Kaposi’s Sarcoma-Associated Herpesvirus ORF21 Enhances the Phosphorylation of MEK and the Infectivity of Progeny Virus
Abstract
:1. Introduction
2. Results
2.1. Construction of ORF21-Kinase Dead KSHV and ORF21-Deleted KSHV
2.2. ORF21 Is Localized in the Cytoplasm, and ORF21 and Its Kinase Activity Were Involved in Cell Contraction
2.3. ORF21 Does Not Affect Intracellular Viral DNA Replication or Lytic Genes Transcription
2.4. ORF21 Has No Effect on the Production of Viral Genome-Encapsidated Particles
2.5. ORF21 Is Involved in the Infectivity Enhancement of the Progeny Virus
2.6. ORF21 Upregulates MEK Phosphorylation and Anchorage-Independent Cell Growth
3. Discussion
4. Material and Methods
4.1. Plasmids
4.2. Preparation of Anti-ORF21 Rabbit Polyclonal Antibody
4.3. Mutagenesis of KSHV BAC16
4.4. Establishment of Doxycycline-Inducible Recombinant KSHV-Expressing Cells
4.5. Measurement of Extracellular Viral Genome-Encapsidated Particles and Intracellular Viral DNA Replication
4.6. RT Real-Time PCR (RT-qPCR)
4.7. Infectivity Assay
4.8. Complementation Assay
4.9. Agents, Cell Culture and Western Blot
4.10. Immunofluorescence assay (IFA) and Evaluation of Cell Contraction
4.11. Two-Layered Soft Agar Colony Formation Assay
4.12. Cell Proliferation Assay
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, Y.; Cesarman, E.; Pessin, M.S.; LEE, F.; Culpepper, J.; Knowles, D.M.; Moore, P.S. Identification of Herpesvirus-like DNA Sequences in AIDS-Associated Kaposi’s Sarcoma. Science 1994, 266, 1865–1869. [Google Scholar] [CrossRef] [Green Version]
- Nador, R.; Cesarman, E.; Chadburn, A.; Dawson, D.; Ansari, M.; Sald, J.; Knowles, D. Primary Effusion Lymphoma: A Distinct Clinicopathologic Entity Associated with the Kaposi’s Sarcoma-Associated Herpes Virus. Blood 1996, 88, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Soulier, J.; Grollet, L.; Oksenhendler, E.; Cacoub, P.; Cazals-Hatem, D.; Babinet, P.; d’Agay, M.; Clauvel, J.; Raphael, M.; Degos, L.; et al. Kaposi’s Sarcoma-Associated Herpesvirus-like DNA Sequences in Multicentric Castleman’s Disease. Blood 1995, 86, 1276–1280. [Google Scholar] [CrossRef] [Green Version]
- Russo, J.J.; Bohenzky, R.A.; Chien, M.-C.; Chen, J.; Yan, M.; Maddalena, D.; Parry, J.P.; Peruzzi, D.; Edelman, I.S.; Chang, Y.; et al. Nucleotide Sequence of the Kaposi Sarcoma-Associated Herpesvirus (HHV8). Proc. Natl. Acad. Sci. USA 1996, 93, 14862–14867. [Google Scholar] [CrossRef] [Green Version]
- Damania, B.; Cesarman, E. Kaposi’s Sarcoma Herpesvirus. In Fields Virology; Howley, P.M., Knipe, D.M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2022; Volume 2, ISBN 978-9751-1257-8. [Google Scholar]
- Jenner, R.G.; Albà, M.M.; Boshoff, C.; Kellam, P. Kaposi’s Sarcoma-Associated Herpesvirus Latent and Lytic Gene Expression as Revealed by DNA Arrays. J. Virol. 2001, 75, 891–902. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Suen, J.; Frias, C.; Pfeiffer, R.; Tsai, M.-H.; Chuang, E.; Zeichner, S.L. Dissection of the Kaposi’s Sarcoma-Associated Herpesvirus Gene Expression Program by Using the Viral DNA Replication Inhibitor Cidofovir. J. Virol. 2004, 78, 13637–13652. [Google Scholar] [CrossRef] [Green Version]
