The Impact of COVID-19 on Cellular Factors Influencing Red Blood Cell Aggregation Examined in Dextran: Possible Causes and Consequences
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. The General Characteristics of the Studied Patients
4.2. Blood Collection and Preparation of the Sample
4.3. Measurement
4.4. Data Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renoux, C.; Fort, R.; Nader, E.; Boisson, C.; Joly, P.; Stauffer, E.; Robert, M.; Girard, S.; Cibiel, A.; Gauthier, A.; et al. Impact of COVID-19 on Red Blood Cell Rheology. Br. J. Haematol. 2021, 192, e108–e111. [Google Scholar] [CrossRef] [PubMed]
- Bizjak, D.A.; John, L.; Matits, L.; Uhl, A.; Schulz, S.V.W.; Schellenberg, J.; Peifer, J.; Bloch, W.; Weiß, M.; Grüner, B.; et al. SARS-CoV-2 Altered Hemorheological and Hematological Parameters during One-Month Observation Period in Critically Ill COVID-19 Patients. Int. J. Mol. Sci. 2022, 23, 15332. [Google Scholar] [CrossRef]
- Ifrig, E.; Fibben, K.; Silvestri, G.; Maier, C.; Lam, W. Fibrinogen-RBC Interactions Play a Key Role in COVID-19-Associated Endothelial Dysfunction. Chest 2021, 160, A1067. [Google Scholar] [CrossRef]
- Russo, A.; Tellone, E.; Barreca, D.; Ficarra, S.; Laganà, G. Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical Implications and Morpho-Functional Aspects. Int. J. Mol. Sci. 2022, 23, 2171. [Google Scholar] [CrossRef]
- Nader, E.; Nougier, C.; Boisson, C.; Poutrel, S.; Catella, J.; Martin, F.; Charvet, J.; Girard, S.; Havard-Guibert, S.; Martin, M.; et al. Increased Blood Viscosity and Red Blood Cell Aggregation in Patients with COVID-19. Am. J. Hematol. 2022, 97, 283–292. [Google Scholar] [CrossRef]
- Grau, M.; Ibershoff, L.; Zacher, J.; Bros, J.; Tomschi, F.; Diebold, K.F.; Predel, H.G.; Bloch, W. Even Patients with Mild COVID-19 Symptoms after SARS-CoV-2 Infection Show Prolonged Altered Red Blood Cell Morphology and Rheological Parameters. J. Cell. Mol. Med. 2022, 26, 3022–3030. [Google Scholar] [CrossRef] [PubMed]
- Rampling, M.W.; Meiselman, H.J.; Neu, B.; Baskurt, O.K. Influence of Cell-Specific Factors on Red Blood Cell Aggregation. Biorheology 2004, 41, 91–112. [Google Scholar]
- Baskurt, O.K.; Meiselman, H.J. Erythrocyte Aggregation: Basic Aspects and Clinical Importance. Clin. Hemorheol. Microcirc. 2013, 53, 23–37. [Google Scholar] [CrossRef]
- Baskurt, O.K.; Meiselman, H.J. RBC Aggregation: More Important than RBC Adhesion to Endothelial Cells as a Determinant of in Vivo Blood Flow in Health and Disease. Microcirculation 2008, 15, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Baskurt, O.K.; Meiselman, H.J. Blood Rheology and Hemodynamics. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc.: New York, NY, USA, 2003; Volume 29, pp. 435–450. [Google Scholar]
- Baskurt, O.K.; Meiselman, H.J. Hemodynamic Effects of Red Blood Cell Aggregation. Indian J. Exp. Biol. 2007, 45, 25–31. [Google Scholar]
- FÅHRAEUS, R. The Influence of the Rouleau Formation of the Erythrocytes on the Rheology of the Blood. Acta Med. Scand. 1958, 161, 151–165. [Google Scholar] [CrossRef]
- Wagner, C.; Steffen, P.; Svetina, S. Aggregation of Red Blood Cells: From Rouleaux to Clot Formation. C. R. Phys. 2013, 14, 459–469. [Google Scholar] [CrossRef]
