Multi-Method Quantification of Acetyl-Coenzyme A and Further Acyl-Coenzyme A Species in Normal and Ischemic Rat Liver
Abstract
:1. Introduction
2. Results
2.1. Ischemia Model and Metabolite Extraction
2.2. HPLC Identifies CoA, Succinyl-CoA and Acetyl-CoA in Control and Ischemic Rat Liver
2.3. HPLC-Based Quantification of Acetyl-CoA, Succinyl-CoA and CoA Concentrations in Mild and Advanced Rat Liver Ischemia
2.4. Mass Spectrometry to Quantify Acetyl- and Other Acyl-CoAs in Mild Liver Ischemia
2.5. NMR to Quantify Acetyl-CoA and CoA in Mild Rat Liver Ischemia
2.6. Fluorimetric and Spectrophotometric Assays to Quantify Acetyl-CoA in Rat Liver Ischemia
3. Discussion
4. Materials and Methods
4.1. Tissue Harvesting and Ischemia
4.2. Sample Preparation
4.3. HPLC
4.4. LC-MS/MS
4.5. NMR
4.6. Spectrophotometric and Fluorimetric Assays
4.7. Calculations and Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grevengoed, T.J.; Klett, E.L.; Coleman, R.A. Acyl-CoA metabolism and partitioning. Annu. Rev. Nutr. 2014, 34, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Trefely, S.; Lovell, C.D.; Snyder, N.W.; Wellen, K.E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. 2020, 38, 100941. [Google Scholar] [CrossRef]
- Pietrocola, F.; Galluzzi, L.; Bravo-San Pedro, J.M.; Madeo, F.; Kroemer, G. Acetyl coenzyme A: A central metabolite and second messenger. Cell Metab. 2015, 21, 805–821. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Pham, U.; Gout, I. Methods for measuring CoA and CoA derivatives in biological samples. Biochem. Soc. Trans. 2014, 42, 1107–1111. [Google Scholar] [CrossRef]
- Rivera, L.G.; Bartlett, M.G. Chromatographic methods for the determination of acyl-CoAs. Anal. Biochem. 2018, 10, 5252–5264. [Google Scholar]
- Sabari, B.R.; Zhang, D.; Allis, C.D.; Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell. Biol. 2017, 18, 90–101. [Google Scholar] [CrossRef]
- Bergmeyer, H.U. Coenzyme A and intermediates of lipid metabolism. In Methods of Enzymatic Analysis; Verlag Chemie & Academic Press: New York, NY, USA; London, UK, 1974; Volume 4, p. 2287ff. [Google Scholar]
- Edmunds, L.R.; Sharma, L.; Kang, A.; Lu, J.; Vockley, J.; Basu, S.; Uppala, R.; Goetzman, E.S.; Beck, M.E.; Scott, D.; et al. c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J. Biol. Chem. 2014, 289, 25382–25392. [Google Scholar] [CrossRef]
- Chen, Q.; Du, J.; Cui, K.; Fang, W.; Zhao, Z.; Chen, Q.; Mai, K.; Ai, Q. Acetyl-CoA derived from hepatic mitochondrial fatty acid beta-oxidation aggravates inflammation by enhancing p65 acetylation. iScience 2021, 24, 103244. [Google Scholar] [CrossRef]
- Shibata, K.; Nakai, T.; Fukuwatari, T. Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats. Anal. Biochem. 2012, 430, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Shurubor, Y.I.; D’Aurelio, M.; Clark-Matott, J.; Isakova, E.P.; Deryabina, Y.I.; Beal, M.F.; Cooper, A.J.L.; Krasnikov, B.F. Determination of coenzyme A and acetyl-coenzyme A in biological samples using HPLC with UV detection. Molecules 2017, 22, 1388. [Google Scholar] [CrossRef]
- Abranko, L.; Williamson, G.; Gardner, S.; Kerimi, A. Comprehensive quantitative analysis of fatty-acyl-Coenzyme A species in biological samples by ultra-high performance liquid chromatography-tandem mass spectrometry harmonizing hydrophilic interaction and reversed phase chromatography. J. Chromatogr. A 2018, 1534, 111–122. [Google Scholar] [CrossRef]
- Palladino, A.A.; Chen, J.; Kallish, S.; Stanley, C.A.; Bennett, M.J. Measurement of tissue acyl-CoAs using flow-injection tandem mass spectrometry: Acyl-CoA profiles in short-chain fatty acid oxidation defects. Mol. Genet. Metab. 2012, 107, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, N.; Wu, J.W.; Wang, S.P.; Allard, P.; Mamer, O.A.; Sweetman, L.; Moser, A.B.; Kratz, L.; Alvarez, F.; Robitaille, Y.; et al. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern. PLoS ONE 2013, 8, e60581. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Berthiaume, J.M.; Simons, B.; Zhang, G.F. Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: Discovery of acyl-dephospho-CoAs. J. Lipid Res. 2014, 55, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sadhukhan, S.; Sun, S.; Wagner, G.R.; Hirschey, M.D.; Qi, L.; Lin, H.; Locasale, J.W. High-resolution metabolomics with acyl-CoA profiling reveals widespread remodeling in response to diet. Mol. Cell. Proteomics 2015, 14, 1489–1500. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Deja, S.; Kucejova, B.; Duarte, J.A.G.; McDonald, J.G.; Burgess, S.C. Targeted determination of tissue energy status by LC-MS/MS. Anal. Chem. 2019, 91, 5881–5887. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.E.; Arias, N.J.; Acevedo, A.; Reddy, S.T.; Divakaruni, A.S.; Meriwether, D. A single LC-MS/MS analysis to quantify CoA biosynthetic intermediates and short-chain acyl CoAs. Metabolites 2021, 11, 468. [Google Scholar] [CrossRef]
- Trefely, S.; Huber, K.; Liu, J.; Noji, M.; Stransky, S.; Singh, J.; Doan, M.T.; Lovell, C.D.; von Krusenstiern, E.; Jiang, H.; et al. Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol. Cell. 2022, 82, 447–462.e446. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Abell, L.; Tian, R. Extending the scope of (1)H NMR spectroscopy for the analysis of cellular coenzyme A and acetyl coenzyme A. Anal. Chem. 2019, 91, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Orsatti, L.; Orsale, M.V.; di Pasquale, P.; Vecchi, A.; Colaceci, F.; Ciammaichella, A.; Rossetti, I.; Bonelli, F.; Baumgaertel, K.; Liu, K.; et al. Turnover rate of coenzyme A in mouse brain and liver. PLoS ONE 2021, 16, e0251981. [Google Scholar] [CrossRef]
- Perry, R.J.; Peng, L.; Cline, G.W.; Petersen, K.F.; Shulman, G.I. A non-invasive method to assess hepatic acetyl-CoA in vivo. Cell Metab. 2017, 25, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Kato, T. Ischemic effect on CoASH and acetyl-CoA concentration levels in cerebrum, cerebellum and liver of mice. J. Neurochem. 1978, 31, 1545–1548. [Google Scholar] [CrossRef]
- Decker, K. Acetyl-Coenzyme A—UV-Spectrophotometric Assay. In Method. of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Academic Press: New York, NY, USA; London, UK, 1974; Volume 4, pp. 1988–1993. [Google Scholar]
- Herrera, E.; Freinkel, N. Internal standards in the estimation of acetyl-CoA in liver extracts. J. Lipid Res. 1967, 8, 515–518. [Google Scholar] [CrossRef]
- Deutsch, J.; Rapoport, S.I.; Rosenberger, T.A. Coenzyme A and short-chain acyl-CoA species in control and ischemic rat brain. Neurochem. Res. 2002, 27, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Berthiaume, J.M.; Previs, S.; Kasumov, T.; Zhang, G.F. Ischemia promotes acyl-CoAs dephosphorylation and propionyl-CoA accumulation. Metabolomics 2023, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Maoz, D.; Lee, H.J.; Deutsch, J.; Rapoport, S.I.; Bazinet, R.P. Immediate no-flow ischemia decreases rat heart nonesterified fatty acid and increases acyl-CoA species concentrations. Lipids 2005, 40, 1149–1154. [Google Scholar] [CrossRef]
- Perry, R.J.; Camporez, J.G.; Kursawe, R.; Titchenell, P.M.; Zhang, D.; Perry, C.J.; Jurczak, M.J.; Abudukadier, A.; Han, M.S.; Zhang, X.M.; et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 2015, 160, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.T.; Miller, J.H.; Day, M.M.; Munger, J.C.; Brookes, P.S. Accumulation of succinate in cardiac ischemia primarily occurs via canonical Krebs cycle activity. Cell Rep. 2018, 23, 2617–2628. [Google Scholar] [CrossRef]
- Takada, S.; Maekawa, S.; Furihata, T.; Kakutani, N.; Setoyama, D.; Ueda, K.; Nambu, H.; Hagiwara, H.; Handa, H.; Fumoto, Y.; et al. Succinyl-CoA-based energy metabolism dysfunction in chronic heart failure. Proc. Natl. Acad. Sci. USA 2022, 119, e2203628119. [Google Scholar] [CrossRef]
- Zhou, L.; Stanley, W.C.; Saidel, G.M.; Yu, X.; Cabrera, M.E. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: Insights from in silico studies. J. Physiol. 2005, 569, 925–937. [Google Scholar] [CrossRef]