- Arias, C.; Weisburd, B.; Stern-Ginossar, N.; Mercier, A.; Madrid, A.S.; Bellare, P.; Holdorf, M.; Weissman, J.S.; Ganem, D. KSHV 2.0: A Comprehensive Annotation of the Kaposi’s Sarcoma-Associated Herpesvirus Genome Using Next-Generation Sequencing Reveals Novel Genomic and Functional Features. PLoS Pathog. 2014, 10, e1003847. [Google Scholar] [CrossRef]
- Zhu, F.X.; Chong, J.M.; Wu, L.; Yuan, Y. Virion Proteins of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2005, 79, 800–811. [Google Scholar] [CrossRef] [Green Version]
- Moore, P.S.; Gao, S.-J.; Dominguez, G.; Cesarman, E.; Lungu, O.; Knowles, D.M.; Garber, R.; Pellett, P.E.; Mcgeoch, D.J.; Chang, Y. Primary Characterization of a Herpesvirus Agent Associated with Kaposi’s Sarcoma. J. Virol. 1996, 70, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Cannon, J.S.; Hamzeh, F.; Moore, S.; Nicholas, J.; Ambinder, R.F. Human Herpesvirus 8-Encoded Thymidine Kinase and Phosphotransferase Homologues Confer Sensitivity to Ganciclovir. J. Virol. 1999, 73, 4786–4793. [Google Scholar] [CrossRef]
- Gustafson, E.A.; Schinazi, R.F.; Fingeroth, J.D. Human Herpesvirus 8 Open Reading Frame 21 Is a Thymidine and Thymidylate Kinase of Narrow Substrate Specificity That Efficiently Phosphorylates Zidovudine but Not Ganciclovir. J. Virol. 2000, 74, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Gáspár, G.; De Clercq, E.; Neyts, J. Human Herpesvirus 8 Gene Encodes a Functional Thymidylate Synthase. J. Virol. 2002, 76, 10530–10532. [Google Scholar] [CrossRef] [Green Version]
- Gill, M.B.; Murphy, J.-E.; Fingeroth, J.D. Functional Divergence of Kaposi’s Sarcoma-Associated Herpesvirus and Related Gamma-2 Herpesvirus Thymidine Kinases: Novel Cytoplasmic Phosphoproteins That Alter Cellular Morphology and Disrupt Adhesion. J. Virol. 2005, 79, 14647–14659. [Google Scholar] [CrossRef] [Green Version]
- Kay, B.K.; Williamson, M.P.; Sudol, M. The Importance of Being Proline: The Interaction of Proline-rich Motifs in Signaling Proteins with Their Cognate Domains. FASEB J. 2000, 14, 231–241. [Google Scholar] [CrossRef]
- Jaber Chehayeb, R.; Boggon, T.J. SH2 Domain Binding: Diverse FLVRs of Partnership. Front. Endocrinol. 2020, 11, 575220. [Google Scholar] [CrossRef]
- Gill, M.B.; Turner, R.; Stevenson, P.G.; Way, M. KSHV TK Is a Tyrosine Kinase That Disrupts Focal Adhesions and Induces Rho-mediated Cell Contraction. EMBO J. 2015, 34, 448–465. [Google Scholar] [CrossRef] [Green Version]
- Beauclair, G.; Naimo, E.; Dubich, T.; Rückert, J.; Koch, S.; Dhingra, A.; Wirth, D.; Schulz, T.F. Targeting Kaposi’s Sarcoma-Associated Herpesvirus ORF21 Tyrosine Kinase and Viral Lytic Reactivation by Tyrosine Kinase Inhibitors Approved for Clinical Use. J. Virol. 2020, 94, e01791-19. [Google Scholar] [CrossRef]
- Bussey, K.A.; Reimer, E.; Todt, H.; Denker, B.; Gallo, A.; Konrad, A.; Ottinger, M.; Adler, H.; Stürzl, M.; Brune, W.; et al. The Gammaherpesviruses Kaposi’s Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus 68 Modulate the Toll-Like Receptor-Induced Proinflammatory Cytokine Response. J. Virol. 2014, 88, 9245–9259. [Google Scholar] [CrossRef] [Green Version]
- Brulois, K.F.; Chang, H.; Lee, A.S.-Y.; Ensser, A.; Wong, L.-Y.; Toth, Z.; Lee, S.H.; Lee, H.-R.; Myoung, J.; Ganem, D.; et al. Construction and Manipulation of a New Kaposi’s Sarcoma-Associated Herpesvirus Bacterial Artificial Chromosome Clone. J. Virol. 2012, 86, 9708–9720. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Harada, J.N.; Brown, H.J.; Deng, H.; Song, M.J.; Wu, T.-T.; Kato-Stankiewicz, J.; Nelson, C.G.; Vieira, J.; Tamanoi, F.; et al. Systematic Identification of Cellular Signals Reactivating Kaposi Sarcoma–Associated Herpesvirus. PLoS Pathog. 2007, 3, e44. [Google Scholar] [CrossRef]
