Dysautonomia in Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Cardiovascular Dysfunction
3. Gastrointestinal Dysfunction
4. Lower Urinary Tract Dysfunction
5. Sudomotor Response
6. Salivary Dysfunction
7. Neuropathological Findings
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071, Erratum in Nat. Rev. Dis. Primers 2017, 3, 17085. [Google Scholar] [CrossRef] [PubMed]
- Jankovska, N.; Matej, R. Molecular Pathology of ALS: What We Currently Know and What Important Information Is Still Missing. Diagnostics 2021, 11, 1365. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, L.; Vandriel, S.; Elman, L.; Van Deerlin, V.M.; Powers, J.; Boller, A.; Wood, E.M.; Woo, J.; McMillan, C.T.; Rascovsky, K.; et al. ALS-Plus syndrome: Non-pyramidal features in a large ALS cohort. J. Neurol. Sci. 2014, 345, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.; Schoenfeld, D.A.; Paliwal, Y.; Shui, A.; Cudkowicz, M.E. The natural history of ALS is changing: Improved survival. Amyotroph. Lateral Scler. 2009, 10, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.R.; Al-Chalabi, A.; Chio, A.; Hardiman, O.; Kiernan, M.C.; Rohrer, J.D.; Rowe, J.; Seeley, W.; Talbot, K. Genetic screening in sporadic ALS and FTD. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1042–1044. [Google Scholar] [CrossRef] [PubMed]
- Gulino, R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2023, 24, 4613. [Google Scholar] [CrossRef]
- Yanagi, K.S.; Wu, Z.; Amaya, J.; Chapkis, N.; Duffy, A.M.; Hajdarovic, K.H.; Held, A.; Mathur, A.D.; Russo, K.; Ryan, V.H.; et al. Meta-analysis of Genetic Modifiers Reveals Candidate Dysregulated Pathways in Amyotrophic Lateral Sclerosis. Neuroscience 2019, 396, A3–A20. [Google Scholar] [CrossRef]
- Kaur, S.J.; McKeown, S.R.; Rashid, S. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene 2015, 577, 109–118. [Google Scholar] [CrossRef]
- Al-Chalabi, A.; Calvo, A.; Chio, A.; Colville, S.; Ellis, C.M.; Hardiman, O.; Heverin, M.; Howard, R.S.; Huisman, M.H.B.; Keren, N.; et al. Analysis of amyotrophic lateral sclerosis as a multistep process: A population-based modelling study. Lancet Neurol. 2014, 13, 1108–1113. [Google Scholar] [CrossRef]
- Chiò, A.; Mazzini, L.; D’Alfonso, S.; Corrado, L.; Canosa, A.; Moglia, C.; Manera, U.; Bersano, E.; Brunetti, M.; Barberis, M.; et al. The multistep hypothesis of ALS revisited. Neurology 2018, 91, e635–e642. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, J.J.; Ballesteros-Pomar, M.D.; Torres-Torres, B.; De la Maza, B.P.; Penacho-Lázaro, M.; Palacio-Mures, J.M.; Abreu-Padín, C.; López-Guzmán, A.; De Luis-Román, D.A. Malnutrition at diagnosis in amyotrophic lateral sclerosis (als) and its influence on survival: Using glim criteria. Clin. Nutr. 2021, 40, 237–244. [Google Scholar] [CrossRef] [PubMed]
- van Mantgem, M.R.J.; van Eijk, R.P.A.; van der Burgh, H.K.; Tan, H.H.G.; Westeneng, H.-J.; van Es, M.A.; Veldink, J.H.; Berg, L.H.v.D. Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: A population-based study. J. Neurol. Neurosurg. Psychiatry 2020, 91, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Kwee, L.C.; Allen, K.D.; Umbach, D.M.; Ye, W.; Watson, M.; Keller, J.; Oddone, E.Z.; Sandler, D.P.; Schmidt, S.; et al. Association Between Blood Lead and the Risk of Amyotrophic Lateral Sclerosis. Am. J. Epidemiology 2010, 171, 1126–1133. [Google Scholar] [CrossRef]