- Svetina, S.; Ziherl, P. Morphology of Small Aggregates of Red Blood Cells. Bioelectrochemistry 2008, 73, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kendall, K.; Stainton, C. Adhesion and Aggregation of Fine Particles. Powder Technol. 2001, 121, 223–229. [Google Scholar] [CrossRef]
- Skalak, R. Aggregation and Disaggregation of Red Blood Cells. Biorheology 1984, 21, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Flormann, D.; Aouane, O.; Kaestner, L.; Ruloff, C.; Misbah, C.; Podgorski, T.; Wagner, C. The Buckling Instability of Aggregating Red Blood Cells. Sci. Rep. 2017, 7, 7928. [Google Scholar] [CrossRef]
- Dasanna, A.K.; Darras, A.; John, T.; Gompper, G.; Kaestner, L.; Wagner, C.; Fedosov, D.A. Erythrocyte Sedimentation: Effect of Aggregation Energy on Gel Structure during Collapse. Phys. Rev. E 2022, 105, 024610. [Google Scholar] [CrossRef]
- Alexy, T.; Detterich, J.; Connes, P.; Toth, K.; Nader, E.; Kenyeres, P.; Arriola-Montenegro, J.; Ulker, P.; Simmonds, M.J. Physical Properties of Blood and Their Relationship to Clinical Conditions. Front. Physiol. 2022, 13, 906768. [Google Scholar] [CrossRef]
- Eylar, E.H.; Madoff, M.A.; Brody, O.V.; Oncley, J.L. The Contribution of Sialic Acid to the Surface Charge of the Erythrocyte. J. Biol. Chem. 1962, 237, 1992–2000. [Google Scholar] [CrossRef]
- Fernandes, H.P.; Cesar, C.L.; Barjas-Castro, M.d.L. Electrical Properties of the Red Blood Cell Membrane and Immunohematological Investigation. Rev. Bras. Hematol. Hemoter. 2011, 33, 297–301. [Google Scholar] [CrossRef]
- Hughes, M.P.; Kruchek, E.J.; Beale, A.D.; Kitcatt, S.J.; Qureshi, S.; Trott, Z.P.; Charbonnel, O.; Agbaje, P.A.; Henslee, E.A.; Dorey, R.A.; et al. Vm-Related Extracellular Potentials Observed in Red Blood Cells. Sci. Rep. 2021, 11, 19446. [Google Scholar] [CrossRef]
- Lopes, C.S.; Curty, J.; Carvalho, F.A.; Hernández-Machado, A.; Kinoshita, K.; Santos, N.C.; Travasso, R.D.M. A Mathematical Model of Fibrinogen-Mediated Erythrocyte–Erythrocyte Adhesion. Commun. Biol. 2023, 6, 192. [Google Scholar] [CrossRef]
- Semenov, A.N.; Lugovtsov, A.E.; Shirshin, E.A.; Yakimov, B.P.; Ermolinskiy, P.B.; Bikmulina, P.Y.; Kudryavtsev, D.S.; Timashev, P.S.; Muravyov, A.V.; Wagner, C.; et al. Assessment of Fibrinogen Macromolecules Interaction with Red Blood Cells Membrane by Means of Laser Aggregometry, Flow Cytometry, and Optical Tweezers Combined with Microfluidics. Biomolecules 2020, 10, 1448. [Google Scholar] [CrossRef] [PubMed]
- Pribush, A.; Zilberman-Kravits, D.; Meyerstein, N. The Mechanism of the Dextran-Induced Red Blood Cell Aggregation. Eur. Biophys. J. 2007, 36, 85–94. [Google Scholar] [CrossRef]
- Vijayaraghavan, M.; Chatterjee, S.; Sumantran, V.N.; Jayavelu, T. Revisiting Dextran Effect on Red Blood Cell to Understand the Importance of Rouleaux Distribution and Red Blood Cell-Endothelial Cell Adhesion. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Barshtein, G. Biochemical and Biophysical Properties of Red Blood Cells in Disease. Biomolecules 2022, 12, 923. [Google Scholar] [CrossRef]
- Thiagarajan, P.; Parker, C.J.; Prchal, J.T. How Do Red Blood Cells Die? Front. Physiol. 2021, 12, 655393. [Google Scholar] [CrossRef] [PubMed]
