015, 175, 233–240. [Google Scholar] [CrossRef]
- Rahman, M.S.; Millischer, V.; Zeebari, Z.; Forsell, Y.; Lavebratt, C. BDNF Val66Met and childhood adversity on response to physical exercise and internet-based cognitive behavioural therapy in depressed Swedish adults. J. Psychiatry Res. 2017, 93, 50–58. [Google Scholar] [CrossRef]
- Pinna, M.; Manchia, M.; Oppo, R.; Scano, F.; Pillai, G.; Loche, A.P.; Salis, p.; Minnai, G.P. Clinical and biological predictors of response to electroconvulsive therapy (ECT): A review. Neurosci. Lett. 2018, 669, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.; Mehra, A.; Ram, S.; Pal, A.; Grover, S. Association of serum BDNF level and Val66Met polymorphism with response to treatment in patients of major depressive disease: A step towards personalized therapy. Behav. Brain Res. 2022, 430, 113931. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.M.; McClintock, S.M.; Aaronson, S.T.; Alonzo, A.; Husain, M.M.; Lisanby, S.H.; McDonald, W.M.; Mohan, A.; Nikolin, S.; O’Reardon, J.; et al. Pre-treatment attentional processing speed and antidepressant response to transcranial direct current stimulation: Results from an international randomized controlled trial. Brain Stimul. 2018, 11, 1282–1290. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Kemp, A.H.; Shiozawa, P.; Cordeiro, Q.; Valiengo, L.C.L.; Goulart, A.C.; Coperski, B.; Lotufo, P.A.; Brunoni, d.; Perez, A.B.; et al. Impact of 5-HTTLPR and BDNF polymorphisms on response to sertraline versus transcranial direct current stimulation: Implications for the serotonergic system. Eur. Neuropsychopharmacol. 2013, 23, 1530–1540. [Google Scholar] [CrossRef]
- Tatham, E.L.; Hall, G.B.C.; Clark, D.; Foster, J.; Ramasubbu, R. The 5-HTTLPR and BDNF polymorphisms moderate the association between uncinate fasciculus connectivity and antidepressants treatment response in major depression. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Tang, Q.; Han, Q.; Zhang, J.; Liang, X.; Tan, Y.; Liu, K.; Xiang, B. Association between genetic polymorphism and antidepressants in major depression: A network meta-analysis. Pharmacogenomics 2020, 21, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Domschke, K.; Lawford, B.; Laje, G.; Berger, K.; Young, R.; Morris, P.; Deckert, J.; Arolt, V.; McMahon, F.J.; Baune, B.T. Brain-derived neurotrophic factor (BDNF) gene: No major impact on antidepressant treatment response. Int. J. Neuropsychopharmacol. 2010, 13, 93–101. [Google Scholar] [CrossRef]
- Murphy, G.M.; Sarginson, J.E.; Ryan, H.S.; O’Hara, R.; Schatzberg, A.F.; Lazzeroni, L.C. BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenetics Genom. 2013, 23, 301–313. [Google Scholar] [CrossRef]
- Webb, L.M.; Phillips, K.E.; Ho, M.C.; Veldic, M.; Blacker, C.J. The Relationship between DNA Methylation and Antidepressant Medications: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 826. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, C.; Lv, Q.; Bao, C.; Sun, H.; Ma, G.; Fang, Y.; Yi, Z.; Cai, W. Association of DNA methylation in BDNF with escitalopram treatment response in depressed Chinese Han patients. Eur. J. Clin. Pharmacol. 2018, 74, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Lisoway, A.J.; Zai, C.C.; Tiwari, A.K.; Kennedy, J.L. DNA methylation and clinical response to antidepressant medication in major depressive disorder: A review and recommendations. Neurosci. Lett. 2018, 669, 14–23. [Google Scholar] [CrossRef]
- Lieb, K.; Dreimüller, N.; Wagner, S.; Schlicht, K.; Falter, T.; Neyazi, A.; Müller-Engling, L.; Bleich, S.; Tadić, A.; Frieling, H. BDNF Plasma Levels and BDNF Exon IV Promoter Methylation as Predictors for Antidepressant Treatment Response. Front. Psychiatry 2018, 9, 511. [Google Scholar] [CrossRef]
