An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Automated Cell Dispenser, ASFA SPOTTER, for HTS
2.2. Dispensing Accuracy and Precision
3. Results
4. Discussion
5. Conclusions
- It is composed of a micro-solenoid valve, syringe pump, electro-pneumatic regulator (for V6), nozzle tips, source plate, and target plate.
- It is programmed for dispensing biomaterials with various volumes at nL to μL, with high accuracy and precision.
- The SPOTTER V6 complements the weaknesses (large dead volume, sample dilution, cross-contamination, etc.) of V5 by the application of disposable nozzle tips.
- It can dispense high-viscosity biomaterials with high accuracy and precision.
- It enables self-assembly and the growth of cells in 3D on the micropillar/well chip.
- Good resolution results can be obtained by supporting miniaturized organoid platforms.
- It can support the optimization of drug screening and the selection of an effective treatment in order to improve therapeutic outcomes by the utilization of easy-to-use and rapid in vitro platforms for 3D cultures.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mironov, V.; Kasyanov, V.; Markwald, R.R. Organ printing: From bioprinter to organ biofabrication line. Curr. Opin. Biotechnol. 2011, 22, 667–673. [Google Scholar] [CrossRef]
- Vanaei, S.; Parizi, M.S.; Vanaei, S.; Salemizadehparizi, F.; Vanaei, H.R. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Eng. Regen. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Leberfinger, A.N.; Ravnic, D.J.; Dhawan, A.; Ozbolat, I.T. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem. Cells Transl. Med. 2017, 6, 1940–1948. [Google Scholar] [CrossRef] [Green Version]
- Tasoglu, S.; Demirci, U. Bioprinting for stem cell research. Trends Biotechnol. 2013, 31, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; Al Rashid, A.; Mou, Y.A.; Evis, Z.; Koç, M. Bioprinting: A review of processes, materials and applications. Bioprinting 2021, 23, e00148. [Google Scholar] [CrossRef]
- Gudupati, H.; Dey, M.; Ozbolat, I. A Comprehensive Review on Droplet-based Bioprinting- Past, Present and Future. Biomaterials 2016, 102, 20–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datar, A.; Joshi, P.; Lee, M.Y. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation. Biosensors 2015, 5, 647–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, W.L.; Lee, J.M.; Yeong, W.Y.; Win Naing, M. Microvalve-based bioprinting—Process, bio-inks and applications. Biomater. Sci. 2017, 5, 632–647. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, Y.; Chen, Y.; Zhang, J.; Chen, X.; Liu, P. Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays. Micromachines 2018, 9, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajalingham, K. Cell-based assays in high-throughput mode (HTS). BioTechnologia 2016, 3, 227–234. [Google Scholar] [CrossRef]
- Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 2018, 17, 97–113. [Google Scholar] [CrossRef]
- Santoni, S.; Gugliandolo, S.G.; Sponchioni, M.; Moscatelli, D.; Colosimo, B.M. 3D bioprinting: Current status and trends—A guide to the literature and industrial practice. Bio-Des. Manuf. 2021, 5, 14–42. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Nakamura, M.; Henmi, C.; Yamaguchi, K.; Mochizuki, S.; Nakagawa, H.; Takiura, K. Development of a three-dimensional bioprinter: Construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng. 2009, 131, 035001. [Google Scholar] [CrossRef]
- Ankam, S.; Teo, B.K.; Kukumberg, M.; Yim, E.K. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis 2013, 9, 128–142. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Yang, X.; Ma, Z.; Sun, X.; Zhang, Y.; Li, W.; Yang, H.; Qiang, L.; Yang, Z.; Liu, Y.; et al. Developments and Opportunities for 3D Bioprinted Organoids. Int. J. Bioprint. 2021, 7, 364. [Google Scholar] [CrossRef] [PubMed]
- BECKMANCOULTER. Biomek i5 Automated Workstation. Available online: https://www.beckman.com/liquid-handlers/biomek-i5 (accessed on 26 December 2022).
- BioDot. BioDot Sphera. Available online: https://www.biodot.com/products/sphera (accessed on 26 December 2022).