- Roos, P.M.; Lierhagen, S.; Flaten, T.P.; Syversen, T.; Vesterberg, O.; Nordberg, M. Manganese in cerebrospinal fluid and blood plasma of patients with amyotrophic lateral sclerosis. Exp. Biol. Med. 2012, 237, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Kasarskis, E.J.; Tandon, L.; Lovell, M.A.; Ehmann, W.D. Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: A preliminary study. J. Neurol. Sci. 1995, 130, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.M.; Barchowsky, A.; Bowser, R.; Youk, A.; Talbott, E.O. Pesticide exposure as a risk factor for amyotrophic lateral sclerosis: A meta-analysis of epidemiological studies: Pesticide exposure as a risk factor for ALS. Environ. Res. 2012, 117, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Ingre, C.; Roos, P.M.; Kamel, F.; Piehl, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiology 2015, 7, 181–193. [Google Scholar] [CrossRef]
- Arai, T.; Hasegawa, M.; Akiyama, H.; Ikeda, K.; Nonaka, T.; Mori, H.; Mann, D.; Tsuchiya, K.; Yoshida, M.; Hashizume, Y.; et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 2006, 351, 602–611. [Google Scholar] [CrossRef]
- Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front. Neurosci. 2019, 13, 1310. [Google Scholar] [CrossRef]
- Braak, H.; Brettschneider, J.; Ludolph, A.C.; Lee, V.M.; Trojanowski, J.Q.; Del Tredici, K. Amyotrophic lateral sclerosis—A model of corticofugal axonal spread. Nat. Rev. Neurol. 2013, 9, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, Y.; Urushitani, M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int. J. Mol. Sci. 2022, 23, 12508. [Google Scholar] [CrossRef] [PubMed]
- de Boer, E.M.J.; Orie, V.; Williams, T.; Baker, M.; De Oliveira, H.; Polvikoski, T.; Silsby, M.; Menon, P.; van den Bos, M.; Halliday, G.; et al. TDP-43 proteinopathies: A new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 2020, 92, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.F.; Gan, Z.Y.; Komander, D.; Dewson, G. Ubiquitin signalling in neurodegeneration: Mechanisms and therapeutic opportunities. Cell Death Differ. 2021, 28, 570–590. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cao, C.; Qin, X.-Y.; Yu, Y.; Yuan, J.; Zhao, Y.; Cheng, Y. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: A meta-analysis study. Sci. Rep. 2017, 7, 9094. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- StatPearls Publishing. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538172/ (accessed on 10 March 2023).
- Merico, A.; Cavinato, M. Autonomic dysfunction in the early stage of ALS with bulbar involvement. Amyotroph. Lateral Scler. 2011, 12, 363–367. [Google Scholar] [CrossRef]
- Pavlovic, S.; Stevic, Z.; Milovanovic, B.; Milicic, B.; Rakocevic-Stojanovic, V.; Lavrnic, D.; Apostolski, S. Impairment of cardiac autonomic control in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2010, 11, 272–276. [Google Scholar] [CrossRef]
- Linden, D.; Diehl, R.R.; Berlit, P. Reduced baroreflex sensitivity and cardiorespiratory transfer in amyotrophic lateral sclerosis. Electroencephalogr. Clin. Neurophysiol. Mot. Control. 1998, 109, 387–390. [Google Scholar] [CrossRef]
- Pisano, F.; Miscio, G.; Mazzuero, G.; Lanfranchi, P.; Colombo, R.; Pinelli, P. Decreased heart rate variability in amyotrophic lateral sclerosis. Muscle Nerve 1995, 18, 1225–1231. [Google Scholar] [CrossRef]
- Shimizu, T. Sympathetic Hyperactivity and Sympathovagal Imbalance in Amyotrophic Lateral Sclerosis. Eur. Neurol. Rev. 2013, 8, 46. [Google Scholar] [CrossRef]
