The Role of GmSnRK1-GmNodH Module in Regulating Soybean Nodulation Capacity
Abstract
:1. Introduction
2. Results
2.1. Identification of GmNodH from Soybean
2.2. Analysis of GmNodH Expression Patterns
2.3. Overexpression of GmNodH Promotes Soybean Nodulation and Alters the Gene Expression Patterns in Nodulation-Related Pathways
2.4. Physical Interaction between GmSnRK1 and GmNodH
2.5. In Vitro Phosphorylation Analysis of GmNodH by GmSnRK1
2.6. Coexpression of GmSnRK1 and GmNodH Can Promote Soybean Nodulation
2.7. Expression Analyses of Genes Involved in Signaling Pathways of Nodulation
3. Discussion
3.1. GmNodH Plays a Positive Regulatory Role in the Symbiotic Nitrogen Fixation of Soybean
3.2. GmSnRK1 Regulates the Expression and Function of GmNodH Gene
4. Materials and Methods
4.1. Plant Materials and Growing Conditions
4.2. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR
4.3. Subcellular Localization of GmNodH-GFP Protein
4.4. Yeast Two-Hybrid Assay
4.5. BiFC and Split-LUC Complementation Assays
4.6. Protein Pulldown Assays
4.7. Protein Phosphorylation Assay
4.8. Transient Gene Expression and Induction of Hairy Roots in Soybean Plants
4.9. Induction of Root Nodules
4.10. Statistical Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pratap, A.; Kumar, S.; Polowick, P.L.; Blair, M.W.; Baum, M. Editorial: Accelerating Genetic Gains in Pulses. Front. Plant Sci. 2022, 13, 879377. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xue, Q.; Zhang, Z.; Du, J.; Yu, D.; Huang, F. GmMYB181, a Soybean R2R3-MYB Protein, Increases Branch Number in Transgenic Arabidopsis. Front. Plant Sci. 2018, 9, 1027. [Google Scholar] [CrossRef] [PubMed]
- Toro, N.; Villadas, P.J.; Molina-Sánchez, M.D.; Navarro-Gómez, P.; Vinardell, J.M.; Cuesta-Berrio, L.; Rodríguez-Carvajal, M.A. The Underlying Process of Early Ecological and Genetic Differentiation in a Facultative Mutualistic Sinorhizobium Meliloti Population. Sci. Rep. 2017, 7, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emanuelle, S.; Doblin, M.S.; Gooley, P.R.; Gentry, M.S. The UBA Domain of SnRK1 Promotes Activation and Maintains Catalytic Activity. Biochem. Biophys. Res. Commun. 2018, 497, 127–132. [Google Scholar] [CrossRef]
- Takeuchi, T.; Benning, C. Nitrogen-Dependent Coordination of Cell Cycle, Quiescence and TAG Accumulation in Chlamydomonas. Biotechnol. Biofuels 2019, 12, 292. [Google Scholar] [CrossRef] [Green Version]
- Baena-González, E.; Rolland, F.; Thevelein, J.M.; Sheen, J. A Central Integrator of Transcription Networks in Plant Stress and Energy Signalling. Nature 2007, 448, 938–942. [Google Scholar] [CrossRef]
- Sugden, C.; Donaghy, P.G.; Halford, N.G.; Hardie, D.G. Two SNF1-Related Protein Kinases from Spinach Leaf Phosphorylate and Inactivate 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase, Nitrate Reductase, and Sucrose Phosphate Synthase in Vitro. Plant Physiol. 1999, 120, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Nukarinen, E.; Ngele, T.; Pedrotti, L.; Wurzinger, B.; Mair, A.; Landgraf, R.; Börnke, F.; Hanson, J.; Teige, M.; Baena-Gonzalez, E.; et al. Quantitative Phosphoproteomics Reveals the Role of the AMPK Plant Ortholog SnRK1 as a Metabolic Master Regulator under Energy Deprivation. Sci. Rep. 2016, 6, 31697. [Google Scholar] [CrossRef] [Green Version]
- Davie, E.; Forte, G.M.A.; Petersen, J. Nitrogen Regulates AMPK to Control TORC1 Signaling. Curr. Biol. 2015, 25, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Orlova, M.; Kanter, E.; Krakovich, D.; Kuchin, S. Nitrogen Availability and TOR Regulate the Snf1 Protein Kinase in Saccharomyces cerevisiae. Eukaryot. Cell 2006, 5, 1831–1837. [Google Scholar] [CrossRef]
- Ling, N.X.Y.; Kaczmarek, A.; Hoque, A.; Davie, E.; Ngoei, K.R.W.; Morrison, K.R.; Smiles, W.J.; Forte, G.M.; Wang, T.; Lie, S.; et al. MTORC1 Directly Inhibits AMPK to Promote Cell Proliferation under Nutrient Stress. Nat. Metab. 2020, 2, 41–49. [Google Scholar] [CrossRef]
