Metal Complexes as Promising Matrix Metalloproteinases Regulators
Abstract
:1. Introduction
1.1. Matrix Metalloproteinases in Cancers, and Alzheimer’s Disease
1.2. Regulators of Matrix Metalloproteinases
2. MMP Regulators–Metal Complexes
2.1. Pt Complexes
2.1.1. Pt(II) Complexes
2.1.2. Pt(IV) Complexes
2.2. Ru Complexes
2.2.1. Ru(II) Complexes
2.2.2. Ru(III) Complexes
2.3. Au Complexes
2.4. Fe Complexes
2.5. Cu Complexes
2.6. Other Metal Complexes
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, H.; Kim, E.; Choi, J.Y.; Park, E.; Lee, H.J. Potent Therapeutic Targets for Treatment of Alzheimer’s Disease: Amyloid Degrading Enzymes. Bull. Korean Chem. Soc. 2021, 42, 1419–1429. [Google Scholar] [CrossRef]
- Verma, R.P.; Hansch, C. Matrix Metalloproteinases (MMPs): Chemical-biological Functions and (Q)SARs. Bioorg. Med. Chem. 2007, 15, 2223–2268. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, G.A. Matrix Metalloproteinases and Their Multiple Roles in Neurodegenerative Diseases. Lancet Neurol. 2009, 8, 205–216. [Google Scholar] [CrossRef]
- Nagase, H.; Visse, R.; Murphy, G. Structure and Function of Matrix Metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Bassiouni, W.; Ali, M.A.M.; Schulz, R. Multifunctional Intracellular Matrix Metalloproteinases: Implications in Disease. FEBS J. 2021, 288, 7162–7182. [Google Scholar] [CrossRef]
- Huang, H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors 2018, 18, 3249. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020, 194, 112260. [Google Scholar] [CrossRef]
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef] [PubMed]
- Alaseem, A.; Alhazzani, K.; Dondapati, P.; Alobid, S.; Bishayee, A.; Rathinavelu, A. Matrix Metalloproteinases: A Challenging Paradigm of Cancer Management. Semin. Cancer Biol. 2019, 56, 100–115. [Google Scholar] [CrossRef]
- Jeleniewicz, W.; Cybulski, M.; Nowakowski, A.; Stenzel-Bembenek, A.; Guz, M.; Marzec-Kotarska, B.; Kotarski, J.; Stepulak, A. MMP-2 mRNA Expression in Ovarian Cancer Tissues Predicts Patients’ Response to Platinum-Taxane Chemotherapy. Anticancer Res. 2019, 39, 1821–1827. [Google Scholar] [CrossRef]
- Li, H.; Qiu, Z.; Li, F.; Wang, C. The Relationship between MMP-2 and MMP-9 Expression Levels with Breast Cancer Incidence and Prognosis. Oncol. Lett. 2017, 14, 5865–5870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo Martins, J.M.; Rabelo-Santos, S.H.; do Amaral Westin, M.C.; Zeferino, L.C. Tumoral and Stromal Expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in Cervical Cancer Patient Survival: A Competing Risk Analysis. BMC Cancer 2020, 20, 660. [Google Scholar] [CrossRef] [PubMed]
- Turpeenniemi-Hujanen, T. Gelatinases (MMP-2 and -9) and Their Natural Inhibitors as Prognostic Indicators in Solid Cancers. Biochimie 2005, 87, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Deryugina, E.I.; Quigley, J.P. Matrix Metalloproteinases and Tumor Metastasis. Cancer Metastasis Rev. 2006, 25, 9–34. [Google Scholar] [CrossRef]
- Das, K.; Prasad, R.; Ansari, S.A.; Roy, A.; Mukherjee, A.; Sen, P. Matrix Metalloproteinase-2: A Key Regulator in Coagulation Proteases Mediated Human Breast Cancer Progression through Autocrine Signaling. Biomed. Pharmacother. 2018, 105, 395–406. [Google Scholar] [CrossRef]
- Quintero-Fabian, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argaez, V.; Lara-Riegos, J.; Ramirez-Camacho, M.A.; Alvarez-Sanchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Fornt. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [Green Version]
- Lorenzl, S.; Albers, D.S.; LeWitt, P.A.; Chirichigno, J.W.; Hilgenberg, S.L.; Cudkowicz, M.E.; Beal, M.F. Tissue Inhibitors of Matrix Metalloproteinases are Elevated in Cerebrospinal Fluid of Neurodegenerative Diseases. J. Neurol. Sci. 2003, 207, 71–76. [Google Scholar] [CrossRef]
- Horstmann, S.; Budig, L.; Gardner, H.; Koziol, J.; Deuschle, M.; Schilling, C.; Wagner, S. Matrix Metalloproteinases in Peripheral Blood and Cerebrospinal Fluid in Patients with Alzheimer’s Disease. Int. Psychogeriatr. 2010, 22, 966–972. [Google Scholar] [CrossRef]