- Shindo, K.; Shimokawa, C.; Watanabe, H.; Iida, H.; Ohashi, K.; Nitta, K.; Nagasaka, T.; Tsunoda, S.-I.; Shiozawa, Z. Chronological changes of sympathetic outflow to muscles in amyotrophic lateral sclerosis. J. Neurol. Sci. 2004, 227, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Oey, P.L.; Vos, P.E.; Wieneke, G.H.; Wokke, J.H.; Blankestijn, P.J.; Karemaker, J.M. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis. Muscle Nerve 2002, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Nygren, I.; Fagius, J. High resting level and weak response of baroreflex-governed sympathetic outflow in amyotrophic lateral sclerosis. Muscle Nerve 2011, 43, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Işcan, D.; Karaaslan, M.B.; Deveci, O.S.; Eker, R.A.; Koç, F. The importance of heart rate variability in predicting cardiac autonomic dysfunction in patients with amyotrophic lateral sclerosis. Int. J. Clin. Pr. 2021, 75, e14536. [Google Scholar] [CrossRef] [PubMed]
- Baltadzhieva, R.; Gurevich, T.; Korczyn, A.D. Autonomic impairment in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 2005, 18, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, A.; Koike, Y.; Takahashi, A.; Hirayama, M.; Murakami, N.; Sobue, G. Relationship between respiratory failure and plasma noradrenaline levels in amyotrophic lateral sclerosis. Clin. Auton. Res. 1997, 7, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Shimizu, T.; Kato, S.; Hayashi, H.; Hirai, S. Effect of tamsulosin hydrochloride on sympathetic hyperactivity in amyotrophic lateral sclerosis. Auton. Neurosci. 2001, 88, 94–98. [Google Scholar] [CrossRef]
- Asai, H.; Hirano, M.; Udaka, F.; Shimada, K.; Oda, M.; Kubori, T.; Nishinaka, K.; Tsujimura, T.; Izumi, Y.; Konishi, N.; et al. Sympathetic disturbances increase risk of sudden cardiac arrest in sporadic ALS. J. Neurol. Sci. 2007, 254, 78–83. [Google Scholar] [CrossRef]
- Shimizu, T.; Hayashi, H.; Kato, S.; Hayashi, M.; Tanabe, H.; Oda, M. Circulatory collapse and sudden death in respirator-dependent amyotrophic lateral sclerosis. J. Neurol. Sci. 1994, 124, 45–55. [Google Scholar] [CrossRef]
- Shimizu, T.; Kato, S.; Hayashi, M.; Hayashi, H.; Tanabe, H. Amyotrophic lateral sclerosis with hypertensive attacks: Blood pressure changes in response to drug administration. Clin. Auton. Res. 1996, 6, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, R.M.M.; Macedo, H.; Valenti, V.E.; Rocha, F.O.; Abreu, L.C.; Monteiro, C.B.d.M.; Ferreira, C. Decreased Heart Rate Variability in Individuals With Amyotrophic Lateral Sclerosis. Respir. Care 2019, 64, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Drusehky, A.; Spitzer, A.; Platseh, G.; Claus, D.; Feistel, H.; Druschky, K.; Hilz, M.-J.; Neundörfer, B. Cardiac sympathetic denervation in early stages of amyotrophic lateral sclerosis demonstrated by123I-MIBG-SPECT. Acta Neurol. Scand. 1999, 99, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Rosenbohm, A.; Schmid, B.; Buckert, D.; Rottbauer, W.; Kassubek, J.; Ludolph, A.C.; Bernhardt, P. Cardiac Findings in Amyotrophic Lateral Sclerosis: A Magnetic Resonance Imaging Study. Front. Neurol. 2017, 8, 479. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Yamada, M.; Koumura, A.; Sakurai, T.; Hayashi, Y.; Kimura, A.; Hozumi, I.; Inuzuka, T. Cardiac sympathetic function in the patients with amyotrophic lateral sclerosis: Analysis using cardiac [123I] MIBG scintigraphy. J. Neurol. 2013, 260, 2380–2386. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.A.; Ferguson, B.J.; Jones, V.; Green, B.E.; Pearre, J.D.; Anunoby, I.A.; Beversdorf, D.Q.; Barohn, R.J.; Cirstea, C.M. Pilot Study of Real-World Monitoring of the Heart Rate Variability in Amyotrophic Lateral Sclerosis. Front. Artif. Intell. 2022, 5, 910049. [Google Scholar] [CrossRef] [PubMed]