- Martinez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.K.; Finley, L.W.S. Regulation and function of the mammalian tricarboxylic acid cycle. J. Biol. Chem. 2023, 299, 102838. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijevic, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; James, A.M.; Work, L.M.; Saeb-Parsy, K.; Frezza, C.; Krieg, T.; Murphy, M.P. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion Injury. Cell Metab. 2016, 23, 254–263. [Google Scholar] [CrossRef]
- Martin, J.L.; Costa, A.S.H.; Gruszczyk, A.V.; Beach, T.E.; Allen, F.M.; Prag, H.A.; Hinchy, E.C.; Mahbubani, K.; Hamed, M.; Tronci, L.; et al. Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. Nat. Metab. 2019, 1, 966–974. [Google Scholar] [CrossRef]
- Gratia, S.; Kay, L.; Potenza, L.; Seffouh, A.; Novel-Chate, V.; Schnebelen, C.; Sestili, P.; Schlattner, U.; Tokarska-Schlattner, M. Inhibition of AMPK signalling by doxorubicin: At the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc. Res. 2012, 95, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Akoka, S.; Barantin, L.; Trierweiler, M. Concentration measurement by proton NMR using the ERETIC method. Anal. Chem. 1999, 71, 2554–2557. [Google Scholar] [CrossRef] [PubMed]
- Wider, G.; Dreier, L. Measuring protein concentrations by NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 2571–2576. [Google Scholar] [CrossRef]
- Chan, T.S.; Cassim, S.; Raymond, V.A.; Gottschalk, S.; Merlen, G.; Zwingmann, C.; Lapierre, P.; Darby, P.; Mazer, C.D.; Bilodeau, M. Upregulation of Krebs cycle and anaerobic glycolysis activity early after onset of liver ischemia. PLoS ONE 2018, 13, e0199177. [Google Scholar] [CrossRef]
- Gao, M.; Wang, J.; Rousseaux, S.; Tan, M.; Pan, L.; Peng, L.; Wang, S.; Xu, W.; Ren, J.; Liu, Y.; et al. Metabolically controlled histone H4K5 acylation/acetylation ratio drives BRD4 genomic distribution. Cell Rep. 2021, 36, 109460. [Google Scholar] [CrossRef]
Method | Number of (Acyl-)CoAs Detected | Cost and Technicity | Accessibility | Limit of Detection (1) (2) | Coefficient of Variation (%) (1) (7) | Recovery Rate (%) (1) (10) | |
---|---|---|---|---|---|---|---|
Quantity (Pmol) | Concentration (nM) | ||||||
Spectrophotometric assay | 1 | + | Laboratory | ≈1000 | ≈2000 (3) | 11 ± 4 (n = 5) | 72–96% (n = 6) |
Fluorimetric assay | 1 | ++ | Laboratory | ≈45 | ≈400 (4) | 23 ± 4 (n = 17) | 23–61% (n = 6) |
HPLC | 3 | ++ | Laboratory | ≈7.5 | ≈250 (5) | 10 ± 5 (n = 3) (8) | 97–113% (n = 8) |
NMR | 2 | +++ | Facility | ND | ND | ND | ND |
LC-MS/MS | 12 | ++++ | Facility | ≈0.005 | ≈0.5 (6) | 5.4 ± 1.5 (n = 6) (9) | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokarska-Schlattner, M.; Zeaiter, N.; Cunin, V.; Attia, S.; Meunier, C.; Kay, L.; Achouri, A.; Hiriart-Bryant, E.; Couturier, K.; Tellier, C.; et al. Multi-Method Quantification of Acetyl-Coenzyme A and Further Acyl-Coenzyme A Species in Normal and Ischemic Rat Liver. Int. J. Mol. Sci. 2023, 24, 14957. https://doi.org/10.3390/ijms241914957
Tokarska-Schlattner M, Zeaiter N, Cunin V, Attia S, Meunier C, Kay L, Achouri A, Hiriart-Bryant E, Couturier K, Tellier C, et al. Multi-Method Quantification of Acetyl-Coenzyme A and Further Acyl-Coenzyme A Species in Normal and Ischemic Rat Liver. International Journal of Molecular Sciences. 2023; 24(19):14957. https://doi.org/10.3390/ijms241914957
Chicago/Turabian StyleTokarska-Schlattner, Malgorzata, Nour Zeaiter, Valérie Cunin, Stéphane Attia, Cécile Meunier, Laurence Kay, Amel Achouri, Edwige Hiriart-Bryant, Karine Couturier, Cindy Tellier, and et al. 2023. "Multi-Method Quantification of Acetyl-Coenzyme A and Further Acyl-Coenzyme A Species in Normal and Ischemic Rat Liver" International Journal of Molecular Sciences 24, no. 19: 14957. https://doi.org/10.3390/ijms241914957
APA StyleTokarska-Schlattner, M., Zeaiter, N., Cunin, V., Attia, S., Meunier, C., Kay, L., Achouri, A., Hiriart-Bryant, E., Couturier, K., Tellier, C., El Harras, A., Elena-Herrmann, B., Khochbin, S., Le Gouellec, A., & Schlattner, U. (2023). Multi-Method Quantification of Acetyl-Coenzyme A and Further Acyl-Coenzyme A Species in Normal and Ischemic Rat Liver. International Journal of Molecular Sciences, 24(19), 14957. https://doi.org/10.3390/ijms241914957