- Liao, M.C.; Van Nostrand, W.E. Degradation of Soluble and Fibrillar Amyloid β-protein by matrix metalloproteinase (MT1-MMP) In Vitro. Biochemistry 2010, 49, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.; Hu, X.; Song, H.; Yin, K.; Bateman, R.J.; Cirrito, J.R.; Xiao, Q.; Hsu, F.F.; Turk, J.W.; Xu, J.; et al. Matrix Metalloproteinase-9 Degrades Amyloid-β fibrils In Vitro and Compact Plaques In Situ. J. Biol. Chem. 2006, 281, 24566–24574. [Google Scholar] [CrossRef]
- Hernandez-Guillamon, M.; Mawhirt, S.; Blais, S.; Montaner, J.; Neubert, T.A.; Rostagno, A.; Ghiso, J. Sequential Amyloid-β Degradation by the Matrix Metalloproteases MMP-2 and MMP-9. J. Biol. Chem. 2015, 290, 15078–15091. [Google Scholar] [CrossRef] [Green Version]
- Lanza, V.; Bellia, F.; Rizzarelli, E. An Inorganic Overview of Natural Aβ Fragments: Copper(II) and Zinc(II)-mediated Pathways. Coord. Chem. Rev. 2018, 369, 1–14. [Google Scholar] [CrossRef]
- Py, N.A.; Bonnet, A.E.; Bernard, A.; Marchalant, Y.; Charrat, E.; Checler, F.; Khrestchatisky, M.; Baranger, K.; Rivera, S. Differential Spatio-temporal Regulation of MMPs in the 5xFAD Mouse Model of Alzheimer’s Disease: Evidence for a Pro-Amyloidogenic Role of MT1-MMP. Fornt. Aging Neurosci. 2014, 6, 247. [Google Scholar]
- Yin, K.J.; Cirrito, J.R.; Yan, P.; Hu, X.; Xiao, Q.; Pan, X.; Bateman, R.; Song, H.; Hsu, F.F.; Turk, J.; et al. Matrix Metalloproteinases Expressed by Astrocytes Mediate Extracellular Amyloid-β Peptide Catabolism. J. Neurosci. 2006, 26, 10939–10948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fragkouli, A.; Tsilibary, E.C.; Tzinia, A.K. Neuroprotective role of MMP-9 Overexpression in the Brain of Alzheimer’s 5xFAD Mice. Neurobiol. Dis. 2014, 70, 179–189. [Google Scholar] [CrossRef]
- Bruno, M.A.; Mufson, E.J.; Wuu, J.; Cuello, A.C. Increased Matrix Metalloproteinase 9 Activity in Mild Cognitive Impairment. J. Neuropathol. Exp. Neurol. 2009, 68, 1309–1318. [Google Scholar] [CrossRef]
- Wilcock, D.M.; Morgan, D.; Gordon, M.N.; Taylor, T.L.; Ridnour, L.A.; Wink, D.A.; Colton, C.A. Activation of Matrix Metalloproteinases following Anti-Aβ Immunotherapy; Implications for Microhemorrhage Occurrence. J. Neuroinflam. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.D.; Winkler, E.A.; Singh, I.; Sagare, A.P.; Deane, R.; Wu, Z.; Holtzman, D.M.; Betsholtz, C.; Armulik, A.; Sallstrom, J.; et al. Apolipoprotein E Controls Cerebrovascular Integrity via Cyclophilin A. Nature 2012, 485, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Montaner, J.; Ramiro, L.; Simats, A.; Hernandez-Guillamon, M.; Delgado, P.; Bustamante, A.; Rosell, A. Matrix Metalloproteinases and ADAMs in Stroke. Cell. Mol. Life Sci. 2019, 76, 3117–3140. [Google Scholar] [CrossRef]
- Ringland, C.; Schweig, J.E.; Eisenbaum, M.; Paris, D.; Ait-Ghezala, G.; Mullan, M.; Crawford, F.; Abdullah, L.; Bachmeier, C. MMP9 Modulation Improves Specific Neurobehavioral Deficits in a Mouse Model of Alzheimer’s Disease. BMC Neurosci. 2021, 22, 39. [Google Scholar] [CrossRef]
- Terni, B.; Ferrer, I. Abnormal Expression and Distribution of MMP2 at Initial Stages of Alzheimer’s Disease-related Pathology. J. Alzheimer’s Dis. 2015, 46, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Paumier, J.M.; Thinakaran, G. Matrix Metalloproteinase 13, a New Target for Therapy in Alzheimer’s Disease. Genes Dis. 2019, 6, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.L.; Long, Y.; Luo, W.; Yan, Z.; Lai, Y.J.; Zhao, L.G.; Zhou, W.H.; Wang, Y.J.; Shen, L.L.; Liu, L.; et al. MMP13 Inhibition Rescues Cognitive Decline in Alzheimer Transgenic Mice via BACE1 Regulation. Brain 2019, 142, 176–192. [Google Scholar] [CrossRef] [PubMed]