- Meng, Q.; Hagemeier, S.R.; Fingeroth, J.D.; Gershburg, E.; Pagano, J.S.; Kenney, S.C. The Epstein-Barr Virus (EBV)-Encoded Protein Kinase, EBV-PK, but Not the Thymidine Kinase (EBV-TK), Is Required for Ganciclovir and Acyclovir Inhibition of Lytic Viral Production. J. Virol. 2010, 84, 4534–4542. [Google Scholar] [CrossRef] [Green Version]
- Coleman, H.M.; Lima, B.D.; Morton, V.; Stevenson, P.G. Murine Gammaherpesvirus 68 Lacking Thymidine Kinase Shows Severe Attenuation of Lytic Cycle Replication In Vivo but Still Establishes Latency. J. Virol. 2003, 77, 2410–2417. [Google Scholar] [CrossRef] [Green Version]
- Song, M.J.; Hwang, S.; Wong, W.H.; Wu, T.-T.; Lee, S.; Liao, H.-I.; Sun, R. Identification of Viral Genes Essential for Replication of Murine γ-Herpesvirus 68 Using Signature-Tagged Mutagenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 3805–3810. [Google Scholar] [CrossRef] [Green Version]
- Gill, M.B.; Wright, D.E.; Smith, C.M.; May, J.S.; Stevenson, P.G. Murid Herpesvirus-4 Lacking Thymidine Kinase Reveals Route-Dependent Requirements for Host Colonization. J. Gen. Virol. 2009, 90, 1461–1470. [Google Scholar] [CrossRef]
- Bechtel, J.T.; Winant, R.C.; Ganem, D. Host and Viral Proteins in the Virion of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2005, 79, 4952–4964. [Google Scholar] [CrossRef] [Green Version]
- Nabiee, R.; Syed, B.; Ramirez Castano, J.; Lalani, R.; Totonchy, J.E. An Update of the Virion Proteome of Kaposi Sarcoma-Associated Herpesvirus. Viruses 2020, 12, 1382. [Google Scholar] [CrossRef]
- Rozen, R.; Sathish, N.; Li, Y.; Yuan, Y. Virion-Wide Protein Interactions of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2008, 82, 4742–4750. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.P.; Damania, B. Modulation of Oncogenic Signaling Networks by Kaposi’s Sarcoma-Associated Herpesvirus. Biol. Chem. 2017, 398, 911–918. [Google Scholar] [CrossRef]
- Bhatt, A.P.; Damania, B. AKTivation of PI3K/AKT/MTOR Signaling Pathway by KSHV. Front. Immunol. 2013, 3, 401. [Google Scholar] [CrossRef] [Green Version]
- Sharma-Walia, N.; Krishnan, H.H.; Naranatt, P.P.; Zeng, L.; Smith, M.S.; Chandran, B. ERK1/2 and MEK1/2 Induced by Kaposi’s Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Early during Infection of Target Cells Are Essential for Expression of Viral Genes and for Establishment of Infection. J. Virol. 2005, 79, 10308–10329. [Google Scholar] [CrossRef]
- Riento, K.; Ridley, A.J. ROCKs: Multifunctional Kinases in Cell Behaviour. Nat. Rev. Mol. Cell Biol. 2003, 4, 446–456. [Google Scholar] [CrossRef]
- Amano, M.; Nakayama, M.; Kaibuchi, K. Rho-Kinase/ROCK: A Key Regulator of the Cytoskeleton and Cell Polarity. Cytoskeleton 2010, 67, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK Signalling: A Master Regulator of Cell Behaviour, Life and Fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Tanimura, S.; Takeda, K. ERK Signalling as a Regulator of Cell Motility. J. Biochem. (Tokyo) 2017, 162, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Gibson, T.B.; Robinson, F.; Silvestro, L.; Pearson, G.; Xu, B.; Wright, A.; Vanderbilt, C.; Cobb, M.H. MAP Kinases. Chem. Rev. 2001, 101, 2449–2476. [Google Scholar] [CrossRef]