- Szolna-Chodór, A.; Bosek, M.; Grzegorzewski, B. Kinetics of Red Blood Cell Rouleaux Formation Studied by Light Scattering. J. Biomed. Opt. 2015, 20, 025001. [Google Scholar] [CrossRef] [PubMed]
- Fabry, T.L. Mechanism of Erythrocyte Aggregation and Sedimentation. Blood 1987, 70, 1572–1576. [Google Scholar] [CrossRef]
- Kaliviotis, E. Mechanics of the Red Blood Cell Network. J. Cell. Biotechnol. 2015, 1, 37–43. [Google Scholar] [CrossRef]
- Pribush, A.; Meyerstein, D.; Meyerstein, N. The Mechanism of Erythrocyte Sedimentation. Part 1: Channeling in Sedimenting Blood. Colloids Surf. B Biointerfaces 2010, 75, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Semenov, A.; Lugovtsov, A.; Ermolinskiy, P.; Lee, K.; Priezzhev, A. Problems of Red Blood Cell Aggregation and Deformation Assessed by Laser Tweezers, Diffuse Light Scattering and Laser Diffractometry. Photonics 2022, 9, 238. [Google Scholar] [CrossRef]
- Chernyak, B.V.; Popova, E.N.; Prikhodko, A.S.; Grebenchikov, O.A.; Zinovkina, L.A.; Zinovkin, R.A. COVID-19 and Oxidative Stress. Biochemistry 2020, 85, 1543. [Google Scholar] [CrossRef]
- Sadeq, H.; Daabo, H. Role of Oxidative Stress in Pathogenesis and Severity of COVID-19 Infection: Case-Control Study in Iraq. J. Life Bio Sci. Res. 2022, 3, 40–45. [Google Scholar] [CrossRef]
- Janz, D.R.; Ware, L.B. The Role of Red Blood Cells and Cell-Free Hemoglobin in the Pathogenesis of ARDS. J. Intensive Care 2015, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, P.; Richards, R.S.; Bwititi, P.T.; Nwose, E.U. Association of Abnormal Erythrocyte Morphology with Oxidative Stress and Inflammation in Metabolic Syndrome. Blood. Cells. Mol. Dis. 2015, 54, 360–363. [Google Scholar] [CrossRef]
- Wybranowski, T.; Napiórkowska, M.; Bosek, M.; Pyskir, J.; Ziomkowska, B.; Cyrankiewicz, M.; Pyskir, M.; Pilaczyńska-Cemel, M.; Rogańska, M.; Kruszewski, S.; et al. Study of Albumin Oxidation in COVID-19 Pneumonia Patients: Possible Mechanisms and Consequences. Int. J. Mol. Sci. 2022, 23, 10103. [Google Scholar] [CrossRef]
- Spengler, M.I.; Svetaz, M.J.; Leroux, M.B.; Bertoluzzo, S.M.; Parente, F.M.; Bosch, P. Lipid Peroxidation Affects Red Blood Cells Membrane Properties in Patients with Systemic Lupus Erythematosus. Clin. Hemorheol. Microcirc. 2014, 58, 489–495. [Google Scholar] [CrossRef]
- Becatti, M.; Marcucci, R.; Gori, A.M.; Mannini, L.; Grifoni, E.; Alessandrello Liotta, A.; Sodi, A.; Tartaro, R.; Taddei, N.; Rizzo, S.; et al. Erythrocyte Oxidative Stress Is Associated with Cell Deformability in Patients with Retinal Vein Occlusion. J. Thromb. Haemost. 2016, 14, 2287–2297. [Google Scholar] [CrossRef]
- Remigante, A.; Morabito, R.; Marino, A. Band 3 Protein Function and Oxidative Stress in Erythrocytes. J. Cell. Physiol. 2021, 236, 6225–6234. [Google Scholar] [CrossRef]
- Carelli-Alinovi, C.; Dinarelli, S.; Sampaolese, B.; Misiti, F.; Girasole, M. Morphological changes induced in erythrocyte by amyloid beta peptide and glucose depletion: A combined atomic force microscopy and biochemical study. Biochim. Biophys. Acta Biomembr. 2019, 1861, 236–244. [Google Scholar] [CrossRef]
