In Vitro Studies Demonstrate Antitumor Activity of Vanadium Ions from a CaO-P2O5-CaF2:V2O5 Glass System in Human Cancer Cell Lines A375, A2780, and Caco-2
Abstract
:1. Introduction
- (i)
- Fragmentation activities that directly target DNA. Studies conducted by Mohamadi et al. [27] through cyclic voltammetry, competitive fluorescence assays, and electronic absorption spectroscopy showed a groove binding of a complex containing vanadium to salmon sperm DNA, which was also accompanied by a partial insertion of the ligand between the base stacks of the DNA. Furthermore, this mononuclear diketone-based oxido vanadium (IV) complex showed significant cytotoxicity against multiple cancer cell lines (i.e., breast, liver and colon).
- (ii)
- Disruption of the redox balance due to an increase in reactive oxygen species (ROS). Reactive oxygen species are well known to promote a multitude of aspects in tumor development and progression and are detected in all cancers cells. Vanadium salts such as sodium metavanadate (NaVO3) or vanadium (IV) sulfate oxide (VOSO4) have been reported to induce a significant increase in ROS level in human lung cancer cells [28,29]. Furthermore, a polyacrylate derivative of peroxovanadate was shown to inhibit the growth of lung carcinoma cells [30]. Finally, a vanadium dioxide nanocoating (VO2-modified) quartz surface prepared by Li et al. [31] increased intracellular ROS levels in cholangiocarcinoma cells.
- (iii)
- Apoptosis or programmed cell death. Apoptosis serves the purpose of removing DNA-damaged cells that could lead to carcinogenesis. This process is disturbed in cancer cells, which have a mechanism of avoiding it. The literature reports that this mechanism was induced in an oral squamous cell carcinoma cell line [32] and in human anaplastic thyroid carcinoma cells [33] by sodium orthovanadate (Na3VO4). In gastric cancer lines, a vanadium complex used by Wang et al. [34] also induced apoptosis. Furthermore, in human breast cancer cell lines, this effect was obtained through a vanadium complex combined with the flavonoid quercetin [35].
- (iv)
- Cell cycle arrest. It is already well known that cancer cells are characterized by a dysregulation of the cell cycle, resulting in aberrant cell proliferation and their high genetic instability [36]. Sodium metavanadate was reported to cause G2/M cell cycle arrest in prostate cancer cells in a study conducted by Liu et al. [37]. A similar G2/M cell cycle arrest mechanism was described for the effect of sodium metavanadate on papillary thyroid carcinoma-derived cells [38], for an oxido vanadium complex containing a quinolinium cation in pancreatic cancer cell lines [26], and for an oxido vanadium complex with phenanthroline in hepatocellular carcinoma cell lines [39]. All these antitumoral effects are mediated by the cyclin/CDK complexes, which play a key role in checkpoints of the cell cycle.
2. Results and Discussion
2.1. Structural Characterization
2.1.1. Dissolution Tests
| |
(F−) (F−)
n = oxidation states (2+, 3+, 4+ or 5+)
2.1.2. pH Evolution
2.1.3. SEM-EDS
2.1.4. EPR
2.1.5. FT-IR
- (a)
- Bands at ~ 475 cm−1, 550 cm−1, and 620 cm−1 are attributed to PO2 bending vibrations in P–O–P and O–P–O chains in PO4 groups and ring phosphate units;
- (b)
- Bands at ~ 710 cm−1 and ~780 cm−1 are attributed to P–O–P symmetrical stretching vibrations in the ring phosphate units;
- (c)
- Bands at ~ 890 cm−1 and ~ 915 cm−1 are assigned to asymmetrical stretching vibrations in the ring phosphate units;
- (d)
- Bands at ~ 995 cm−1 and ~ 1090 cm−1 are attributed to PO2 stretching vibrations due to free oxygen atoms and a solid-state effect; and
- (e)
- The band at ~1290 cm−1 belongs to the stretching vibrations of the phosphate network P = O double bond.