- Skiles, J.W.; Gonnella, N.C.; Jeng, A.Y. The Design, Structure, and Clinical Update of Small Molecular Weight Matrix Metalloproteinase Inhibitors. Curr. Med. Chem. 2004, 11, 2911–2977. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, R.E.; Libert, C. Is There New Hope for Therapeutic Matrix Mmetalloproteinase Inhibition? Nat. Rev. Drug Discov. 2014, 13, 904–927. [Google Scholar] [CrossRef] [PubMed]
- Arpino, V.; Brock, M.; Gill, S.E. The Role of TIMPs in Regulation of Extracellular Matrix Proteolysis. Matrix Biol. 2015, 44–46, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, F.; Lee, S.-G.; Oh, J.H.; Kim, J.-A.; Kong, C.-S. Inhibition of MMP-2 and MMP-9 activities by solvent-partitioned Sargassum horneri extracts. Fish. Aquat. Sci. 2018, 21, 16. [Google Scholar] [CrossRef] [Green Version]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar]
- Brew, K.; Nagase, H. The Tissue Inhibitors of Metalloproteinases (TIMPs): An Ancient Family with Structural and Functional Diversity. Biochem. Biophys. Acta 2010, 1803, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Nagase, H.; Murphy, G. Tailoring timps for selective metalloproteinase inhibition. In The Cancer Degradome; Edwards, D., Høyer-Hansen, G., Blasi, F., Sloane, B.F., Eds.; Springer: New York, NY, USA, 2008; pp. 787–810. [Google Scholar]
- Sagi, I.; Talmi-Frank, D.; Arkadash, V.; Papo, N.; Mohan, V. Matrix Metalloproteinase Protein Inhibitors: Highlighting a New Beginning for Metalloproteinases in Medicine. Met. Med. 2016, 3, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Arkadash, V.; Yosef, G.; Shirian, J.; Cohen, I.; Horev, Y.; Grossman, M.; Sagi, I.; Radisky, E.S.; Shifman, J.M.; Papo, N. Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution. J. Biol. Chem. 2017, 292, 3481–3495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranger, K.; Rivera, S.; Liechti, F.D.; Grandgirard, D.; Bigas, J.; Seco, J.; Tarrago, T.; Leib, S.L.; Khrestchatisky, M. Endogenous and Synthetic MMP Inhibitors in CNS Physiopathology. Prog. Brain Res. 2014, 214, 313–351. [Google Scholar] [PubMed]
- Rouanet-Mehouas, C.; Czarny, B.; Beau, F.; Cassar-Lajeunesse, E.; Stura, E.A.; Dive, V.; Devel, L. Zinc-Metalloproteinase Inhibitors: Evaluation of the Complex Role Played by the Zinc-Binding Group on Potency and Selectivity. J. Med. Chem. 2017, 60, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Prontera, C.; Mariani, B.; Rossi, C.; Poggi, A.; Rotilio, D. Inhibition of Gelatinase A (MMP-2) by Batimastat and Captopril Reduces Tumor Growth and Lung Metastases in Mice Bearing Lewis Lung Carcinoma. Int. J. Cancer Res. 1999, 81, 761–766. [Google Scholar] [CrossRef]
- Wylie, S.; MacDonald, I.C.; Varghese, H.J.; Schmidt, E.E.; Morris, V.L.; Groom, A.C.; Chambers, A.F. The Matrix Metalloproteinase Inhibitor Batimastat Inhibits Angiogenesis in Liver Metastases of B16F1 Melanoma Cells. Clin. Exp. Metastasis 1999, 17, 111–117. [Google Scholar] [CrossRef]
- Lein, M.; Jung, K.; Ortel, B.; Stephan, C.; Rothaug, W.; Juchem, R.; Johannsen, M.; Deger, S.; Schnorr, D.; Loening, S.; et al. The New Synthetic Matrix Metalloproteinase Inhibitor (Roche 28-2653) Reduces Tumor Growth and Prolongs Survival in a Prostate Cancer Standard Rat Model. Oncogene 2002, 21, 2089–2096. [Google Scholar] [CrossRef] [Green Version]
- Gatto, C.; Rieppi, M.; Borsotti, P.; Innocenti, S.; Ceruti, R.; Drudis, T.; Scanziani, E.; Casazza, A.M.; Taraboletti, G.; Giavazzi, R. BAY 12-9566, a Novel Inhibitor of Matrix Metalloproteinases with Antiangiogenic Activity. Clin. Cancer Res. 1999, 5, 3603–3607. [Google Scholar]
- Hoffman, A.; Qadri, B.; Frant, J.; Katz, Y.; Bhusare, S.R.; Breuer, E.; Hadar, R.; Reich, R. Carbamoylphosphonate Matrix Metalloproteinase Inhibitors 6: Cis-2-aminocyclohexylcarbamoylphosphonic Acid, A Novel Orally Active Antimetastatic Matrix Metalloproteinase-2 Selective Inhibitor-Synthesis and Pharmacodynamic and Pharmacokinetic Analysis. J. Med. Chem. 2008, 51, 1406–1414. [Google Scholar] [CrossRef]
- Ye, Y.; Kuang, X.; Xie, Z.; Liang, L.; Zhang, Z.; Zhang, Y.; Ma, F.; Gao, Q.; Chang, R.; Lee, H.H.; et al. Small-molecule MMP2/MMP9 Inhibitor SB-3CT Modulates Tumor Immune Surveillance by Regulating PD-L1. Genome Med. 2020, 12, 83. [Google Scholar] [CrossRef]