- Shahvali, S.; Shahesmaeili, A.; Sanjari, M.; Karami-Mohajeri, S. The Correlation between Blood Oxidative Stress and Sialic Acid Content in Diabetic Patients with Nephropathy, Hypertension, and Hyperlipidemia. Diabetol. Int. 2020, 11, 19–26. [Google Scholar] [CrossRef]
- Piagnerelli, M.; Boudjeltia, K.Z.; Brohee, D.; Piro, P.; Carlier, E.; Vincent, J.L.; Lejeune, P.; Vanhaeverbeek, M. Alterations of Red Blood Cell Shape and Sialic Acid Membrane Content in Septic Patients. Crit. Care Med. 2003, 31, 2156–2162. [Google Scholar] [CrossRef]
- Thomas, T.; Stefanoni, D.; Dzieciatkowska, M.; Issaian, A.; Nemkov, T.; Hill, R.C.; Francis, R.O.; Hudson, K.E.; Buehler, P.W.; Zimring, J.C.; et al. Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients. J. Proteome Res. 2020, 19, 4455–4469. [Google Scholar] [CrossRef]
- Mehdi, M.M.; Singh, P.; Rizvi, S.I. Erythrocyte Sialic Acid Content during Aging in Humans: Correlation with Markers of Oxidative Stress. Dis. Markers 2012, 32, 179–186. [Google Scholar] [CrossRef]
- Kumar, D.; Rizvi, S.I. Erythrocyte Membrane Bound and Plasma Sialic Acid during Aging. Biologia 2013, 68, 762–765. [Google Scholar] [CrossRef]
- Rogers, M.E.; Williams, D.T.; Niththyananthan, R.; Rampling, M.W.; Heslop, K.E.; Johnston, D.G. Decrease in Erythrocyte Glycophorin Sialic Acid Content Is Associated with Increased Erythrocyte Aggregation in Human Diabetes. Clin. Sci. 1992, 82, 309–313. [Google Scholar] [CrossRef]
- Hadengue, A.; Razavian, S.M.; Del-Pino, M.; Simon, A.; Levenson, J. Influence of Sialic Acid on Erythrocyte Aggregation in Hypercholesterolemia. Thromb. Haemost. 1996, 76, 944–949. [Google Scholar]
- Li, H.; Yang, J.; Chu, T.T.; Naidu, R.; Lu, L.; Chandramohanadas, R.; Dao, M.; Karniadakis, G.E. Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes. Biophys. J. 2018, 114, 2014–2023. [Google Scholar] [CrossRef]
- Stevens-Hernandez, C.J.; Flatt, J.F.; Kupzig, S.; Bruce, L.J. Reticulocyte Maturation and Variant Red Blood Cells. Front. Physiol. 2022, 13, 834463. [Google Scholar] [CrossRef]
- Soma, P.; Bester, J. Pathophysiological Changes in Erythrocytes Contributing to Complications of Inflammation and Coagulation in COVID-19. Front. Physiol. 2022, 13, 899629. [Google Scholar] [CrossRef]
- Bester, J.; Pretorius, E. Effects of IL-1β, IL-6 and IL-8 on Erythrocytes, Platelets and Clot Viscoelasticity. Sci. Rep. 2016, 6, 32188. [Google Scholar] [CrossRef]
- Cosic, I.; Cosic, D.; Loncarevic, I. RRM Prediction of Erythrocyte Band3 Protein as Alternative Receptor for SARS-CoV-2 Virus. Appl. Sci. 2020, 10, 4053. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, I.; Aleya, L.; Sehgal, A.; Singh, S.; Sharma, N.; Bhatia, S.; Al-Harrasi, A.; Bungau, S. CD147-Spike Protein Interaction in COVID-19: Get the Ball Rolling with a Novel Receptor and Therapeutic Target. Sci. Total Environ. 2022, 808, 152072. [Google Scholar] [CrossRef]
- Boschi, C.; Scheim, D.E.; Bancod, A.; Millitello, M.; Le Bideau, M.; Colson, P.; Fantini, J.; Scola, B. La SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects. Int. J. Mol. Sci. 2022, 23, 15480. [Google Scholar] [CrossRef]
- Bogomol’tsev, B.P.; Deviatkin, A.V. Clinical Implications of Impaired Microcirculation and Hemodynamics in Acute Respiratory Viral Infections and Their Pharmacological Correction. Klin. Med. 2003, 81, 9–15. [Google Scholar]