- Rong, C.; Park, C.; Rosenblat, J.D.; Subramaniapillai, M.; Zuckerman, H.; Fus, D.; Lee, Y.L.; Pan, Z.; Brietzke, E.; Mansur, R.B.; et al. Predictors of Response to Ketamine in Treatment Resistant Major Depressive Disorder and Bipolar Disorder. Int. J. Environ. Res. Public Health 2018, 15, 771. [Google Scholar] [CrossRef]
- Sforzini, L.; Worrell, C.; Kose, M.; Anderson, I.M.; Aouizerate, B.; Arolt, V.; Bauer, M.; Baune, B.T.; Blier, P.; Cleare, A.J.; et al. A Delphi-method-based consensus guideline for definition of treatment-resistant depression for clinical trials. Mol. Psychiatry 2022, 27, 1286–1299. [Google Scholar] [CrossRef]
- Zheng, W.; Jiang, M.L.; He, H.B.; Li, R.P.; Li, Q.L.; Zhang, C.P.; Zhou, S.M.; Yan, S.; Ning, Y.P.; Huang, X. Serum BDNF Levels are Not Associated with the Antidepressant Effects of Nonconvulsive Electrotherapy. Neuropsychiatr. Dis. Treat. 2020, 16, 1555–1560. [Google Scholar] [CrossRef]
- Uint, L.; Bastos, G.M.; Thurow, H.S.; Borges, J.B.; Hirata, T.D.C.; França, J.I.D.; Hirata, M.H.; Sousa, A.G.M.R. Increased levels of plasma IL-1b and BDNF can predict resistant depression patients. Rev. Assoc. Med. Bras. 2019, 65, 361–369. [Google Scholar] [CrossRef]
- Maffioletti, E.; Gennarelli, M.; Gainelli, G.; Bocchio-Chiavetto, L.; Bortolomasi, M.; Minelli, A. BDNF Genotype and Baseline Serum Levels in Relation to Electroconvulsive Therapy Effectiveness in Treatment-Resistant Depressed Patients. J. ECT 2019, 35, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Kraus, C.; Kadriu, B.; Lanzenberger, R.; Zarate, C.A.; Kasper, S. Prognosis and improved outcomes in major depression: A review. Transl. Psychiatry 2019, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.Y.; Vazquez, G.H. Association between peripheral biomarkers and clinical response to IV ketamine for unipolar treatment-resistant depression: An open label study. J. Affect. Disord. 2022, 318, 331–337. [Google Scholar] [CrossRef]
- Haile, C.N.; Murrough, J.W.; Iosifescu, D.V.; Chang, L.C.; Al Jurdi, R.K.; Foulkes, A.; Iqbal, S.; Mahoney, J.J.; de la Garza, R.; Charney, D.S.; et al. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int. J. Neuropsychopharmacol. 2014, 17, 331–336. [Google Scholar] [CrossRef]
- Matveychuk, D.; Thomas, R.K.; Swainson, J.; Khullar, A.; MacKay, M.A.; Baker, G.B.; Dursun, S.M. Ketamine as an antidepressant: Overview of its mechanisms of action and potential predictive biomarkers. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320916657. [Google Scholar] [CrossRef]
- Rybakowski, J.K.; Permoda-Osip, A.; Skibinska, M.; Adamski, R.; Bartkowska-Sniatkowska, A. Single ketamine infusion in bipolar depression resistant to antidepressants: Are neurotrophins involved? Hum. Psychopharmacol. 2013, 28, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.P.; Naughton, M.; Dowling, J.; Walsh, A.; Ismail, F.; Shorten, G.; Scott, L.; McLoughlin, D.M.; Cryan, J.F.; Dinan, T.G.; et al. Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: A comparison of ketamine and ECT. J. Affect. Disord. 2015, 186, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, R.; Ikenouchi-Sugita, A.; Hori, H.; Umene-Nakano, W.; Katsuki, A.; Hayashi, K.; Ueda, N.; Nakamura, J. Adding a low dose atypical antipsychotic drug to an antidepressant induced a rapid increase of plasma brain-derived neurotrophic factor levels in patients with treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, R.; Umene-Nakano, W.; Ueda, N.; Ikenouchi-Sugita, A.; Hori, H.; Nakamura, J. Addition of risperidone to sertraline improves sertraline-resistant refractory depression without influencing plasma concentrations of sertraline and desmethylsertraline. Hum. Psychopharmacol. 