2.2. In Vitro Biological Evaluation (Antitumoral Activity MTT Assay)
3. Materials and Methods
3.1. Preparation of Bioactive Glasses
3.2. Sample Characterization
3.2.1. Dissolution Test
3.2.2. pH Evolution
3.2.3. SEM-EDS
3.2.4. EPR
3.2.5. FT-IR
3.3. In Vitro Cytotoxicity Tests
3.3.1. Cell Culture
3.3.2. Cell Subculture
3.3.3. Preparation of Extracts
3.3.4. MTT Cell Proliferation Assay
3.3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rehder, D. The Potentiality of Vanadium in Medicinal Applications. Inorg. Chim. Acta 2020, 504, 119445. [Google Scholar] [CrossRef]
- Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 1 March 2022).
- Cancer Facts for Women|Most Common Cancers in Women. Available online: https://www.cancer.org/healthy/cancer-facts/cancer-facts-for-women.html (accessed on 2 March 2022).
- Fernandes, H.R.; Gaddam, A.; Rebelo, A.; Brazete, D.; Stan, G.E.; Ferreira, J.M.F. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. Materials 2018, 11, 2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet-Regi, M. Bio-Ceramics with Clinical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-1-118-40672-4. [Google Scholar]
- Scholze, H. Glass: Nature, Structure, and Properties; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-1-4613-9069-5. [Google Scholar]
- Lepry, W.C.; Nazhat, S.N. A Review of Phosphate and Borate Sol–Gel Glasses for Biomedical Applications. Adv. NanoBiomed. Res. 2021, 1, 2000055. [Google Scholar] [CrossRef]
- Hossain, K.M.Z.; Patel, U.; Kennedy, A.R.; Macri-Pellizzeri, L.; Sottile, V.; Grant, D.M.; Scammell, B.E.; Ahmed, I. Porous Calcium Phosphate Glass Microspheres for Orthobiologic Applications. Acta Biomater. 2018, 72, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, A.; Skwira, A.; Konopacka, A.; Sądej, R.; Prokopowicz, M. Mesoporous Silica-Bioglass Composite Pellets as Bone Drug Delivery System with Mineralization Potential. Int. J. Mol. Sci. 2021, 22, 4708. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Migneco, C.; Fiume, E.; Miola, M.; Ferraris, S.; Spriano, S.; Ferraris, M.; Verné, E. Glasses and Glass–Ceramics for Biomedical Applications. In Ceramics, Glass and Glass-Ceramics: From Early Manufacturing Steps Towards Modern Frontiers; Baino, F., Tomalino, M., Tulyaganov, D., Eds.; PoliTO Springer Series; Springer International Publishing: Cham, Switzerland, 2021; pp. 153–201. ISBN 978-3-030-85776-9. [Google Scholar]
- Ibrahim, A.; Sadeq, M.S. Influence of Cobalt Oxide on the Structure, Optical Transitions and Ligand Field Parameters of Lithium Phosphate Glasses. Ceram. Int. 2021, 47, 28536–28542. [Google Scholar] [CrossRef]
- Alhasni, B. Insight into the Structure of Magnesium and Sodium Mixed Phosphate Glasses: A Molecular Dynamics Study. J. Non-Cryst. Solids 2022, 578, 121338. [Google Scholar] [CrossRef]
- Stefan, R.; Simedru, D.; Popa, A.; Ardelean, I. Structural Investigations of V2O5-P2O5-CaO Glass System by FT-IR and EPR Spectroscopies. J. Mater. Sci. 2012, 47, 3746–3751. [Google Scholar] [CrossRef]
- Edathazhe, A.B.; Shashikala, H.D. Dissolution Studies of Na2O-BaO-CaO-P2O5 Glasses in Deionized Water under Semi-Dynamic Conditions for Bioactive Applications. Mater. Today: Proc. 2018, 5, 21241–21247. [Google Scholar] [CrossRef]