- Samson, S.C.; Khan, A.M.; Mendoza, M.C. ERK Signaling for Cell Migration and Invasion. Front. Mol. Biosci. 2022, 9, 998475. [Google Scholar] [CrossRef]
- Davis, Z.H.; Verschueren, E.; Jang, G.M.; Kleffman, K.; Johnson, J.R.; Park, J.; Von Dollen, J.; Maher, M.C.; Johnson, T.; Newton, W.; et al. Global Mapping of Herpesvirus-Host Protein Complexes Reveals a Transcription Strategy for Late Genes. Mol. Cell 2015, 57, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, M.B.; Kutok, J.L.; Fingeroth, J.D. Epstein-Barr Virus Thymidine Kinase Is a Centrosomal Resident Precisely Localized to the Periphery of Centrioles. J. Virol. 2007, 81, 6523–6535. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid–Liquid Phase Separation in Human Health and Diseases. Signal Transduct. Target. Ther. 2021, 6, 290. [Google Scholar] [CrossRef]
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019, 176, 419–434. [Google Scholar] [CrossRef]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-Liquid Phase Separation in Biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, L.B.; Ditlev, J.A.; Rosen, M.K. Regulation of Transmembrane Signaling by Phase Separation. Annu. Rev. Biophys. 2019, 48, 465–494. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Wang, L.; Qin, Z.; Wang, J.; Zheng, X.; Wei, L.; Zhang, X.; Zhang, X.; Liu, C.; Li, Z.; et al. Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression. J. Virol. 2020, 94, e01771-19. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ye, X.; Dai, R.; Li, Z.; Zhang, Y.; Xue, W.; Zhu, Y.; Feng, D.; Qin, L.; Wang, X.; et al. Phase Separation of Epstein-Barr Virus EBNA2 Protein Reorganizes Chromatin Topology for Epigenetic Regulation. Commun. Biol. 2021, 4, 967. [Google Scholar] [CrossRef]
- Gaidano, G.; Cechova, K.; Chang, Y.; Moore, P.S.; Knowles, D.M.; Dalla-Fevera, R. Establishment of AIDS-Related Lymphoma Cell Lines from Lymphomatous Effusions. Leukemia 1996, 10, 1237–1240. [Google Scholar]
- Watanabe, T.; Nishimura, M.; Izumi, T.; Kuriyama, K.; Iwaisako, Y.; Hosokawa, K.; Takaori-Kondo, A.; Fujimuro, M. Kaposi’s Sarcoma-Associated Herpesvirus ORF66 Is Essential for Late Gene Expression and Virus Production via Interaction with ORF34. J. Virol. 2020, 94, 20. [Google Scholar] [CrossRef]
- Sugimoto, A.; Abe, Y.; Watanabe, T.; Hosokawa, K.; Adachi, J.; Tomonaga, T.; Iwatani, Y.; Murata, T.; Fujimuro, M. The FAT10 Posttranslational Modification Is Involved in Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2021, 95, e02194-20. [Google Scholar] [CrossRef]
- Iwaisako, Y.; Watanabe, T.; Futo, M.; Okabe, R.; Sekine, Y.; Suzuki, Y.; Nakano, T.; Fujimuro, M. The Contribution of Kaposi’s Sarcoma-Associated Herpesvirus ORF7 and Its Zinc-Finger Motif to Viral Genome Cleavage and Capsid Formation. J. Virol. 2022, 96, e00684-22. [Google Scholar] [CrossRef]
- Nishimura, M.; Watanabe, T.; Yagi, S.; Yamanaka, T.; Fujimuro, M. Kaposi’s Sarcoma-Associated Herpesvirus ORF34 Is Essential for Late Gene Expression and Virus Production. Sci. Rep. 2017, 7, 329. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Okayama, H. High-Efficiency Transformation of Mammalian Cells by Plasmid DNA. Mol. Cell Biol. 1987, 7, 8. [Google Scholar]