- Vicaut, E.; Hou, X.; Decuypère, L.; Taccoen, A.; Duvelleroy, M. Red Blood Cell Aggregation and Microcirculation in Rat Cremaster Muscle. Int. J. Microcirc. Clin. Exp. 1994, 14, 14–21. [Google Scholar] [CrossRef]
- Ehrly, A.M. Erythrocyte Aggregation in Clinical Medicine. Klin. Wochenschr. 1986, 64, 1081–1084. [Google Scholar] [PubMed]
- Durussel, J.J.; Berthault, M.F.; Guiffant, G.; Dufaux, J. Effects of Red Blood Cell Hyperaggregation on the Rat Microcirculation Blood Flow. Acta Physiol. Scand. 1998, 163, 25–32. [Google Scholar] [CrossRef]
- McHedlishvili, G.; Varazashvili, M.; Gobejishvili, L. Local RBC Aggregation Disturbing Blood Fluidity and Causing Stasis in Microvessels. Clin. Hemorheol. Microcirc. 2002, 26, 99–106. [Google Scholar] [PubMed]
- Ballering, A.V.; van Zon, S.K.R.; olde Hartman, T.C.; Rosmalen, J.G.M. Persistence of Somatic Symptoms after COVID-19 in the Netherlands: An Observational Cohort Study. Lancet 2022, 400, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour, L.; Eltahir Abdalla, M.; Babiker, S. COVID 19 Infection Presenting as Motor Peripheral Neuropathy. J. Formos. Med. Assoc. 2020, 119, 1119–1120. [Google Scholar] [CrossRef] [PubMed]
- Lowe, G.D.O.; Lee, A.J.; Rumley, A.; Price, J.F.; Fowkes, F.G.R. Blood Viscosity and Risk of Cardiovascular Events: The Edinburgh Artery Study. Br. J. Haematol. 1997, 96, 168–173. [Google Scholar] [CrossRef]
- Viallat, A.; Abkarian, M. Red Blood Cell: From Its Mechanics to Its Motion in Shear Flow. Int. J. Lab. Hematol. 2014, 36, 237–243. [Google Scholar] [CrossRef]
- Zhbanov, A.; Yang, S. Effects of Aggregation on Blood Sedimentation and Conductivity. PLoS ONE 2015, 10, e0129337. [Google Scholar]
- Yalcin, O.; Uyuklu, M.; Armstrong, J.K.; Meiselman, H.J.; Baskurt, O.K. Graded Alterations of RBC Aggregation Influence in Vivo Blood Flow Resistance. Am. J. Physiol.-Heart Circ. Physiol. 2004, 287, H2644–H2650. [Google Scholar] [CrossRef]
- Murali, C.; Nithiarasu, P. Red Blood Cell (RBC) Aggregation and Its Influence on Non-Newtonian Nature of Blood in Microvasculature. J. Model. Mech. Mater. 2017, 1, 20160157. [Google Scholar]
- Barshtein, G.; Ben-Ami, R.; Yedgar, S. Role of Red Blood Cell Flow Behavior in Hemodynamics and Hemostasis. Expert Rev. Cardiovasc. Ther. 2007, 5, 743–752. [Google Scholar] [CrossRef]
- Pries, A.R.; Secomb, T.W.; Gaehtgens, P. Biophysical Aspects of Blood Flow in the Microvasculature. Cardiovasc. Res. 1996, 32, 654–667. [Google Scholar] [CrossRef]
- Yalcin, O.; Ulker, P.; Yavuzer, U.; Meiselman, H.J.; Baskurti, O.K. Nitric Oxide Generation by Endothelial Cells Exposed to Shear Stress in Glass Tubes Perfused with Red Blood Cell Suspensions: Role of Aggregation. Am. J. Physiol.-Heart Circ. Physiol. 2008, 294, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Druzak, S.; Iffrig, E.; Roberts, B.R.; Zhang, T.; Fibben, K.S.; Sakurai, Y.; Verkerke, H.P.; Rostad, C.A.; Chahroudi, A.; Schneider, F.; et al. Multiplatform Analyses Reveal Distinct Drivers of Systemic Pathogenesis in Adult versus Pediatric Severe Acute COVID-19. Nat. Commun. 2023, 14, 1638. [Google Scholar] [PubMed]