- Lee, S.; Nagata, F.; Kato, K.; Nakano, T.; Kasuga, T. Structures and Dissolution Behaviors of Quaternary CaO-SrO-P2O5-TiO2 Glasses. Materials 2021, 14, 1736. [Google Scholar] [CrossRef] [PubMed]
- Lapa, A.; Cresswell, M.; Jackson, P.; Boccaccini, A.R. Phosphate Glass Fibres with Therapeutic Ions Release Capability—A Review. Adv. Appl. Ceram. 2020, 119, 1–14. [Google Scholar] [CrossRef]
- Hyunh, N.B.; Palma, C.S.D.; Rahikainen, R.; Mishra, A.; Azizi, L.; Verne, E.; Ferraris, S.; Hytönen, V.P.; Sanches Ribeiro, A.; Massera, J. Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorption. ACS Biomater. Sci. Eng. 2021, 7, 4483–4493. [Google Scholar] [CrossRef]
- Islam, M.T.; Felfel, R.M.; Abou Neel, E.A.; Grant, D.M.; Ahmed, I.; Hossain, K.M.Z. Bioactive Calcium Phosphate–Based Glasses and Ceramics and Their Biomedical Applications: A Review. J. Tissue Eng. 2017, 8, 2041731417719170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ningthemcha, R.K.N.; Mondal, R.; Das, A.S.; Debnath, S.; Kabi, S.; Singh, L.S.; Biswas, D. The Effect of Transition Metal and Heavy Metal Incorporation on the Structural, Optical and Electrical Properties of Zinc-Phosphate Ternary Glassy System: A Comparative Study. Mater. Chem. Phys. 2022, 278, 125672. [Google Scholar] [CrossRef]
- Karimi, M.; Mehdizadeh, A.; Hekmatshoar, M.H.; Vafaei, S. A New Method for Controlling Structural, Electrical and Optical Properties of Phosphate Glasses, Containing Transition Metal Ions (TMIs). J. Non-Cryst. Solids 2019, 525, 119693. [Google Scholar] [CrossRef]
- Vedeanu, N.S.; Magdas, D.A. The Influence of Some Transition Metal Ions in Lead- and Calcium-Phosphate Glasses. J. Alloys Compd. 2012, 534, 93–96. [Google Scholar] [CrossRef]
- Arya, S.K.; Danewalia, S.S.; Arora, M.; Singh, K. Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B 2 O 3 –Li 2 O–ZnO–V 2 O 5 Glasses. J. Phys. Chem. B 2016, 120, 12168–12176. [Google Scholar] [CrossRef] [PubMed]
- Lusvardi, G.; Sgarbi Stabellini, F.; Salvatori, R. P2O5-Free Cerium Containing Glasses: Bioactivity and Cytocompatibility Evaluation. Materials 2019, 12, 3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, X.; Li, J.; Pu, X.; Wang, J.; Huang, Z.; Yin, G. Effects of Incorporated Vanadium and Its Chemical States on Morphology and Mesostructure of Mesoporous Bioactive Glass Particles. Microporous Mesoporous Mater. 2021, 319, 111061. [Google Scholar] [CrossRef]
- Cicconi, M.R.; Lu, Z.; Uesbeck, T.; van Wüllen, L.; Brauer, D.S.; de Ligny, D. Influence of Vanadium on Optical and Mechanical Properties of Aluminosilicate Glasses. Front. Mater. 2020, 7, 161. [Google Scholar] [CrossRef]
- Kowalski, S.; Wyrzykowski, D.; Inkielewicz-Stępniak, I. Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells. Molecules 2020, 25, 1757. [Google Scholar] [CrossRef] [Green Version]
- Mohamadi, M.; Ebrahimipour, S.Y.; Torkzadeh-Mahani, M.; Foro, S.; Akbari, A. A Mononuclear Diketone-Based Oxido-Vanadium(IV) Complex: Structure, DNA and BSA Binding, Molecular Docking and Anticancer Activities against MCF-7, HPG-2, and HT-29 Cell Lines. RSC Adv. 2015, 5, 101063–101075. [Google Scholar] [CrossRef]