- Fabre, B.; Ramos, A.; de Pascual-Teresa, B. Targeting Matrix Metalloproteinases: Exploring the Dynamics of the s1’ Pocket in the Design of Selective, Small Molecule Inhibitors. J. Med. Chem. 2014, 57, 10205–10219. [Google Scholar] [CrossRef]
- Fabre, B.; Filipiak, K.; Zapico, J.M.; Diaz, N.; Carbajo, R.J.; Schott, A.K.; Martinez-Alcazar, M.P.; Suarez, D.; Pineda-Lucena, A.; Ramos, A.; et al. Progress towards Water-soluble Triazole-based Selective MMP-2 Inhibitors. Org. Biomol. Chem. 2013, 11, 6623–6641. [Google Scholar] [CrossRef]
- Scannevin, R.H.; Alexander, R.; Haarlander, T.M.; Burke, S.L.; Singer, M.; Huo, C.; Zhang, Y.M.; Maguire, D.; Spurlino, J.; Deckman, I.; et al. Discovery of a Highly Selective Chemical Inhibitor of Matrix Metalloproteinase-9 (MMP-9) That Allosterically Inhibits Zymogen Activation. J. Biol. Chem. 2017, 292, 17963–17974. [Google Scholar] [CrossRef] [Green Version]
- Dufour, A.; Zucker, S.; Sampson, N.S.; Kuscu, C.; Cao, J. Role of Matrix Metalloproteinase-9 Dimers in Cell Migration: Design of Inhibitory Peptides. J. Biol. Chem. 2010, 285, 35944–35956. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, Z.; Wang, Y.; Bonewald, L.; Steffensen, B. Inhibition of MMP-2 Gelatinolysis by Targeting Exodomain-substrate Interactions. Biochem. J. 2007, 406, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.A.; Starodub, A.; Sharma, S.; Berlin, J.; Patel, M.; Wainberg, Z.A.; Chaves, J.; Gordon, M.; Windsor, K.; Brachmann, C.B.; et al. Andecaliximab/GS-5745 Alone and Combined with mFOLFOX6 in Advanced Gastric and Gastroesophageal Junction Adenocarcinoma: Results from a Phase I Study. Clin. Cancer Res. 2018, 24, 3829–3837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manna, S.; Florio, D.; Iacobucci, I.; Napolitano, F.; Benedictis, I.; Malfitano, A.M.; Monti, M.; Ravera, M.; Gabano, E.; Marasco, D. A Comparative Study of the Effects of Platinum (II) Complexes on beta-Amyloid Aggregation: Potential Neurodrug Applications. Int. J. Mol. Sci. 2021, 22, 3015. [Google Scholar] [CrossRef]
- La Manna, S.; Leone, M.; Iacobucci, I.; Annuziata, A.; Di Natale, C.; Lagreca, E.; Malfitano, A.M.; Ruffo, F.; Merlino, A.; Monti, M.; et al. Glucosyl Platinum(II) Complexes Inhibit Aggregation of the C-Terminal Region of the Abeta Peptide. Inorg. Chem. 2022, 61, 3540–3552. [Google Scholar] [CrossRef]
- Florio, D.; Iacobucci, I.; Ferraro, G.; Mansour, A.M.; Morelli, G.; Monti, M.; Merlino, A.; Marasco, D. Role of the Metal Center in the Modulation of the Aggregation Process of Amyloid Model Systems by Square Planar Complexes Bearing 2-(2’-pyridyl)benzimidazole Ligands. Pharmaceuticals 2019, 12, 154. [Google Scholar] [CrossRef] [Green Version]
- Florio, D.; Cuomo, M.; Iacobucci, I.; Ferraro, G.; Mansour, A.M.; Monti, M.; Merlino, A.; Marasco, D. Modulation of Amyloidogenic Peptide Aggregation by Photoactivatable CO-Releasing Ruthenium(II) Complexes. Pharmaceuticals 2020, 13, 171. [Google Scholar] [CrossRef]
- Ma, X.; Lu, J.; Yang, P.; Huang, B.; Li, R.; Ye, R. Synthesis, Characterization and Antitumor Mechanism Investigation of Heterometallic Ru(II)-Re(I) Complexes. Front. Chem. 2022, 10, 890925. [Google Scholar] [CrossRef]
- Lu, J.J.; Ma, X.R.; Xie, K.; Yang, P.X.; Li, R.T.; Ye, R.R. Novel Heterobimetallic Ir(III)-Re(I) Complexes: Design, Synthesis and Antitumor Mechanism Investigation. Dalton Trans. 2022, 51, 7907–7917. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Liu, Y.; Peng, X.; Hua, S.; Zhou, G.; Yan, K.; Liu, Y. Synthesis, Characterization, and Antitumor Properties of Au(I)-Thiourea Complexes. Metallomics 2020, 12, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, B.; Xu, C.X.; He, L.; Wan, Y.C.; Ji, L.N.; Mao, Z.W. Mitochondria-targeted Phosphorescent Cyclometalated Iridium(III) Complexes: Synthesis, Characterization, and Anticancer Properties. J. Biol. Inorg. Chem. 2020, 25, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Chen, S.; Liu, X.; Wang, Q.; Gao, L.; Zhao, C.; Zhang, L.; Shao, M.; Yuan, X.A.; Tian, L.; et al. Ferrocene-Appended Iridium(III) Complexes: Configuration Regulation, Anticancer Application, and Mechanism Research. Inorg. Chem. 2019, 58, 14175–14184. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lu, J.; Yang, P.; Zhang, Z.; Huang, B.; Li, R.; Ye, R. 8-Hydroxyquinoline-modified Ruthenium(II) Polypyridyl Complexes for JMJD Inhibition and Photodynamic Antitumor therapy. Dalton Trans. 2022, 51, 13902–13909. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Chen, J.; Liu, H.; Zhou, Y.; Huang, C.; Liang, L.; Liu, Y.; Wang, X. Anticancer Effect Evaluation of Iridium(III) Complexes Targeting Mitochondria and Endoplasmic Reticulum. J. Inorg. Biochem. 2023, 238, 112054. [Google Scholar] [CrossRef]
- Chen, B.B.; Pan, N.L.; Liao, J.X.; Huang, M.Y.; Jiang, D.C.; Wang, J.J.; Qiu, H.J.; Chen, J.X.; Li, L.; Sun, J. Cyclometalated Iridium(III) Complexes As Mitochondria-targeted Anticancer and Antibacterial Agents to Induce Both Autophagy and Apoptosis. J. Inorg. Biochem. 2021, 219, 111450. [Google Scholar] [CrossRef]
- Cai, D.H.; Chen, B.H.; Liu, Q.Y.; Le, X.Y.; He, L. Synthesis, Structural Studies, Interaction with DNA/HSA and Antitumor Evaluation of New Cu(II) Complexes Containing 2-(1H-imidazol-2-yl)pyridine and Amino Acids. Dalton Trans. 2022, 51, 16574–16586. [Google Scholar] [CrossRef]
- Jiang, G.B.; Zhang, W.Y.; He, M.; Gu, Y.Y.; Bai, L.; Wang, Y.J.; Yi, Q.Y.; Du, F. Systematic Evaluation of the Antitumor Activity of Three Ruthenium Polypyridyl Complexes. J. Inorg. Biochem. 2021, 225, 111616. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, H.; Tian, L.; Yang, L.; Zhou, Y.; Zhang, Y.; Liu, Y.; Xing, D. Evaluation of Anticancer Effects In Vitro of New Iridium(III) Complexes Targeting the Mitochondria. J. Inorg. Biochem. 2021, 221, 111465. [Google Scholar] [CrossRef]
- Maikoo, S.; Makayane, D.; Booysen, I.N.; Ngubane, P.; Khathi, A. Ruthenium Compounds as Potential Therapeutic Agents for Type 2 Diabetes Mellitus. Eur. J. Med. Chem. 2021, 213, 113064. [Google Scholar] [CrossRef]
- Gong, G.; Du, W.; Xu, J.; Huang, X.; Yin, G. Regulation of Heteronuclear Pt-Ru Complexes on the Fibril Formation and Cytotoxicity of Human Islet Amyloid Polypeptide. J. Inorg. Biochem. 2018, 189, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.Y.; Chei, W.S.; Ju, H.; Lee, M.S.; Lee, J.W.; Suh, J. A Co(III) Complex Cleaving Soluble Oligomers of h-IAPP in the Presence of Polymeric Aggregates of h-IAPP. Bioorg. Med. Chem. Lett. 2012, 22, 5689–5693. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Wang, W.; Du, W. Binuclear Ruthenium Complexes Inhibit the Fibril Formation of Human Islet Amyloid Polypeptide. RSC Adv. 2017, 7, 18512–18522. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, Q.; Luo, J.; Jiang, Y.; Zhou, R.; Tong, S.; Wang, Z.; Tong, Q. Superoxide Dismutase Mimic, MnTE-2-PyP Enhances Rectal Anastomotic Strength in Rats after Preoperative Chemoradiotherapy. Oxid. Med. Cell. Longev. 2020, 2020, 3509859. [Google Scholar] [CrossRef] [Green Version]
- Pacor, S.; Zorzet, S.; Cocchietto, M.; Bacac, M.; Vadori, M.; Turrin, C.; Gava, B.; Castellarin, A.; Sava, G. Intratumoral NAMI-A Treatment Triggers Metastasis Reduction, Which Correlates to CD44 Regulation and Tumor Infiltrating Lymphocyte Recruitment. J. Pharmacol. Exp. Ther. 2004, 310, 737–744. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Li, X.; Ran, Q.; Kang, C.; Lee, C.; Shen, J. Antimetastatic Activity of Novel Ruthenium(III) Pyridine Complexes. Cancer Med. 2016, 5, 2850–2860. [Google Scholar] [CrossRef]
- Wu, J.; Yang, T.; Wang, X.; Li, W.; Pang, M.; Sun, H.; Liang, H.; Yang, F. Development of a Multi-target Anticancer Sn(II) Pyridine-2-carboxaldehyde Thiosemicarbazone Complex. Dalton Trans. 2021, 50, 10909–10921. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Perelmulter, K.; Levin, P.; Romo, A.I.B.; Lemus, L.; Fogolin, M.B.; Leon, I.E.; Di Virgilio, A.L. Antiproliferative Activity of Two Copper(II) Complexes on Colorectal Cancer Cell Models: Impact on ROS Production, Apoptosis Induction and NF-κB inhibition. Eur. J. Pharm. Sci. 2022, 169, 106092. [Google Scholar] [CrossRef]