- Mehta, J.L.; Calcaterra, G.; Bassareo, P.P. COVID-19, Thromboembolic Risk, and Virchow’s Triad: Lesson from the Past. Clin. Cardiol. 2020, 43, 1362–1367. [Google Scholar]
- Ami, R.B.; Barshtein, G.; Zeltser, D.; Goldberg, Y.; Shapira, I.; Roth, A.; Keren, G.; Miller, H.; Prochorov, V.; Eldor, A.; et al. Parameters of Red Blood Cell Aggregation as Correlates of the Inflammatory State. Am. J. Physiol.-Heart Circ. Physiol. 2001, 280, H1982–H1988. [Google Scholar] [CrossRef]
- Pancani, R.; Villari, L.; Foci, V.; Parri, G.; Barsotti, F.; Patrucco, F.; Malerba, M.; Vincenti, R.; Carrozzi, L.; Celi, A. Lower Limb Deep Vein Thrombosis in COVID-19 Patients Admitted to Intermediate Care Respiratory Units. Thromb. Res. 2021, 197, 44–47. [Google Scholar]
- Mumoli, N.; Dentali, F.; Conte, G.; Colombo, A.; Capra, R.; Porta, C.; Rotiroti, G.; Zuretti, F.; Cei, M.; Tangianu, F.; et al. Upper Extremity Deep Vein Thrombosis in COVID-19: Incidence and Correlated Risk Factors in a Cohort of Non-ICU Patients. PLoS ONE 2022, 17, e0262522. [Google Scholar]
- Gul, M.H.; Htun, Z.M.; de Jesus Perez, V.; Suleman, M.; Arshad, S.; Imran, M.; Vyasabattu, M.; Wood, J.P.; Anstead, M.; Morris, P.E. Predictors and Outcomes of Acute Pulmonary Embolism in COVID-19; Insights from US National COVID Cohort Collaborative. Respir. Res. 2023, 24, 59. [Google Scholar] [PubMed]
- Yu, F.T.H.; Armstrong, J.K.; Tripette, J.; Meiselman, H.J.; Cloutier, G. A Local Increase in Red Blood Cell Aggregation Can Trigger Deep Vein Thrombosis: Evidence Based on Quantitative Cellular Ultrasound Imaging. J. Thromb. Haemost. 2011, 9, 481–488. [Google Scholar]
- Ionescu, D.A.; Ghiţescu, M.I.; Andronescu, S.; Marcu, I. Contribution of the Erythrocytes Physical Qualities (Deformability and Aggregability) to the Viscoelastic Properties of the Blood Clot in Patients with Acute Cerebral Thrombosis. Neurol. Psychiatr. 1983, 21, 97–103. [Google Scholar]
- Wang, Q.; Zennadi, R. Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int. J. Mol. Sci. 2020, 21, 4259. [Google Scholar]
- Weisel, J.W.; Litvinov, R.I. Red Blood Cells: The Forgotten Player in Hemostasis and Thrombosis. J. Thromb. Haemost. 2019, 17, 271–282. [Google Scholar]
- Nash, G.B.; Watts, T.; Thornton, C.; Barigou, M. Red Cell Aggregation as a Factor Influencing Margination and Adhesion of Leukocytes and Platelets. Clin. Hemorheol. Microcirc. 2008, 39, 303–310. [Google Scholar]
- Goldsmith, H.L.; Bell, D.N.; Spain, S.; McIntosh, F.A. Effect of Red Blood Cells and Their Aggregates on Platelets and White Cells in Flowing Blood. Biorheology 1999, 36, 461–468. [Google Scholar]
- Sun, J.; Liu, H.; Zhang, H. Influence of Erythrocyte Aggregation on Leukocyte Margination in Postcapillary Expansions: A Lattice Boltzmann Analysis. Phys. A Stat. Mech. Appl. 2006, 362, 191–196. [Google Scholar]
- Stroobach, M.; Haya, L.; Fenech, M. Effects of Red Blood Cell Aggregation on Microparticle Wall Adhesion in Circular Microchannels. Med. Eng. Phys. 2019, 69, 100–108. [Google Scholar]
- Sprague, B.; Chesler, N.C.; Magness, R.R. Shear Stress Regulation of Nitric Oxide Production in Uterine and Placental Artery Endothelial Cells: Experimental Studies and Hemodynamic Models of Shear Stress Forces on Endothelial Cells. Int. J. Dev. Biol. 2010, 54, 331–339. [Google Scholar] [CrossRef]