- Liou, G.-Y.; Storz, P. Reactive Oxygen Species in Cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Palomo, G.; Rendón-Huerta, E.P.; Montaño, L.F.; Fortoul, T.I. Vanadium Compounds and Cellular Death Mechanisms in the A549 Cell Line: The Relevance of the Compound Valence. J. Appl. Toxicol. 2019, 39, 540–552. [Google Scholar] [CrossRef]
- Chatterjee, N.; Anwar, T.; Islam, N.S.; Ramasarma, T.; Ramakrishna, G. Growth Arrest of Lung Carcinoma Cells (A549) by Polyacrylate-Anchored Peroxovanadate by Activating Rac1-NADPH Oxidase Signalling Axis. Mol. Cell Biochem. 2016, 420, 9–20. [Google Scholar] [CrossRef]
- Li, J.; Jiang, M.; Zhou, H.; Jin, P.; Cheung, K.M.C.; Chu, P.K.; Yeung, K.W.K. Vanadium Dioxide Nanocoating Induces Tumor Cell Death through Mitochondrial Electron Transport Chain Interruption. Glob. Chall. 2019, 3, 1800058. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.A.; Jameson, M.J. Sodium Orthovanadate Inhibits Proliferation and Triggers Apoptosis in Oral Squamous Cell Carcinoma in Vitro. Biochem. Mosc. 2017, 82, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Jiang, W.; Li, D.; Gu, M.; Liu, K.; Dong, L.; Wang, C.; Jiang, H.; Dai, W. Sodium Orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol. Lett. 2019, 17, 4255–4262. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.-P.; Suo, F.-Z.; Feng, Y.-L.; Song, L.-L.; Li, Y.; Li, Y.-J.; Wang, K.-T. Synthesis and Biological Evaluation of Vanadium Complexes as Novel Anti-Tumor Agents. Eur. J. Med. Chem. 2019, 176, 1–10. [Google Scholar] [CrossRef]
- Roy, S.; Banerjee, S.; Chakraborty, T. Vanadium Quercetin Complex Attenuates Mammary Cancer by Regulating the P53, Akt/MTOR Pathway and Downregulates Cellular Proliferation Correlated with Increased Apoptotic Events. Biometals 2018, 31, 647–671. [Google Scholar] [CrossRef]
- Williams, G.H.; Stoeber, K. The Cell Cycle and Cancer. J. Pathol. 2012, 226, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-T.; Liu, Y.-J.; Wang, Q.; Yang, X.-G.; Wang, K. Reactive-Oxygen-Species-Mediated Cdc25C Degradation Results in Differential Antiproliferative Activities of Vanadate, Tungstate, and Molybdate in the PC-3 Human Prostate Cancer Cell Line. J. Biol. Inorg. Chem. 2012, 17, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.P.; Videira, A.; Soares, P.; Máximo, V. Orthovanadate-Induced Cell Death in RET/PTC1-Harboring Cancer Cells Involves the Activation of Caspases and Altered Signaling through PI3K/Akt/MTOR. Life Sci. 2011, 89, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Zhao, H.; Tao, L.; Li, X.; Zhou, Z.; Sun, Y.; Chen, C.; Wei, D.; Liu, Y.; Diao, G. Synthesis, in Vitro Cytotoxicity, and Structure–Activity Relationships (SAR) of Multidentate Oxidovanadium(IV) Complexes as Anticancer Agents. Dalton Trans. 2018, 47, 10035–10045. [Google Scholar] [CrossRef] [PubMed]
- Kofuji, H.; Yano, T.; Myochin, M.; Matsuyama, K.; Okita, T.; Miyamoto, S. Chemical Durability of Iron-Phosphate Glass as the High Level Waste from Pyrochemical Reprocessing. Procedia Chem. 2012, 7, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Çelikbilek Ersundu, M.; Kuzu, B.; Ersundu, A.E. Structural Properties and Dissolution Behavior of New Generation Controlled Release Phosphate Glass Fertilizers. J. Non-Cryst. Solids 2022, 576, 121239. [Google Scholar] [CrossRef]