- Levín, P.; Ruiz, M.C.; Romo, A.I.B.; Nascimento, O.R.; Di Virgilio, A.L.; Oliver, A.G.; Ayala, A.P.; Diógenes, I.C.N.; León, I.E.; Lemus, L. Water-mediated Reduction of [Cu(dmp)2(CH3CN)]2+: Implications of the Structure of a Classical Complex on Its Activity as an Anticancer Drug. Inorg. Chem. Front. 2021, 8, 3238–3252. [Google Scholar] [CrossRef]
- Balsa, L.M.; Ruiz, M.C.; Santa Maria de la Parra, L.; Baran, E.J.; Leon, I.E. Anticancer and Antimetastatic Activity of Copper(II)-tropolone Complex Against Human Breast Cancer Cells, Breast Multicellular Spheroids and Mammospheres. J. Inorg. Biochem. 2020, 204, 110975. [Google Scholar] [CrossRef] [PubMed]
- Zec, M.; Srdic-Rajic, T.; Konic-Ristic, A.; Todorovic, T.; Andjelkovic, K.; Filipovic-Ljeskovic, I.; Radulovic, S. Anti-metastatic and Anti-angiogenic Properties of Potential New Anti-cancer Drugs Based on Metal Complexes of Selenosemicarbazones. Anti-Cancer Agents Med. Chem. 2012, 12, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, Y.; Lai, H.; Li, X.; Chen, T. Iron(II)-Polypyridyl Complexes Inhibit the Growth of Glioblastoma Tumor and Enhance TRAIL-Induced Cell Apoptosis. Chem. Asian J. 2018, 13, 2730–2738. [Google Scholar] [CrossRef] [PubMed]
- Stefano, E.; Muscella, A.; Benedetti, M.; De Castro, F.; Fanizzi, F.P.; Marsigliante, S. Antitumor and Antimigration Effects of a New Pt Compound on Neuroblastoma Cells. Biochem. Pharmacol. 2022, 202, 115124. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Vetrugno, C.; Calabriso, N.; Cossa, L.G.; De Pascali, S.A.; Fanizzi, F.P.; Marsigliante, S. [Pt(O,O’-acac)(γ-acac)(DMS)] Alters SH-SY5Y Cell Migration and Invasion by the Inhibition of Na+/H+ Exchanger Isoform 1 Occurring through a PKC-ε/ERK/mTOR Pathway. PLoS ONE 2014, 9, e112186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elie, B.T.; Fernandez-Gallardo, J.; Curado, N.; Cornejo, M.A.; Ramos, J.W.; Contel, M. Bimetallic Titanocene-gold Phosphane Complexes Inhibit Invasion, Metastasis, and Angiogenesis-associated Signaling Molecules in Renal Cancer. Eur. J. Med. Chem. 2019, 161, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Q.; Li, L.; Chen, Y.; Cui, J.; Liu, M.; Zhang, N.; Liu, Z.; Han, J.; Wang, Z. Ketoprofen and Loxoprofen Platinum(IV) Complexes Displaying Antimetastatic Activities by Inducing DNA Damage, Inflammation Suppression, and Enhanced Immune Response. J. Med. Chem. 2021, 64, 17920–17935. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.; Li, Z.; Liu, Z.; Zhao, Y.; Zhang, J.; Liu, M.; Wang, Z.; Li, D.; Han, J. Naproxen Platinum(IV) Hybrids Inhibiting Cycloxygenases and Matrix Metalloproteinases and Causing DNA Damage: Synthesis and Biological Evaluation as Antitumor Agents In Vitro and In Vivo. Dalton Trans. 2020, 49, 5192–5204. [Google Scholar] [CrossRef]
- Becceneri, A.B.; Fuzer, A.M.; Plutin, A.M.; Batista, A.A.; Lelièvre, S.A.; Cominetti, M.R. Three-dimensional Cell Culture Models for Metallodrug Testing: Induction of Apoptosis and Phenotypic Reversion of Breast Cancer Cells by the trans-[Ru(PPh3)2(N,N-dimethyl-N-thiophenylthioureato-k2O,S)(bipy)]PF6 Complex. Inorg. Chem. Front. 2020, 7, 2909–2919. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xu, F.; Zhao, Y.; Zheng, W.; Zeng, W.; Luo, Q.; Wang, Z.; Wu, K.; Du, J.; Wang, F. Platinum(II) Terpyridine Anticancer Complexes Possessing Multiple Mode of DNA Interaction and EGFR Inhibiting Activity. Front. Chem. 2020, 8, 210. [Google Scholar] [CrossRef]
- Ravera, M.; Gabano, E.; McGlinchey, M.J.; Osella, D. A View on Multi-action Pt(IV) Antitumor Prodrugs. Inorganica Chim. Acta 2019, 492, 32–47. [Google Scholar] [CrossRef]