2008, 23, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chen, M.C.; Lee, W.K.; Chen, C.C.; Huang, C.H.; Lane, H.Y. Electroconvulsive therapy improves clinical manifestation with plasma BDNF levels unchanged in treatment-resistant depression patients. Neuropsychobiology 2013, 68, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Rapinesi, C.; Kotzalidis, G.D.; Curto, M.; Serata, D.; Ferri, V.R.; Scatena, P.; Carbonetti, P.; Napoletano, F.; Miele, J.; Scaccianoce, S.; et al. Electroconvulsive therapy improves clinical manifestations of treatment-resistant depression without changing serum BDNF levels. Psychiatry Res. 2015, 227, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Bocchio-Chiavetto, L.; Zanardini, R.; Bortolomasi, M.; Abate, M.; Segala, M.; Giacopuzzi, M.; Riva, M.A.; Marchina, E.; Pasqualetti, P.; Perez, J.; et al. Electroconvulsive Therapy (ECT) increases serum Brain Derived Neurotrophic Factor (BDNF) in drug resistant depressed patients. Eur. Neuropsychopharmacol. 2006, 16, 620–624. [Google Scholar] [CrossRef]
- Antunes, P.B.; Rosa, M.A.; Belmonte-de-Abreu, P.S.; Lobato, M.I.R.; Fleck, M.P. Electroconvulsive therapy in major depression: Current aspects. Braz. J. Psychiatry 2009, 31 (Suppl. S1), S26–S33. [Google Scholar] [CrossRef]
- Psomiades, M.; Mondino, M.; Galvão, F.; Mandairon, N.; Nourredine, M.; Suaud-Chagny, M.F.; Brunelin, J. Serum Mature BDNF Level Is Associated with Remission Following ECT in Treatment-Resistant Depression. Brain Sci. 2022, 12, 126. [Google Scholar] [CrossRef]
- Valiuliene, G.; Valiulis, V.; Dapsys, K.; Vitkeviciene, A.; Gerulskis, G.; Navakauskiene, R.; Germanavicius, A. Brain stimulation effects on serum BDNF, VEGF, and TNFα in treatment-resistant psychiatric disorders. Eur. J. Neurosci. 2021, 53, 3791–3802. [Google Scholar] [CrossRef]
- Krstić, J.; Buzadžić, I.; Milanović, S.D.; Ilić, N.V.; Pajić, S.; Ilić, T.V. Low-Frequency Repetitive Transcranial Magnetic Stimulation in the Right Prefrontal Cortex Combined with Partial Sleep Deprivation in Treatment-Resistant Depression. J. ECT 2014, 30, 325–331. [Google Scholar] [CrossRef]
- Palm, U.; Fintescu, Z.; Obermeier, M.; Schiller, C.; Reisinger, E.; Keeser, D.; Pogarell, O.; Bondy, B.; Zill, P.; Padberg, F. Serum levels of brain-derived neurotrophic factor are unchanged after transcranial direct current stimulation in treatment-resistant depression. J. Affect. Disord. 2013, 150, 659–663. [Google Scholar] [CrossRef]
- Hong, W.; Fan, J.; Yuan, C.; Zhang, C.; Hu, Y.; Peng, D.; Wang, Y.; Huang, J.; Li, Z.; Yu, S.; et al. Significantly decreased mRNA levels of BDNF and MEK1 genes in treatment-resistant depression. Neuroreport 2014, 25, 753–755. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, Z.; Chen, J.; Fan, J.; Guan, Y.; Zhang, C.; Yuan, C.; Hong, W.; Wang, Y.; et al. The role of BDNF, NTRK2 gene and their interaction in development of treatment-resistant depression: Data from multicenter, prospective, longitudinal clinic practice. J. Psychiatry Res. 2013, 47, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Bartova, L.; Dold, M.; Kautzky, A.; Fabbri, C.; Spies, M.; Serretti, A.; Souery, D.; Mendlewicz, J.; Zohar, J.; Montgomery, S.; et al. Results of the European Group for the Study of Resistant Depression (GSRD)—Basis for further research and clinical practice. World J. Biol. Psychiatry 2019, 20, 427–448. [Google Scholar] [CrossRef]