- Bunker, B.C.; Arnold, G.W.; Wilder, J.A. Phosphate Glass Dissolution in Aqueous Solutions. J. Non Cryst. Solids 1984, 64, 291–316. [Google Scholar] [CrossRef]
- El-Meliegy, E.; Farag, M.M.; Knowles, J.C. Dissolution and Drug Release Profiles of Phosphate Glasses Doped with High Valency Oxides. J. Mater. Sci. Mater. Med. 2016, 27, 108. [Google Scholar] [CrossRef] [Green Version]
- Es-Soufi, H.; Bih, L.; Benzineb, M. Study of Tungsten Phosphate Glasses Containing Fe2O3. New J. Glass Ceram. 2019, 9, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Brauer, D.S.; Karpukhina, N.; O’Donnell, M.D.; Law, R.V.; Hill, R.G. Fluoride-Containing Bioactive Glasses: Effect of Glass Design and Structure on Degradation, PH and Apatite Formation in Simulated Body Fluid. Acta Biomater. 2010, 6, 3275–3282. [Google Scholar] [CrossRef]
- Kiran, P.; Ramakrishna, V.; Trebbin, M.; Udayashankar, N.K.; Shashikala, H.D. Effective Role of CaO/P2O5 Ratio on SiO2-CaO-P2O5 Glass System. J. Adv. Res. 2017, 8, 279–288. [Google Scholar] [CrossRef]
- Mneimne, M.; Hill, R.G.; Bushby, A.J.; Brauer, D.S. High Phosphate Content Significantly Increases Apatite Formation of Fluoride-Containing Bioactive Glasses. Acta Biomater. 2011, 7, 1827–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedeanu, N.; Stanescu, R.; Filip, S.; Ardelean, I.; Cozar, O. IR and ESR Investigations on V2O5–P2O5–BaO Glass System with Opto-Electronic Potential. J. Non-Cryst. Solids 2012, 358, 1881–1885. [Google Scholar] [CrossRef]
- Ardelean, I.; Cozar, O.; Vedeanu, N.; Rusu, D.; Andronache, C. EPR Study of V2O5–P2O5–Li2O Glass System. J. Mater. Sci. Mater. Electron. 2007, 18, 963–966. [Google Scholar] [CrossRef]
- Vedeanu, N.; Cozar, O.; Ardelean, I. IR and EPR Investigations of V2O5-P 2O5-CaF2 Glass System. J. Optoelectron. Adv. Mater. 2007, 9, 698–701. [Google Scholar]
- Saddeek, Y.B.; Shaaban, E.R.; Aly, K.A.; Sayed, I.M. Characterization of Some Lead Vanadate Glasses. J. Alloys Compd. 2009, 478, 447–452. [Google Scholar] [CrossRef]
- Rameshkumar, V.; Chakradhar, R.; Murali, A.; Gopal, N.; Lakshmanarao, J. A Study of Electron Paramagnetic Resonance and Optical Absorption Spectra of VO2+ Ions in Alkali Barium Phosphate Glasses. Int. J. Mod. Phys. B 2012, 17, 3033–3047. [Google Scholar] [CrossRef]
- Hejda, P.; Holubova, J.; Černošek, Z.; Cernoskova, E. The Structure and Properties of Vanadium Zinc Phosphate Glasses. J. Non-Cryst. Solids 2017, 462, 65–71. [Google Scholar] [CrossRef]
- Vedeanu, N.S.; Cozar, I.B.; Stanescu, R.; Stefan, R.; Vodnar, D.; Cozar, O. Structural Investigation of V2O5–P2O5–K2O Glass System with Antibacterial Potential. Bull. Mater. Sci. 2016, 39, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Seth, V.P.; Gupta, S.; Jindal, A.; Gupta, S.K. ESR of Vanadyl Ions in Li2O · BaO · B2O3 Glasses. J. Non-Cryst. Solids 1993, 162, 263–267. [Google Scholar] [CrossRef]
- Kivelson, D.; Lee, S. ESR Studies and the Electronic Structure of Vanadyl Ion Complexes. J. Chem. Phys. 1964, 41, 1896–1903. [Google Scholar] [CrossRef]