- Kasparkova, J.; Kostrhunova, H.; Novohradsky, V.; Logvinov, A.C.; Temnov, V.V.; Borisova, N.E.; Podrugina, T.A.; Markova, L.; Starha, P.; Nazarov, A.A.; et al. Novel cis-Pt(II) Complexes with Alkylpyrazole Ligands: Synthesis, Characterization, and Unusual Mode of Anticancer Action. Bioinorg. Chem. Appl. 2022, 2022, 1717200. [Google Scholar] [CrossRef]
- Mitra, I.; Mukherjee, S.; Dasgupta, S.; Mukherjee, S.; Linert, W.; Moi, S.C. Benzimidazole Based Pt(II) Complexes with Better Normal Cell Viability Than Cisplatin: Synthesis, Substitution Behavior, Cytotoxicity, DNA Binding and DFT Study. RSC Adv. 2016, 6, 76600–76613. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Lin, Y.; Liu, Y.; Cao, L.; Cui, L. Retinoic Acid-Platinum (II) Complex [RT-Pt(II)] Protects Against Rheumatoid Arthritis in Mice via MEK/Nuclear Factor kappa B (NF-κB) Pathway Downregulation. Med. Sci. Monit. 2020, 26, e924787. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jin, X.; Liao, Y.; Sun, Q.; Luo, C.; Wang, G.; Zhao, F.; Jin, Y. Association of NF-κB and AP-1 with MMP-9 Overexpression in 2-Chloroethanol Exposed Rat Astrocytes. Cells 2018, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Rahman, F.U.; Ali, A.; Khan, I.U.; Duong, H.Q.; Guo, R.; Wang, H.; Li, Z.T.; Zhang, D.W. Novel Phenylenediamine Bridged Mixed Ligands Dimetallic Square Planner Pt(II) Complex Inhibits MMPs Expression via p53 and Caspase-dependent Signaling and Suppress Cancer Metastasis and Invasion. Eur. J. Med. Chem. 2017, 125, 1064–1075. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Tian, H. Current Developments in Pt(IV) Prodrugs Conjugated with Bioactive Ligands. Bioinorg. Chem. Appl. 2018, 2018, 8276139. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.L.; Chan, D.S.; Leung, C.H. Group 9 Organometallic Compounds for Therapeutic and Bioanalytical Applications. Acc. Chem. Res. 2014, 47, 3614–3631. [Google Scholar] [CrossRef]
- Merlino, A. Interactions between Proteins and Ru Compounds of Medicinal Interest: A Structural Perspective. Coord. Chem. Rev. 2016, 326, 111–134. [Google Scholar] [CrossRef]
- Palermo, G.; Magistrato, A.; Riedel, T.; von Erlach, T.; Davey, C.A.; Dyson, P.J.; Rothlisberger, U. Fighting Cancer with Transition Metal Complexes: From Naked DNA to Protein and Chromatin Targeting Strategies. ChemMedChem 2016, 11, 1199–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reedijk, J. Metal-Ligand Exchange Kinetics in Platinum and Ruthenium Complexes. Platin. Met. Rev. 2008, 52, 2–11. [Google Scholar] [CrossRef]
- Dyson, C.S.A.P.J. Ruthenium in Medicine: Current Clinical Uses and Future Prospects. Platin. Met. Rev. 2001, 45, 62–69. [Google Scholar]
- Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives. Drug Des. Dev. Ther. 2020, 14, 5375–5392. [Google Scholar] [CrossRef]
- Jayanthi, E.; Kalaiselvi, S.; Padma, V.V.; Bhuvanesh, N.S.; Dharmaraj, N. Solvent Assisted Formation of Ruthenium(III) and Ruthenium(II) Hydrazone Complexes in One-pot with Potential In Vitro Cytotoxicity and Enhanced LDH, NO and ROS Release. Dalton Trans. 2016, 45, 1693–1707. [Google Scholar] [CrossRef] [PubMed]
- Mazuryk, O.; Suzenet, F.; Kieda, C.; Brindell, M. The Biological Effect of the Nitroimidazole Derivative of a Polypyridyl Ruthenium Complex on Cancer and Endothelial Cells. Metallomics 2015, 7, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Gurgul, I.; Mazuryk, O.; Lomzik, M.; Gros, P.C.; Rutkowska-Zbik, D.; Brindell, M. Unexplored Features of Ru(II) Polypyridyl Complexes-towards Combined Cytotoxic and Antimetastatic Activity. Metallomics 2020, 12, 784–793. [Google Scholar] [CrossRef]
- Becker-Weimann, S.; Xiong, G.; Furuta, S.; Han, J.; Kuhn, I.; Akavia, U.D.; Pe’er, D.; Bissell, M.J.; Xu, R. NFκB Disrupts Tissue Polarity in 3D by Preventing Integration of Microenvironmental Signals. Oncotarget 2013, 4, 2010–2020. [Google Scholar] [CrossRef] [Green Version]
- Levina, A.; Mitra, A.; Lay, P.A. Recent Developments in Ruthenium Anticancer Drugs. Metallomics 2009, 1, 458–470. [Google Scholar] [CrossRef]