- Pelz, J.O.; Belau, E.; Menze, I.; Woost, T.B.; Classen, J.; Weise, D. Correlation between sonographic morphology and function of the cervical vagus nerves. Auton. Neurosci. 2019, 220, 102552. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, K.; Naumann, M. Ultrasound Detection of Vagus Nerve Atrophy in Bulbar Amyotrophic Lateral Sclerosis. J. Neuroimaging 2020, 30, 762–765. [Google Scholar] [CrossRef]
- Papadopoulou, M.; Bakola, E.; Papapostolou, A.; Stefanou, M.I.; Moschovos, C.; Salakou, S.; Zis, P.; Zouvelou, V.; Kimiskidis, V.K.; Chroni, E.; et al. Autonomic dysfunction in amyotrophic lateral sclerosis: A neurophysiological and neurosonology study. J. Neuroimaging 2022, 32, 710–719. [Google Scholar] [CrossRef]
- Weise, D.; Menze, I.; Metelmann, M.C.F.; Woost, T.B.; Classen, J.; Pelz, J.O. Multimodal assessment of autonomic dysfunction in amyotrophic lateral sclerosis. Eur. J. Neurol. 2022, 29, 715–723. [Google Scholar] [CrossRef]
- Nübling, G.S.; Mie, E.; Bauer, R.M.; Hensler, M.; Lorenzl, S.; Hapfelmeier, A.; Irwin, D.E.; Borasio, G.D.; Winkler, A.S. Increased prevalence of bladder and intestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Samara, V.C.; Jerant, P.; Gibson, S.; Bromberg, M. Bowel, bladder, and sudomotor symptoms in ALS patients. J. Neurol. Sci. 2021, 427, 117543. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Schwartz, M.S.; Swash, M. Involvement of the external anal sphincter in amyotrophic lateral sclerosis. Muscle Nerve 1995, 18, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Toepfer, C.F.M. Gastrointestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 1999, 1, 15–19. [Google Scholar] [CrossRef]
- Geng, Z.-H.; Zhu, Y.; Li, Q.-L.; Zhao, C.; Zhou, P.-H. Enteric Nervous System: The Bridge Between the Gut Microbiota and Neurological Disorders. Front. Aging Neurosci. 2022, 14, 810483. [Google Scholar] [CrossRef] [PubMed]
- Fleming, M.A., 2nd; Ehsan, L.; Moore, S.R.; Levin, D.E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, 2020, 8024171. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Gershon, M.D. The bowel and beyond: The enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 517–528. [Google Scholar] [CrossRef]
- Braak, H.; de Vos, R.A.; Bohl, J.; Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 2006, 396, 67–72. [Google Scholar] [CrossRef]
- Martin, S.; Battistini, C.; Sun, J. A Gut Feeling in Amyotrophic Lateral Sclerosis: Microbiome of Mice and Men. Front. Cell. Infect. Microbiol. 2022, 12, 839526. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q.; Zhang, K.; An, T.; Shi, P.; Li, Z.; Duan, W.; Li, C. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res. 2012, 1460, 88–95. [Google Scholar] [CrossRef]
- Herdewyn, S.; Cirillo, C.; Bosch, L.V.D.; Robberecht, W.; Berghe, P.V.; Van Damme, P. Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T)mice. Mol. Neurodegener. 2014, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Nakayama, K.; Murakami, A.; Morise, S.; Kaneko, S.; Kusaka, H.; Yakushiji, Y. Early presentation of lower urinary tract and bowel dysfunction in sporadic amyotrophic lateral sclerosis: A case report. eNeurologicalSci 2022, 28, 100413. [Google Scholar] [CrossRef] [PubMed]