- Nunes, C.; O’Hara, L.E.; Primavesi, L.F.; Delatte, T.L.; Schluepmann, H.; Somsen, G.W.; Silva, A.B.; Fevereiro, P.S.; Wingler, A.; Paul, M.J. The Trehalose 6-Phosphate/SnRK1. Signaling Pathway Primes Growth Recovery Following Relief of Sink Limitation. Plant Physiol. 2013, 162, 1720–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varin, L.; Marsolais, F.; Richard, M.; Rouleau, M. Biochemistry and Molecular Biology of Plant Sulfotransferases. FASEB J. 1997, 11, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jiang, Y.; Dong, J.; Zhang, X.; Xiao, H.; Xu, Z.; Gao, X. Genome-Wide Analysis and Environmental Response Profiling of SOT Family Genes in Rice (Oryza sativa). Genes Genom. 2012, 34, 549–560. [Google Scholar] [CrossRef]
- Peters, N.K.; Frost, J.W.; Long, S.R. A Plant Flavone, Luteolin, Induces Expression of Rhizobium meliloti Nodulation Genes. Science 1986, 233, 977–980. [Google Scholar] [CrossRef]
- Dénarié, J.; Cullimore, J. Lipo-Oligosaccharide Nociulation Factors: A Minireview New Class of Signaling Molecules Mediating Recognition and Morphogenesis. Cell 1993, 74, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Murray, J.D. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. Plants 2016, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Batista, S.; Castro, S.; Ubalde, M.; Martinez-Drets, G. Effect of Divalent Cations on Succinate Transport in Rhizobium tropici, R. leguminosarum bv phaseoli and R. ioti. World J. Microbiol. Biotechnol. 1994, 10, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Lerouge, P.; Roche, P.; Faucher, C.; Maillet, F.; Truchet, G.; Promé, J.C.; Dénarié, J. Symbiotic Host-Specificity of Rhizobium Meliloti Is Determined by a Sulphated and Acylated Glucosamine Oligosaccharide Signal. Nature 1990, 344, 781–784. [Google Scholar] [CrossRef]
- Long, S.R. Rhizobium Symbiosis: Nod Factors in Perspective. Plant Cell 1996, 8, 1885–1898. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, H.; You, H.; Liu, Y.; Chen, C.; Feng, X.; Yu, X.; Wu, S.; Wang, L.; Zhong, S.; et al. Identification of Novel Interactors and Potential Phosphorylation Substrates of GsSnRK1 from Wild Soybean (Glycine soja). Plant Cell Environ. 2019, 42, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Andrews, M.; Andrews, M.E. Specificity in Legume-Rhizobia Symbioses. Int. J. Mol. Sci. 2017, 18, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.S.; Li, X.; Luo, Z.L.; Mysore, K.S.; Wen, J.; Xie, F. NIN Interacts with NLPs to Mediate Nitrate Inhibition of Nodulation in Medicago truncatula. Nat. Plants 2018, 4, 942–952. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Gao, H.; Wang, H.; Guo, Y.; He, M.; Peng, Y.; Wang, X. GSK3-Mediated Stress Signaling Inhibits Legume–Rhizobium Symbiosis by Phosphorylating GmNSP1 in Soybean. Mol. Plant 2021, 14, 488–502. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jackson, S.A. Crowdsourcing the Nodulation Gene Network Discovery Environment. BMC Bioinform. 2016, 17, 233. [Google Scholar] [CrossRef] [Green Version]
- Sulima, A.S.; Zhukov, V.A.; Kulaeva, O.A.; Vasileva, E.N.; Borisov, A.Y.; Tikhonovich, I.A. New Sources of Sym2A Allele in the Pea (Pisum sativum L.) Carry the Unique Variant of Candidate LysM-RLK Gene LykX. PeerJ 2019, 7, e8070. [Google Scholar] [CrossRef] [Green Version]
- Faucher, C.; Maillet, F.; Vasse, J.; Rosenberg, C.; van Brussel, A.A.N.; Truchet, G.; Ditnariel, J. Rhizobium Meliloti Host Range NodH Gene Determines Production of an Alfalfa-Specific Extracellular Signal. J. Bacteriol. 1988, 170, 5489–5499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrhardt, D.W.; Morrey Atkinson, E.; Faull, K.F.; Daro, D.; Freedberg, D.I.; Sutherlin, D.P.; Armstrong, R.; Long, S.R. In Vitro Sulfotransferase Activity of NodH, a Nodulation Protein of Rhizobium Meliloti Required for Host-Specific Nodulation. J. Bacteriol. 1995, 177, 6237–6245. [Google Scholar] [CrossRef] [Green Version]