- Clarke, M.J. Ruthenium Metallopharmaceuticals. Coord. Chem. Rev. 2002, 232, 69–93. [Google Scholar] [CrossRef]
- Alessio, E.; Messori, L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019, 24, 1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sava, G.; Clerici, K.; Capozzi, I.; Cocchietto, M.; Gagliardi, R.; Alessio, E.; Mestroni, G.; Perbellini, A. Reduction of Lung Metastasis by ImH[trans-RuCl4(DMSO)Im]: Mechanism of the Selective Action Investigated on Mouse Tumors. Anticancer Drugs 1999, 10, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Mestroni, G.; Alessio, E.; Sava, G.; Pacor, S.; Coluccia, M.; Boccarelli, A. Water-Soluble Ruthenium(III)-Dimethyl Sulfoxide Complexes: Chemical Behaviour and Pharmaceutical Properties. Met. Based Drugs 1994, 1, 41–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brabec, V.; Kasparkova, J. Ruthenium Coordination Compounds of Biological and Biomedical Significance. DNA Binding Agents. Coord. Chem. Rev. 2018, 376, 75–94. [Google Scholar] [CrossRef]
- Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Berger, W.; Keppler, B.K. NKP-1339, the First Ruthenium-based Anticancer Drug on the Edge to Clinical Application. Chem. Sci. 2014, 5, 2925–2932. [Google Scholar] [CrossRef] [Green Version]
- Morbidelli, L.; Donnini, S.; Filippi, S.; Messori, L.; Piccioli, F.; Orioli, P.; Sava, G.; Ziche, M. Antiangiogenic Properties of Selected Ruthenium(III) Complexes That are Nitric Oxide Scavengers. Br. J. Cancer 2003, 88, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.M.F.; Bataglioli, J.C.; Jussila, A.J.; Smith, J.R.; Walsby, C.J.; Storr, T. Modification of Aβ Peptide Aggregation via Covalent Binding of a Series of Ru(III) Complexes. Front. Chem. 2019, 7, 838. [Google Scholar] [CrossRef]
- Wang, J.; Chen, D.; Li, B.; He, J.; Duan, D.; Shao, D.; Nie, M. Fe-MIL-101 Exhibits Selective Cytotoxicity and Inhibition of Angiogenesis in Ovarian Cancer Cells via Downregulation of MMP. Sci. Rep. 2016, 6, 26126. [Google Scholar] [CrossRef] [Green Version]
- Denoyer, D.; Clatworthy, S.A.S.; Cater, M.A. Copper Complexes in Cancer Therapy. Met. Ions Life Sci. 2018, 18, 469–506. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, Y.; Guo, Z.; Wang, X. Hypotoxic Copper Complexes with Potent Anti-metastatic and Anti-angiogenic Activities Against Cancer Cells. Dalton Trans. 2018, 47, 5049–5054. [Google Scholar] [CrossRef]
- Ludtke, C.; Sobottka, S.; Heinrich, J.; Liebing, P.; Wedepohl, S.; Sarkar, B.; Kulak, N. Forty Years after the Discovery of Its Nucleolytic Activity: [Cu(phen)2 ]2+ Shows Unattended DNA Cleavage Activity upon Fluorination. Chem. Eur. J. 2021, 27, 3273–3277. [Google Scholar] [CrossRef] [PubMed]
- Foo, J.B.; Low, M.L.; Lim, J.H.; Lor, Y.Z.; Zainol Abidin, R.; Eh Dam, V.; Abdul Rahman, N.; Beh, C.Y.; Chan, L.C.; How, C.W.; et al. Copper Complex Derived from S-benzyldithiocarbazate and 3-acetylcoumarin Induced Apoptosis in Breast Cancer Cell. BioMetals 2018, 31, 505–515. [Google Scholar] [CrossRef] [PubMed]
MMP | Expressed Cells | Biological Functions | Related Diseases |
---|---|---|---|
MMP-2 |
|
|
|
MMP-9 |
|
|
|
Anti-Cancer and Alzheimer’s Disease Related Actions | Advantages | Limitations |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, Y.T.; Kim, N.; Lee, H.J. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int. J. Mol. Sci. 2023, 24, 1258. https://doi.org/10.3390/ijms24021258
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. International Journal of Molecular Sciences. 2023; 24(2):1258. https://doi.org/10.3390/ijms24021258
Chicago/Turabian StyleNguyen, Yen Thi, Namdoo Kim, and Hyuck Jin Lee. 2023. "Metal Complexes as Promising Matrix Metalloproteinases Regulators" International Journal of Molecular Sciences 24, no. 2: 1258. https://doi.org/10.3390/ijms24021258
APA StyleNguyen, Y. T., Kim, N., & Lee, H. J. (2023). Metal Complexes as Promising Matrix Metalloproteinases Regulators. International Journal of Molecular Sciences, 24(2), 1258. https://doi.org/10.3390/ijms24021258