- Toledo, A.R.L.; Monroy, G.R.; Salazar, F.E.; Lee, J.-Y.; Jain, S.; Yadav, H.; Borlongan, C.V. Gut–Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int. J. Mol. Sci. 2022, 23, 1184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ogbu, D.; Garrett, S.; Xia, Y.; Sun, J. Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis. Gut Microbes 2021, 13, 1996848. [Google Scholar] [CrossRef] [PubMed]
- Blacher, E.; Bashiardes, S.; Shapiro, H.; Rothschild, D.; Mor, U.; Dori-Bachash, M.; Kleimeyer, C.; Moresi, C.; Harnik, Y.; Zur, M.; et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 2019, 572, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Shen, J.; Chen, K.; Zhou, J.; Liao, Q.; Lu, K.; Yuan, J.; Bi, F.-F. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci. Rep. 2020, 10, 12998. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, D.; Cionci, N.B.; Baffoni, L.; Amoruso, A.; Pane, M.; Mogna, L.; Gaggìa, F.; Lucenti, M.A.; Bersano, E.; Cantello, R.; et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis. BMC Med. 2020, 18, 153. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhan, Y.; Mariosa, D.; Larsson, H.; Almqvist, C.; Ingre, C.; Zagai, U.; Pawitan, Y.; Fang, F. Antibiotics use and risk of amyotrophic lateral sclerosis in Sweden. Eur. J. Neurol. 2019, 26, 1355–1361. [Google Scholar] [CrossRef]
- Drokhlyansky, E.; Smillie, C.S.; Van Wittenberghe, N.; Ericsson, M.; Griffin, G.K.; Eraslan, G.; Dionne, D.; Cuoco, M.S.; Goder-Reiser, M.N.; Sharova, T.; et al. The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 2020, 182, 1606–1622.e23. [Google Scholar] [CrossRef]
- Smith-Edwards, K.M.; Edwards, B.S.; Wright, C.M.; Schneider, S.; Meerschaert, K.A.; Ejoh, L.L.; Najjar, S.A.; Howard, M.J.; Albers, K.M.; Heuckeroth, R.O.; et al. Sympathetic Input to Multiple Cell Types in Mouse and Human Colon Produces Region-Specific Responses. Gastroenterology 2021, 160, 1208–1223.e4. [Google Scholar] [CrossRef]
- Irwin, D.E.; Milsom, I.; Hunskaar, S.; Reilly, K.; Kopp, Z.; Herschorn, S.; Coyne, K.; Kelleher, C.; Hampel, C.; Artibani, W.; et al. Population-based survey or urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: Results of the EPIC study. Eur. Urol. 2006, 50, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, M.L.L.; Motta, R.; Battaglia, M.A.; Brichetto, G. Urinary disorders in amyotrophic lateral sclerosis subjects. Amyotroph. Lateral Scler. 2011, 12, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Arlandis, S.; Vázquez-Costa, J.F.; Martínez-Cuenca, E.; Sevilla, T.; Boronat, F.; Broseta, E. Urodynamic findings in amyotrophic lateral sclerosis patients with lower urinary tract symptoms: Results from a pilot study. Neurourol. Urodynamics 2017, 36, 626–631. [Google Scholar] [CrossRef]
- Vázquez-Costa, J.F.; Arlandis, S.; Hervas, D.; Martínez-Cuenca, E.; Cardona, F.; Pérez-Tur, J.; Broseta, E.; Sevilla, T. Clinical profile of motor neuron disease patients with lower urinary tract symptoms and neurogenic bladder. J. Neurol. Sci. 2017, 378, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Dettmers, C.; Fatepour, D.; Faust, H.; Jerusalem, F. Sympathetic skin response abnormalities in amyotrophic lateral sclerosis. Muscle Nerve 1993, 16, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Kihara, M.; Takahashi, A.; Sugenoya, J.; Kihara, Y.; Watanabe, H. Sudomotor dysfunction in amyotrophic lateral sclerosis. Funct. Neurol. 1994, 9, 193–197. [Google Scholar] [PubMed]