- Lee, D.W.; Lee, S.Y.; Park, L.; Kang, M.S.; Kim, M.H.; Doh, I.; Ryu, G.H.; Nam, D.H. High-Throughput Clonogenic Analysis of 3D-Cultured Patient-Derived Cells with a Micropillar and Microwell Chip. SLAS Discov. 2017, 22, 645–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.W.; Kim, J.E.; Lee, G.H.; Son, A.; Park, H.C.; Oh, D.; Jo, K.; Choi, C. High-Throughput 3D Tumor Spheroid Array Platform for Evaluating Sensitivity of Proton-Drug Combinations. Int. J. Mol. Sci. 2022, 23, 587. [Google Scholar] [CrossRef]
- Kang, S.Y.; Joshi, P.; Lee, M.Y. High-Throughput Screening of Compound Neurotoxicity Using 3D-Cultured Neural Stem Cells on a 384-Pillar Plate. Curr. Protoc. 2021, 1, e107. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hwang, H.J.; Lee, D.W. Optimization of 3D-aggregated spheroid model (3D-ASM) for selecting high efficacy drugs. Sci. Rep. 2022, 12, 18937. [Google Scholar] [CrossRef]
- Kwon, S.J.; Lee, D.; Gopal, S.; Ku, A.; Moon, H.; Dordick, J.S. Three-dimensional in vitro cell culture devices using patient-derived cells for high-throughput screening of drug combinations. Med. Devices Sens. 2020, 3, e10067. [Google Scholar] [CrossRef]
- Hajare, A.A.; Salunkhe, S.S.; Mali, S.S.; Gorde, S.S.; Nadaf, S.J.; Pishawikar, S.A. Review On: High-throughput screening is an approach to drug discovery. Am. J. PharmTech Res. 2014, 4, 113–129. [Google Scholar]
- Foo, M.A.; You, M.; Chan, S.L.; Sethi, G.; Bonney, G.K.; Yong, W.P.; Chow, E.K.; Fong, E.L.S.; Wang, L.; Goh, B.C. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies. Biomark. Res. 2022, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, L.; Li, Z.; Li, W.; Huang, W. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J. Transl. Med. 2021, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Choi, S.Y.; Kim, S.Y.; Kim, H.J.; Shin, D.Y.; Shim, J.; Ku, B.; Oh, D.; Chung, M.K. A novel 3D pillar/well array platform using patient-derived head and neck tumor to predict the individual radioresponse. Transl. Oncol. 2022, 24, 101483. [Google Scholar] [CrossRef] [PubMed]
Conventional Automatic Pipette (Biomek i5) | Conventional Spotter (BioDot SpheraTM Platform) | ASFA Spotter V5 | ASFA Spotter V6 | |
---|---|---|---|---|
Pressure source | - | water | water | air |
Target plate number | - | - | 2 | 3 |
Nozzle tip type | disposable | fixed non-disposable | fixed non-disposable | disposable |
Nozzle number | max. 6 | max. 4 | ||
Dispensing volume | 0.5–1000 μL | 2–30 μL | 20–4000 nL | 20–4000 nL |
Dead volume | - | - | over 50 μL | max. 6 μL |
Washing step | not necessary | necessary | necessary | not necessary |
Features |
|
|
|
|
limitations |
|
|
| - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, M.-H.; Kim, I.; Park, K.; Ku, B.; Lee, D.W.; Park, K.R.; Jeon, S.Y.; Kim, J.E. An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation. Int. J. Mol. Sci. 2023, 24, 1006. https://doi.org/10.3390/ijms24021006
Jeong M-H, Kim I, Park K, Ku B, Lee DW, Park KR, Jeon SY, Kim JE. An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation. International Journal of Molecular Sciences. 2023; 24(2):1006. https://doi.org/10.3390/ijms24021006
Chicago/Turabian StyleJeong, Mi-Hyeon, Inhee Kim, Kyunghyun Park, Bosung Ku, Dong Woo Lee, Kyoung Ryeol Park, Sang Youl Jeon, and Jung Eun Kim. 2023. "An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation" International Journal of Molecular Sciences 24, no. 2: 1006. https://doi.org/10.3390/ijms24021006
APA StyleJeong, M. -H., Kim, I., Park, K., Ku, B., Lee, D. W., Park, K. R., Jeon, S. Y., & Kim, J. E. (2023). An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation. International Journal of Molecular Sciences, 24(2), 1006. https://doi.org/10.3390/ijms24021006