- Kabirian, F.; Amoabediny, G.; Haghighipour, N.; Salehi-Nik, N.; Zandieh-Doulabi, B. Nitric Oxide Secretion by Endothelial Cells in Response to Fluid Shear Stress, Aspirin, and Temperature. J. Biomed. Mater. Res. A 2015, 103, 1231–1237. [Google Scholar]
- Sriram, K.; Laughlin, J.G.; Rangamani, P.; Tartakovsky, D.M. Shear-Induced Nitric Oxide Production by Endothelial Cells. Biophys. J. 2016, 111, 208–221. [Google Scholar]
- Baskurt, O.K.; Yalcin, O.; Ozdem, S.; Armstrong, J.K.; Meiselman, H.J. Modulation of Endothelial Nitric Oxide Synthase Expression by Red Blood Cell Aggregation. Am. J. Physiol.-Heart Circ. Physiol. 2003, 286, 222–229. [Google Scholar]
- Freedman, J.E.; Loscalzo, J. Nitric Oxide and Its Relationship to Thrombotic Disorders. J. Thromb. Haemost. 2003, 1, 1183–1188. [Google Scholar]
- Cicha, I.; Suzuki, Y.; Tateishi, N.; Maeda, N. Changes of RBC Aggregation in Oxygenation-Deoxygenation: PH Dependency and Cell Morphology. Am. J. Physiol.-Heart Circ. Physiol. 2003, 284, 2335–2342. [Google Scholar]
- Ulker, P.; Meiselman, H.J.; Baskurt, O.K. Nitric Oxide Generation in Red Blood Cells Induced by Mechanical Stress. Clin. Hemorheol. Microcirc. 2010, 45, 169–175. [Google Scholar] [CrossRef]
- Rovas, A.; Osiaevi, I.; Buscher, K.; Sackarnd, J.; Tepasse, P.R.; Fobker, M.; Kühn, J.; Braune, S.; Göbel, U.; Thölking, G.; et al. Microvascular Dysfunction in COVID-19: The MYSTIC Study. Angiogenesis 2021, 24, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka-Tojo, M. Vascular Endothelial Glycocalyx Damage in COVID-19. Int. J. Mol. Sci. 2020, 21, 9712. [Google Scholar] [CrossRef] [PubMed]
- Zha, D.; Fu, M.; Qian, Y. Vascular Endothelial Glycocalyx Damage and Potential Targeted Therapy in COVID-19. Cells 2022, 11, 1972. [Google Scholar] [CrossRef]
- Becker, B.F.; Jacob, M.; Leipert, S.; Salmon, A.H.J.; Chappell, D. Degradation of the Endothelial Glycocalyx in Clinical Settings: Searching for the Sheddases. Br. J. Clin. Pharmacol. 2015, 80, 389–402. [Google Scholar] [CrossRef]
- Tarbell, J.M.; Pahakis, M.Y. Mechanotransduction and the Glycocalyx. J. Intern. Med. 2006, 259, 339–350. [Google Scholar] [CrossRef]
- Bosek, M.; Ziomkowska, B.; Pyskir, J.; Wybranowski, T.; Pyskir, M.; Cyrankiewicz, M.; Napiórkowska, M.; Durmowicz, M.; Kruszewski, S. Relationship between Red Blood Cell Aggregation and Dextran Molecular Mass. Sci. Rep. 2022, 12, 19751. [Google Scholar] [CrossRef]
- Zuin, M.; Barco, S.; Giannakoulas, G.; Engelen, M.M.; Hobohm, L.; Valerio, L.; Vandenbriele, C.; Verhamme, P.; Vanassche, T.; Konstantinides, S.V. Risk of Venous Thromboembolic Events after COVID-19 Infection: A Systematic Review and Meta-Analysis. J. Thromb. Thrombolysis 2023, 55, 490–498. [Google Scholar] [CrossRef]
- Giannis, D.; Allen, S.L.; Tsang, J.; Flint, S.; Pinhasov, T.; Williams, S.; Tan, G.; Thakur, R.; Leung, C.; Snyder, M.; et al. Postdischarge Thromboembolic Outcomes and Mortality of Hospitalized Patients with COVID-19: The CORE-19 Registry. Blood J. Am. Soc. Hematol. 2021, 137, 2838–2847. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/handle/10665/331446 (accessed on 7 July 2023).