- Hu, F.; Jin, J.; Qu, Q.; Dang, J. Sympathetic Skin Response in Amyotrophic Lateral Sclerosis. J. Clin. Neurophysiol. 2016, 33, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Santos-Bento, M.; de Carvalho, M.; Evangelista, T.; Sales Luís, M.L. Sympathetic sudomotor function and amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2001, 2, 105–108. [Google Scholar] [CrossRef]
- Santos, M.O.; Castro, I.; Castro, J.; Gromicho, M.; de Carvalho, M. Assessment of sympathetic sudomotor function in amyotrophic lateral sclerosis with electrochemical skin conductance. Clin. Neurophysiol. 2021, 132, 2032–2036. [Google Scholar] [CrossRef]
- Nolano, M.; Provitera, V.; Manganelli, F.; Iodice, R.; Caporaso, G.; Stancanelli, A.; Marinou, K.; Lanzillo, B.; Santoro, L.; Mora, G. Non-motor involvement in amyotrophic lateral sclerosis: New insight from nerve and vessel analysis in skin biopsy. Neuropathol. Appl. Neurobiol. 2017, 43, 119–132. [Google Scholar] [CrossRef]
- Brazis, P.W.; Masdeu, J.C.; Biller, J. Localization in Clinical Neurology; Wolters Kluwer Health: Philadelphia, PA, USA, 2021; 642p. [Google Scholar]
- Garuti, G.; Rao, F.; Ribuffo, V.; Sansone, V.A. Sialorrhea in patients with ALS: Current treatment options. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 19–26. [Google Scholar] [CrossRef]
- Giess, R.; Werner, E.; Beck, M.; Reiners, C.; Toyka, K.V.; Naumann, M. Impaired salivary gland function reveals autonomic dysfunction in amyotrophic lateral sclerosis. J. Neurol. 2002, 249, 1246–1249. [Google Scholar] [CrossRef]
- Charchaflie, R.J.; Fernandez, L.B.; Perec, C.J.; Gonzalez, E.; Marzi, A. Functional studies of the parotid and pancreas glands in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 1974, 37, 863–867. [Google Scholar] [CrossRef]
- Schimmel, M.; Leuchter, I.; Barras, A.-C.H.; Leles, C.R.; Abou-Ayash, S.; Viatte, V.; Esteve, F.; Janssens, J.-P.; Mueller, F.; Genton, L. Oral function in amyotrophic lateral sclerosis patients: A matched case–control study. Clin. Nutr. 2021, 40, 4904–4911. [Google Scholar] [CrossRef] [PubMed]
- Easterling, C.; Antinoja, J.; Cashin, S.; Barkhaus, P.E. Changes in Tongue Pressure, Pulmonary Function, and Salivary Flow in Patients with Amyotrophic Lateral Sclerosis. Dysphagia 2013, 28, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Blackhall, L.J. Amyotrophic lateral sclerosis and palliative care: Where we are, and the road ahead. Muscle Nerve 2012, 45, 311–318. [Google Scholar] [CrossRef]
- Geser, F.; Fellner, L.; Haybaeck, J.; Wenning, G.K. Development of neurodegeneration in amyotrophic lateral sclerosis: From up or down? J. Neural Transm. 2020, 127, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Oyanagi, K.; Ikuta, F. The intermediolateral nucleus in sporadic amyotrophic lateral sclerosis. Acta Neuropathol. 1993, 86, 190–192. [Google Scholar] [CrossRef]
- Iwanaga, K.; Hayashi, S.; Oyake, M.; Horikawa, Y.; Hayashi, T.; Wakabayashi, M.; Kondo, H.; Tsuji, S.; Takahashi, H. Neuropathology of sporadic amyotrophic lateral sclerosis of long duration. J. Neurol. Sci. 1997, 146, 139–143. [Google Scholar] [CrossRef]