- Vedeanu, N.; Cozar, O.; Stanescu, R.; Cozar, I.B.; Ardelean, I. Structural Investigation of New Vanadium–Bismuth–Phosphate Glasses by IR and ESR Spectroscopy. J. Mol. Struct. 2013, 1044, 323–327. [Google Scholar] [CrossRef]
- Ardelean, I.; Cozar, O.; Ilonca, G.; Simon, V.; Mih, V.; Craciun, C.; Simon, S. EPR and Magnetic Susceptibility Studies on V2 O5-P2O5-PbO Glasses. J. Mater. Sci. Mater. Electron. 2000, 11, 401–404. [Google Scholar] [CrossRef]
- Kumar, R.V.S.S.S.N.; Bungala, C.J.; Chandrasekhar, A.; Reddy, B.; Reddy, Y.; Rao, P. Optical Absorption and EPR Spectral Studies on Vanadyl Doped Zinc Phosphate Glass. J. Alloys Compd. 1999, 287, 84–86. [Google Scholar] [CrossRef]
- Sekiya, T.; Mochida, N.; Soejima, A. Raman Spectra of Binary Tellurite Glasses Containing Tri- or Tetra-Valent Cations. J. Non-Cryst. Solids 1995, 191, 115–123. [Google Scholar] [CrossRef]
- Rada, S.; Culea, M.; Rada, M.; Culea, E. Effect of the Introduction of Vanadium Pentaoxide in Phospho-Tellurite Glasses Containing Gadolinium Ions. J. Mater. Sci. 2008, 43, 6122–6125. [Google Scholar] [CrossRef]
- Doweidar, H.; Moustafa, Y.M.; El-Egili, K.; Abbas, I. Infrared Spectra of Fe2O3–PbO–P2O5 Glasses. Vib. Spectrosc. 2005, 37, 91–96. [Google Scholar] [CrossRef]
- Bergo, P.; Reis, S.T.; Pontuschka, W.M.; Prison, J.M.; Motta, C.C. Dielectric Properties and Structural Features of Barium-Iron Phosphate Glasses. J. Non-Cryst. Solids 2004, 336, 159–164. [Google Scholar] [CrossRef]
- Lucacel Ciceo, R.; Todea, M.; Dudric, R.; Buhai, A.; Simon, V. Structural Effect of Cobalt Ions Added to a Borophosphate-Based Glass System. J. Non Cryst. Solids 2018, 481, 562–567. [Google Scholar] [CrossRef]
- Magdas, D.A.; Vedeanu, N.S.; Toloman, D. Study on the Effect of Vanadium Oxide in Calcium Phosphate Glasses by Raman, IR and UV–Vis Spectroscopy. J. Non-Cryst. Solids 2015, 428, 151–155. [Google Scholar] [CrossRef]
- Broglia, G.; Mugoni, C.; Du, J.; Siligardi, C.; Montorsi, M. Lithium Vanado-Phosphate Glasses: Structure and Dynamics Properties Studied by Molecular Dynamics Simulations. J. Non-Cryst. Solids 2014, 403, 53–61. [Google Scholar] [CrossRef]
- Ferraa, S.; Barebita, H.; Moutataouia, M.; Nimour, A.; Elbadaoui, A.; Baach, B.; Guedira, T. Effect of Barium Oxide on Structural Features and Thermal Properties of Vanadium Phosphate Glasses. Chem. Phys. Lett. 2021, 765, 138304. [Google Scholar] [CrossRef]
- ISO 10993-5:2009(En), Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. Available online: https://www.iso.org/obp/ui/#iso:std:iso:10993:-5:ed-3:v1:en (accessed on 2 January 2023).
- Kermani, F.; Mollazadeh Beidokhti, S.; Baino, F.; Gholamzadeh-Virany, Z.; Mozafari, M.; Kargozar, S. Strontium- and Cobalt-Doped Multicomponent Mesoporous Bioactive Glasses (MBGs) for Potential Use in Bone Tissue Engineering Applications. Materials 2020, 13, 1348. [Google Scholar] [CrossRef] [PubMed]
- PBS (Phosphate Buffered Saline) (1X, pH 7.4) Preparation and Recipe|AAT Bioquest. Available online: https://www.aatbio.com/resources/buffer-preparations-and-recipes/pbs-phosphate-buffered-saline (accessed on 30 August 2022).