- Journet, E.P.; Pichon, M.; Dedieu, A.; de Billy, F.; Truchet, G.; Barker, D.G. Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa. Plant J. 1994, 6, 241–249. [Google Scholar] [CrossRef]
- Noreen, S.; Schlaman, H.R.M.; Bellogín, R.A.; Buendía-Clavería, A.M.; Espuny, M.; Harteveld, M.; Medina, C.; Ollero, J.F.; Olsthoorn, M.M.A.; Soria-Diaz, M.E.; et al. Alfalfa nodulation by Sinorhizobium fredii does not require sulfated Nod-factors. Funct. Plant Biol. 2003, 30, 1219–1232. [Google Scholar] [CrossRef]
- Keating, D.A.; Willits, M.G.; Long, S.R. A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation. J. Bacteriol. 2002, 184, 6681–6689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, E.B.; Antolín-Llovera, M.; Grossmann, C.; Ye, J.; Vieweg, S.; Broghammer, A.; Krusell, L.; Radutoiu, S.; Jensen, O.N.; Stougaard, J.; et al. Autophosphorylation Is Essential for the in Vivo Function of the Lotus Japonicus Nod Factor Receptor 1 and Receptor-Mediated Signalling in Cooperation with Nod Factor Receptor 5. Plant J. 2011, 65, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Irving, T.B.; Chakraborty, S.; Maia, L.G.S.; Knaack, S.; Conde, D.; Schmidt, H.W.; Triozzi, P.M.; Simmons, C.H.; Roy, S.; Kirst, M.; et al. An LCO-responsive Homolog of NODULE INCEPTION Positively Regulates Lateral Root Formation in Populus sp. Plant Physiol. 2022, 190, 1699–1714. [Google Scholar] [CrossRef] [PubMed]
- Jamsheer, K.M.; Kumar, M.; Srivastava, V. SNF1-Related Protein Kinase 1: The Many-Faced Signaling Hub Regulating Developmental Plasticity in Plants. J. Exp. Bot. 2021, 72, 6042–6065. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, L.; Jiang, P.; Lu, R.; Halford, N.G.; Liu, C. Genome-Wide Identification of Sucrose Nonfermenting-1-Related Protein Kinase (SnRK) Genes in Barley and RNA-Seq Analyses of Their Expression in Response to Abscisic Acid Treatment. BMC Genom. 2021, 22, 300. [Google Scholar] [CrossRef]
- Kameshita, I.; Nishida, T.; Nakamura, S.; Sugiyama, Y.; Sueyoshi, N.; Umehara, Y.; Nomura, M.; Tajima, S. Expression Cloning of a Variety of Novel Protein Kinases in Lotus japonicus. J. Biochem. 2005, 137, 33–39. [Google Scholar] [CrossRef]
- Wang, X.; Peng, F.; Li, M.; Yang, L.; Li, G. Expression of a Heterologous SnRK1 in Tomato Increases Carbon Assimilation, Nitrogen Uptake and Modifies Fruit Development. J. Plant Physiol. 2012, 169, 1173–1182. [Google Scholar] [CrossRef]
- Indrasumunar, A.; Gresshoff, P.M. Duplicated Nod-Factor Receptor 5 (NFR5) Genes Are Mutated in Soybean. Plant Signal. Behav. 2010, 5, 535–536. [Google Scholar] [CrossRef] [Green Version]
- Quain, M.D.; Makgopa, M.E.; Cooper, J.W.; Kunert, K.J.; Foyer, C.H. Ectopic Phytocystatin Expression Increases Nodule Numbers and Influences the Responses of Soybean (Glycine max) to Nitrogen Deficiency. Phytochemistry 2015, 112, 179–187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, Y.; Zhang, P.; Bai, C.; Cao, L.; Li, L.; Jiang, J.; Ding, X.; Xiao, J. The Role of GmSnRK1-GmNodH Module in Regulating Soybean Nodulation Capacity. Int. J. Mol. Sci. 2023, 24, 1225. https://doi.org/10.3390/ijms24021225
Li M, Wang Y, Zhang P, Bai C, Cao L, Li L, Jiang J, Ding X, Xiao J. The Role of GmSnRK1-GmNodH Module in Regulating Soybean Nodulation Capacity. International Journal of Molecular Sciences. 2023; 24(2):1225. https://doi.org/10.3390/ijms24021225
Chicago/Turabian StyleLi, Minglong, Yuye Wang, Pengmin Zhang, Chunxu Bai, Lei Cao, Ludan Li, Jihong Jiang, Xiaodong Ding, and Jialei Xiao. 2023. "The Role of GmSnRK1-GmNodH Module in Regulating Soybean Nodulation Capacity" International Journal of Molecular Sciences 24, no. 2: 1225. https://doi.org/10.3390/ijms24021225
APA StyleLi, M., Wang, Y., Zhang, P., Bai, C., Cao, L., Li, L., Jiang, J., Ding, X., & Xiao, J. (2023). The Role of GmSnRK1-GmNodH Module in Regulating Soybean Nodulation Capacity. International Journal of Molecular Sciences, 24(2), 1225. https://doi.org/10.3390/ijms24021225