- Chen, M.H.; Kao, C.F.; Tsai, S.J.; Li, C.T.; Lin, W.C.; Hong, C.J.; Bai, Y.M.; Tu, P.C.; Su, T.P. Treatment response to low-dose ketamine infusion for treatment-resistant depression: A gene-based genome-wide association study. Genomics 2021, 113, 507–514. [Google Scholar] [CrossRef]
- Viikki, M.L.; Järventausta, K.; Leinonen, E.; Huuhka, M.; Mononen, N.; Lehtimäki, T.; Kampman, O. BDNF polymorphism rs11030101 is associated with the efficacy of electroconvulsive therapy in treatment-resistant depression. Psychiatry Genet. 2013, 23, 134–136. [Google Scholar] [CrossRef]
- Bocchio-Chiavetto, L.; Miniussi, C.; Zanardini, R.; Gazzoli, A.; Bignotti, S.; Specchia, C.; Gennarelli, M. 5-HTTLPR and BDNF Val66Met polymorphisms and response to rTMS treatment in drug resistant depression. Neurosci. Lett. 2008, 437, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, W.K.; Noda, Y.; Barr, M.S.; Vila-Rodriguez, F.; Rajji, T.K.; Fitzgerald, P.B.; Downar, J.; Mulsant, B.H.; Vigod, S.; Daskalakis, Z.J.; et al. Neurobiological predictors of response to dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation in depression: A systematic review. Depress. Anxiety 2015, 32, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, D.; Moretti, F.; Bartoccetti, A.; Mauro, S.; Crocamo, C.; Carrà, G.; Bartoli, F. The role of BDNF in major depressive disorder, related clinical features, and antidepressant treatment: Insight from Meta-analyses. Neurosci. Biobehav. Rev. 2023, 149, 105159. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T.; Yoshimura, R.; Ikuta, T.; Iwata, N. Brain-derived neurotrophic factor and major depressive disorder: Evidence from Meta-analyses. Front. Psychiatry 2018, 8, 308. [Google Scholar] [CrossRef]
- Fujimura, H.; Altar, C.A.; Chen, R.; Nakamura, T.; Nakahashi, T.; Kambayashi, J.; Sun, B.; Tandon, N.N. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb. Haemost. 2002, 87, 728–734. [Google Scholar] [CrossRef]
- Yoshida, T.; Ishikawa, M.; Niitsu, T.; Nakazato, M.; Watanabe, H.; Shiraishi, T.; Shiina, A.; Hashimoto, T.; Kanahara, N.; Hasegawa, T.; et al. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor probdnf, in patients with major depressive disorder. PLoS ONE 2012, 7, e42676. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ren, Q.; Zhang, J.; Chen, Q.-X.; Hashimoto, K. Altered expression of BDNF, BDNF pro-peptide and their precursor probdnf in brain and liver tissues from psychiatric disorders: Rethinking the brain–liver axis. Transl. Psychiatry 2017, 7, e1128. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelada, M.I.; Garrido, V.; Liberona, A.; Jones, N.; Zúñiga, K.; Silva, H.; Nieto, R.R. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Major Depressive Disorder (MDD): A Systematic Review. Int. J. Mol. Sci. 2023, 24, 14810. https://doi.org/10.3390/ijms241914810
Zelada MI, Garrido V, Liberona A, Jones N, Zúñiga K, Silva H, Nieto RR. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Major Depressive Disorder (MDD): A Systematic Review. International Journal of Molecular Sciences. 2023; 24(19):14810. https://doi.org/10.3390/ijms241914810
Chicago/Turabian StyleZelada, Mario Ignacio, Verónica Garrido, Andrés Liberona, Natalia Jones, Karen Zúñiga, Hernán Silva, and Rodrigo R. Nieto. 2023. "Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Major Depressive Disorder (MDD): A Systematic Review" International Journal of Molecular Sciences 24, no. 19: 14810. https://doi.org/10.3390/ijms241914810
APA StyleZelada, M. I., Garrido, V., Liberona, A., Jones, N., Zúñiga, K., Silva, H., & Nieto, R. R. (2023). Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Major Depressive Disorder (MDD): A Systematic Review. International Journal of Molecular Sciences, 24(19), 14810. https://doi.org/10.3390/ijms241914810