Glass Code | Element Wt (%) | ||||
---|---|---|---|---|---|
No. | O | P | Ca | V | |
1 | M | 50.17 | 28.50 | 21.28 | ─ |
2 | V1 | 47.95 | 30.84 | 20.37 | 0.83 |
3 | V2 | 46.09 | 31.30 | 21.80 | 0.85 |
4 | V3 | 44.74 | 30.38 | 24.05 | 0.83 |
5 | V4 | 43.70 | 29.82 | 23.99 | 2.49 |
6 | V5 | 42.59 | 33.32 | 18.68 | 5.40 |
7 | V6 | 37.95 | 33.49 | 18.05 | 10.51 |
8 | V7 | 34.17 | 30.29 | 16.25 | 19.29 |
(A) | ||||
x (mol% V2O5) | g⊥ | g‖ | A⊥ (10−4 cm−1) | A‖ (10−4 cm−1) |
0.25 | 1.99 | 1.93 | 69 | 184 |
0.5 | 1.99 | 1.93 | 64 | 185 |
1 | 1.99 | 1.92 | 55 | 176 |
2 | 1.99 | 1.93 | 63 | 185 |
4 | 1.99 | 1.92 | 59 | 184 |
(B) | ||||
x (mol% V2O5) | k | P (10−4 cm−1) | β22 | επ2 |
0.25 | 0.79 | 136 | 0.9 | 0.6 |
0.5 | 0.73 | 142 | 1.1 | 0.5 |
1 | 0.71 | 138 | 0.9 | 0.6 |
2 | 0.73 | 142 | 1.1 | 0.5 |
4 | 0.70 | 146 | 0.9 | 0.6 |
Reagent Chemicals (Chempur) | Molecular Weight (g/mol) | Amount (mg) | Concentration (M) |
---|---|---|---|
NaCl | 58.4 | 8000 | 0.137 |
KCl | 74.551 | 200 | 0.0027 |
Na2HPO4 | 141.96 | 1440 | 0.01 |
KH2PO4 | 136.086 | 245 | 0.0018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lujerdean, C.; Zăhan, M.; Dezmirean, D.S.; Ștefan, R.; Simedru, D.; Damian, G.; Vedeanu, N.S. In Vitro Studies Demonstrate Antitumor Activity of Vanadium Ions from a CaO-P2O5-CaF2:V2O5 Glass System in Human Cancer Cell Lines A375, A2780, and Caco-2. Int. J. Mol. Sci. 2023, 24, 1149. https://doi.org/10.3390/ijms24021149
Lujerdean C, Zăhan M, Dezmirean DS, Ștefan R, Simedru D, Damian G, Vedeanu NS. In Vitro Studies Demonstrate Antitumor Activity of Vanadium Ions from a CaO-P2O5-CaF2:V2O5 Glass System in Human Cancer Cell Lines A375, A2780, and Caco-2. International Journal of Molecular Sciences. 2023; 24(2):1149. https://doi.org/10.3390/ijms24021149
Chicago/Turabian StyleLujerdean, Cristian, Marius Zăhan, Daniel Severus Dezmirean, Răzvan Ștefan, Dorina Simedru, Grigore Damian, and Nicoleta Simona Vedeanu. 2023. "In Vitro Studies Demonstrate Antitumor Activity of Vanadium Ions from a CaO-P2O5-CaF2:V2O5 Glass System in Human Cancer Cell Lines A375, A2780, and Caco-2" International Journal of Molecular Sciences 24, no. 2: 1149. https://doi.org/10.3390/ijms24021149
APA StyleLujerdean, C., Zăhan, M., Dezmirean, D. S., Ștefan, R., Simedru, D., Damian, G., & Vedeanu, N. S. (2023). In Vitro Studies Demonstrate Antitumor Activity of Vanadium Ions from a CaO-P2O5-CaF2:V2O5 Glass System in Human Cancer Cell Lines A375, A2780, and Caco-2. International Journal of Molecular Sciences, 24(2), 1149. https://doi.org/10.3390/ijms24021149