- Bosek, M.; Szołna-Chodór, A.; Antonova, N.; Grzegorzewski, B. The Fractal Dimension of Red Blood Cell Aggregates in Dextran 70 Solutions. Opt. Appl. 2018, 48, 477–488. [Google Scholar]
- Richardson, J.F.; Zaki, W.N. Sedimentation and Fluidisation: Part I. Chem. Eng. Res. Des. 1997, 75, S82–S100. [Google Scholar] [CrossRef]
- Johnson, C.P.; Li, X.; Logan, B.E. Settling Velocities of Fractal Aggregates. Environ. Sci. Technol. 1996, 30, 1911–1918. [Google Scholar] [CrossRef]
Study Group—COVID-19 | Control Group | |||
---|---|---|---|---|
Upon Admission | After One Week | After 6 Months | ||
Number | 54 | 33 | 23 | 15 |
Median and range of age (years) | 65 (37–98) | 68 (37–98) | 62 (46–87) | 42 (25–61) |
Gender | ||||
Women | 11 (20.4%) | 8 (24.2%) | 4 (17.4%) | 12 (80%) |
Men | 43 (79.6%) | 25 (75.8%) | 19 (82.6%) | 3 (20%) |
Smoking | ||||
Yes | 12 (22.2%) | 4 (12.1%) | 4 (17.4%) | 3 (20%) |
No | 42 (77.8%) | 29 (87.9%) | 19 (82.6%) | 12 (80%) |
Common symptoms: | - | |||
Dyspnea | 44 (81.5%) | 26 (78.8%) | 17 (73.9%) | |
Cough | 42 (77.8%) | 26 (78.8%) | 17 (73.9%) | |
Fever | 48 (88.9%) | 29 (87.9%) | 22 (95.7%) | |
Myalgia and arthralgia | 16 (29.6%) | 10 (30.3%) | 9 (39.1%) | |
Changes in the sense of smell and/or taste | 8 (14.8%) | 3 (9.1%) | 3 (13%) | |
Common comorbidities: | - | |||
Cardiovascular diseases | 11 (20.4%) | 4 (12.1%) | 3 (13%) | |
Type 2 diabetes | 14 (25.9%) | 8 (24.2%) | 3 (13%) | |
Previous lung diseases | 6 (11.1%) | 3 (9.1%) | 2 (8.7%) | |
Cancer | 4 (7.4%) | 2 (6.1%) | 2 (8.7%) | |
Chronic kidney disease | 4 (7.4%) | 2 (6.1%) | 0 (0%) | |
Thyroid diseases | 4 (7.4%) | 3 (9.1%) | 2 (8.7%) | |
Neurological diseases | 14 (25.9%) | 4 (12.1%) | 7 (30.4%) | |
Treatment: | - | - | - | |
Convalescent plasma | 13 (24.1%) | |||
Remdesivir | 22 (40.7%) | |||
Tocilizumab | 16 (29.6%) | |||
Steroids | 54 (100%) | |||
Antibiotics | 53 (98.1%) | |||
Heparin | 52 (96.3%) | |||
Amantadine | 7 (13%) | |||
Oxygen supplementation | 54 (100%) | |||
Median and IQR of acute phase proteins: | - | - | ||
CRP (mg/L) | 77.5 (40–130) | - | ||
Procalcitonin (ng/mL) | 0.07 (0.05–0.14) | - | ||
Albumin (g/L) | 34 (31–36) | 34 (31–36) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosek, M.; Wybranowski, T.; Napiórkowska-Mastalerz, M.; Pyskir, J.; Cyrankiewicz, M.; Pyskir, M.; Pilaczyńska-Cemel, M.; Szołna-Chodór, A.; Wrembel, M.; Kruszewski, S.; et al. The Impact of COVID-19 on Cellular Factors Influencing Red Blood Cell Aggregation Examined in Dextran: Possible Causes and Consequences. Int. J. Mol. Sci. 2023, 24, 14952. https://doi.org/10.3390/ijms241914952
Bosek M, Wybranowski T, Napiórkowska-Mastalerz M, Pyskir J, Cyrankiewicz M, Pyskir M, Pilaczyńska-Cemel M, Szołna-Chodór A, Wrembel M, Kruszewski S, et al. The Impact of COVID-19 on Cellular Factors Influencing Red Blood Cell Aggregation Examined in Dextran: Possible Causes and Consequences. International Journal of Molecular Sciences. 2023; 24(19):14952. https://doi.org/10.3390/ijms241914952
Chicago/Turabian StyleBosek, Maciej, Tomasz Wybranowski, Marta Napiórkowska-Mastalerz, Jerzy Pyskir, Michał Cyrankiewicz, Małgorzata Pyskir, Marta Pilaczyńska-Cemel, Alicja Szołna-Chodór, Mateusz Wrembel, Stefan Kruszewski, and et al. 2023. "The Impact of COVID-19 on Cellular Factors Influencing Red Blood Cell Aggregation Examined in Dextran: Possible Causes and Consequences" International Journal of Molecular Sciences 24, no. 19: 14952. https://doi.org/10.3390/ijms241914952
APA StyleBosek, M., Wybranowski, T., Napiórkowska-Mastalerz, M., Pyskir, J., Cyrankiewicz, M., Pyskir, M., Pilaczyńska-Cemel, M., Szołna-Chodór, A., Wrembel, M., Kruszewski, S., & Przybylski, G. (2023). The Impact of COVID-19 on Cellular Factors Influencing Red Blood Cell Aggregation Examined in Dextran: Possible Causes and Consequences. International Journal of Molecular Sciences, 24(19), 14952. https://doi.org/10.3390/ijms241914952