- Kihira, T.; Yoshida, S.; Yoshimasu, F.; Wakayama, I.; Yase, Y. Involvement of Onuf’s nucleus in amyotrophic lateral sclerosis. J. Neurol. Sci. 1997, 147, 81–88. [Google Scholar] [CrossRef]
- Shimizu, T.; Kawata, A.; Kato, S.; Hayashi, M.; Takamoto, K.; Hayashi, H.; Hirai, S.; Yamaguchi, S.; Komori, T.; Oda, M. Autonomic failure in ALS with a novel SOD1 gene mutation. Neurology 2000, 54, 1534–1537. [Google Scholar] [CrossRef]
- Coan, G.; Mitchell, C.S. An Assessment of Possible Neuropathology and Clinical Relationships in 46 Sporadic Amyotrophic Lateral Sclerosis Patient Autopsies. Neuro-Degener. Dis. 2015, 15, 5. [Google Scholar] [CrossRef]
- Cykowski, M.D.; Takei, H.; Schulz, P.E.; Appel, S.H.; Powell, S.Z. TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 2014, 2, 171. [Google Scholar] [CrossRef]
- Vercruysse, P.; Vieau, D.; Blum, D.; Petersén, Å.; Dupuis, L. Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Front. Mol. Neurosci. 2018, 11, 2. [Google Scholar] [CrossRef]
- Tortelli, R.; Zecca, C.; Piccininni, M.; Benmahamed, S.; Dell’Abate, M.T.; Barulli, M.R.; Capozzo, R.; Battista, P.; Logroscino, G. Plasma Inflammatory Cytokines Are Elevated in ALS. Front. Neurol. 2020, 11, 552295. [Google Scholar] [CrossRef] [PubMed]
Parameter | Subjects Investigated ALSpc vs. Controls | Mean Duration of the Disease | Results | References |
---|---|---|---|---|
HRV | 33 vs. 30 | 27 mo (11–66 mo) | Decreased | [28] |
55 vs. 30 | 18 mo (3 mo–12 y) | Decreased | [29] | |
29 vs. 33 | 21 ± 13 mo (4–60 mo) | Decreased | [31] | |
Baroreflex sensitivity | 55 vs. 30 | 18 mo (3 mo–12 y) | Reduced | [28] |
18 vs. 18 | NA | Reduced | [30] | |
MSNA at rest | 40 vs. 38 | 3–120 mo (26.2 ± 24.8 mo) | Increased | [33] |
9 vs. 9 | 24 mo (12–38 mo) | Increased | [35] | |
16 vs. 12 | 133.7 ± 51.7 w | Increased | [34] | |
OH | 55 vs. 30 | 18 mo (3 mo–12 y) | Absent | [29] |
16 vs. 12 | 133.7 ± 51.7 w | Absent | [34] | |
Serum NE levels | 20 ALSpc | 1–14 y 11.0 ± 5.5 y 19 ALSpc-PPV 2.7 ± 1.6 y 22 ALSpc-wPPV | Elevated | [38] |
41 vs. 10 | Elevated | [39] | ||
Vagus nerve (HRUS) | 24 vs. 19 | 2–48 mo (12.46 ± 10.28 mo) | Atrophy | [49] |
21 vs. 28 | NA | Atrophy | [50] | |
37 vs. 40 | 22.5 ± 23.0 mo | Similar | [51] | |
Cardiac sympathetic function (scintigraphy) | 63 vs. 10 | 11 mo (3–72 mo) | Increased sympathetic activity | [46] |
Cardiac structure and function (CMR) | 35 vs. 34 | NA | Decreased VV, VM, and EV | [45] |
Parameter | ALSpc (No) | Mean Disease Duration | Methods | Results | References |
---|---|---|---|---|---|
LUTS (UI) | 43 | 34.0 mo (7–246 mo) | ICIQ-SF UDI-6 | 33% | [52] |
LUTS | 54 | 5.17 ± 5.70 y | ICS—standardized questionnaire | 40.74% | [73] |
LUTS | 55 | 30.8 mo (5.5–294 mo) | ICIQ-SF OAB-V8 IPSS | 43.6% | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oprisan, A.L.; Popescu, B.O. Dysautonomia in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2023, 24, 14927. https://doi.org/10.3390/ijms241914927
Oprisan AL, Popescu BO. Dysautonomia in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences. 2023; 24(19):14927. https://doi.org/10.3390/ijms241914927
Chicago/Turabian StyleOprisan, Alexandra L., and Bogdan Ovidiu Popescu. 2023. "Dysautonomia in Amyotrophic Lateral Sclerosis" International Journal of Molecular Sciences 24, no. 19: 14927. https://doi.org/10.3390/ijms241914927
APA StyleOprisan, A. L., & Popescu, B. O. (2023). Dysautonomia in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 24(19), 14927. https://doi.org/10.3390/ijms241914927