- Iwaisako, Y.; Watanabe, T.; Hanajiri, M.; Sekine, Y.; Fujimuro, M. Kaposi’s Sarcoma-Associated Herpesvirus ORF7 Is Essential for Virus Production. Microorganisms 2021, 9, 1169. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, M.; Watanabe, T.; Kadota, A.; Fujimuro, M. Capsaicin Induces Apoptosis in KSHV-Positive Primary Effusion Lymphoma by Suppressing ERK and P38 MAPK Signaling and IL-6 Expression. Front. Oncol. 2019, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Kadota, A.; Moriguchi, M.; Watanabe, T.; Sekine, Y.; Nakamura, S.; Yasuno, T.; Ohe, T.; Mashino, T.; Fujimuro, M. A Pyridinium-type Fullerene Derivative Suppresses Primary Effusion Lymphoma Cell Viability via the Downregulation of the Wnt Signaling Pathway through the Destabilization of Β-catenin. Oncol. Rep. 2022, 47, 46. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
Primer_Discription Direction | Sequence (5’ -> 3’) |
---|---|
[BAC mutagenesis] a | |
KSHV ORF21-Kinase Dead Forward | accgtggactacaggaatgtttatttgctttacttagag- GTTgtaatg-GTAgtgGTCaaatcaacgctggtcaacgTAGGGATAACAGGGTAATCGATTT |
KSHV ORF21-Kinase Dead Reverse | gggcaagatcccgcacacggcgttgaccagcgttgattt- GACcacTACcattacAACctctaagtaaagcaaataaGCCAGTGTTACAACCAATTAACC |
KSHV ORF21-Knock Out Forward | gtcagcgactgacgacgactcgggagactacgcgccaatg- TAGTTAGATAGTgatcgcttcgccttccagagTAGGGATAACAGGGTAATCGATTT |
KSHV ORF21-Knock Out Reverse | ggcgaccacacaccctggggctctggaaggcgaagcgatc- ACTATCTAACTAcattggcgcgtagtctcccgGCCAGTGTTACAACCAATTAACC |
[plasmid] b | |
ORF21 KD Forward | gtggactacaggaatgtttatttgctttacttagagGTTgtaatgGTAgtgGTCaaatcaacgctggtcaacgccg |
ORF21 KD Reverse | cggcgttgaccagcgttgatttGACcacTACcattacAACctctaagtaaagcaaataaacattcctgtagtccac |
[Real-time PCR] | |
ORF11-qPCR Forward | TTGACAACACGCACCGCAAG |
ORF11-qPCR Reverse | AAAAATCAGCACGCTCGAGGAG |
[RT-real-time PCR] | |
GAPDH-qPCR Forward | TCGCTCTCTGCTCCTCCTGTTC |
GAPDH-qPCR Reverse | CGCCCAATACGACCAAATCC |
ORF16-qPCR Forward | ACCAGCTTGGGTTGAGCATG |
ORF16-qPCR Reverse | GGCTCGCCCCCAGTTC |
ORF59-qPCR Forward | GCCCACATCCACCGACTTC |
ORF59-qPCR Reverse | AGCCAGAAACCAAACCCGTT |
ORFK8.1-qPCR Forward | ACAGATTCGCACAGAAATCCCT |
ORFK8.1-qPCR Reverse | CGAACGATACGTGGGACAATTG |
EGFR-qPCR Forward | AACACCCTGTGGAAGTACG |
EGFR-qPCR Reverse | TCGTTGGACAGCCTTCAAGACC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, T.; Watanabe, T.; Iwaisako, Y.; Fujimuro, M. Kaposi’s Sarcoma-Associated Herpesvirus ORF21 Enhances the Phosphorylation of MEK and the Infectivity of Progeny Virus. Int. J. Mol. Sci. 2023, 24, 1238. https://doi.org/10.3390/ijms24021238
Yamaguchi T, Watanabe T, Iwaisako Y, Fujimuro M. Kaposi’s Sarcoma-Associated Herpesvirus ORF21 Enhances the Phosphorylation of MEK and the Infectivity of Progeny Virus. International Journal of Molecular Sciences. 2023; 24(2):1238. https://doi.org/10.3390/ijms24021238
Chicago/Turabian StyleYamaguchi, Tatsuo, Tadashi Watanabe, Yuki Iwaisako, and Masahiro Fujimuro. 2023. "Kaposi’s Sarcoma-Associated Herpesvirus ORF21 Enhances the Phosphorylation of MEK and the Infectivity of Progeny Virus" International Journal of Molecular Sciences 24, no. 2: 1238. https://doi.org/10.3390/ijms24021238
APA StyleYamaguchi, T., Watanabe, T., Iwaisako, Y., & Fujimuro, M. (2023). Kaposi’s Sarcoma-Associated Herpesvirus ORF21 Enhances the Phosphorylation of MEK and the Infectivity of Progeny Virus. International Journal of Molecular Sciences, 24(2), 1238. https://doi.org/10.3390/ijms24021238