Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas
Abstract
:1. Introduction
2. Results
2.1. IgG Concentration in GBM and MEN Sera
2.2. Antibody Profiling on 16 k Protein Arrays
2.3. Overlap of DIRAGs
2.4. Pathway Analysis of DIRAGs
2.4.1. Pathways Enriched in GBM-Pre vs. Healthy
GBM-Pre vs. Healthy and Antigens with Higher Seroreactivity in GBM-Pre
GBM-Pre vs. Healthy: Higher Seroreactivity in Healthy
2.4.2. Pathways Enriched in GBM-Post vs. Healthy
2.4.3. Pathways Enriched in GBM-Post vs. GBM-Pre
2.4.4. Pathways Enriched in MEN-Pre, MEN-Post, and Healthy
2.5. Comparing Antigenic Reactivity Pathways to GBM Gene-Expression Pathways
3. Discussion and Conclusions
Pathways: Discussion
4. Materials and Methods
4.1. Samples
4.2. Isolation of Immunoglobulin G
4.3. Protein Microarray Processing
4.4. Image Acquisition and Data Extraction
4.5. Preprocessing and Differential Reactivity Analysis
4.6. Reactome Pathway
4.7. Gene Expression OncoDB Pathway Intersection with Antigenic Pathways
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhao, X.; Liu, T.; Chen, L.; Gao, W.; Cui, H.; Wang, Y.; Jiang, J.; Bao, Y. Genetic alterations in meningiomas of different textures. Gene 2016, 592, 134–139. [Google Scholar] [CrossRef]
- Ludwig, N.; Keller, A.; Leidinger, P.; Harz, C.; Backes, C.; Lenhof, H.P.; Meese, E. Is there a general autoantibody signature for cancer? Eur. J. Cancer 2012, 48, 2451–2461. [Google Scholar] [CrossRef]
- Tan, H.T.; Low, J.; Lim, S.G.; Chung, M.C.M. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 2009, 276, 6880–6904. [Google Scholar] [CrossRef]
- Coronell, J.A.L.; Syed, P.; Sergelen, K.; Gyurján, I.; Weinhäusel, A. The current status of cancer biomarker research using tumour-associated antigens for minimal invasive and early cancer diagnostics. J. Proteom. 2012, 76, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Luna-Coronell, J.A.; Vierlinger, K.; Gamperl, M.; Hofbauer, J.; Berger, I.; Weinhäusel, A. The prostate cancer immunome: In silico functional analysis of antigenic proteins from microarray profiling with IgG. Proteomics 2016, 16, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Gyurján, I.; Rosskopf, S.; Coronell, J.A.L.; Muhr, D.; Singer, C.; Weinhäusel, A. IgG based immunome analyses of breast cancer patients reveal underlying signaling pathways. Oncotarget 2019, 10, 3491–3505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronell, J.A.L.; Sergelen, K.; Hofer, P.; Gyurján, I.; Brezina, S.; Hettegger, P.; Leeb, G.; Mach, K.; Gsur, A.; Weinhäusel, A. The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling. Genom. Proteom. Bioinforma. 2018, 16, 73–84. [Google Scholar] [CrossRef]
- Milchram, L.; Fischer, A.; Huber, J.; Soldo, R.; Sieghart, D.; Vierlinger, K.; Blüml, S.; Steiner, G.; Weinhäusel, A. Functional Analysis of Autoantibody Signatures in Rheumatoid Arthritis. Molecules 2022, 27, 1452. [Google Scholar] [CrossRef] [PubMed]
- Jodeleit, H.; Milchram, L.; Soldo, R.; Beikircher, G.; Schönthaler, S.; Al-amodi, O.; Wolf, E.; Beigel, F.; Weinhäusel, A.; Siebeck, M.; et al. Autoantibodies as diagnostic markers and potential drivers of inflammation in ulcerative colitis. PLoS ONE 2020, 15, e0228615. [Google Scholar] [CrossRef]
- Boetto, J.; Birzu, C.; Kalamarides, M.; Peyre, M.; Sanson, M. Meningiomas: A review of current knowledge. La Rev. Med. Interne 2022, 43, 98–105. [Google Scholar] [CrossRef]
- Wang, N.; Osswald, M. Meningiomas: Overview and New Directions in Therapy. Semin. Neurol. 2018, 38, 112–120. [Google Scholar] [PubMed]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Cho, M.; Wang, X. OncoDB: An interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Res. 2022, 50, D1334–D1339. [Google Scholar] [CrossRef]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P values: Data analysis with estimation graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Schillert, A.; Röthemeier, C.; Trégouët, D.A.; Proust, C.; Binder, H.; Pfeiffer, N.; Beutel, M.; Lackner, K.J.; Schnabel, R.B.; et al. Removing Batch Effects from Longitudianl Gene Expression-Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data. PLoS ONE 2016, 11, e0156594. [Google Scholar] [CrossRef] [PubMed]
- Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. R Package Version 1.16.0. 2022. Available online: https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html (accessed on 12 December 2022).
- Gahoi, N.; Syed, P.; Choudhary, S.; Epari, S.; Moiyadi, A.; Varma, S.H.; Gandhi, M.N.; Srivastava, S. A Protein Microarray-Based Investigation of Cerebrospinal Fluid Reveals Distinct Autoantibody Signature in Low and High-Grade Gliomas. Front. Oncol. 2020, 10, 543947. [Google Scholar] [CrossRef] [PubMed]
- Syed, P.; Gupta, S.; Choudhary, S.; Pandala, N.G.; Atak, A.; Richharia, A.; KP, M.; Zhu, H.; Epari, S.; Noronha, S.B.; et al. Autoantibody profiling of glioma serum samples to identify biomarkers using human proteome arrays. Sci. Rep. 2015, 5, 13895. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Mukherjee, S.; Syed, P.; Pandala, N.G.; Choudhary, S.; Singh, V.A.; Singh, N.; Zhu, H.; Epari, S.; Noronha, S.B.; et al. Evaluation of autoantibody signatures in meningioma patients using human proteome arrays. Oncotarget 2017, 8, 58443–58456. [Google Scholar] [CrossRef] [Green Version]
- Dutoit, V.; Herold-Mende, C.; Hilf, N.; Schoor, O.; Beckhove, P.; Bucher, J.; Dorsch, K.; Flohr, S.; Fritsche, J.; Lewandrowski, P.; et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 2012, 135, 1042–1054. [Google Scholar] [CrossRef]
- Pallasch, C.P.; Struss, A.K.; Munnia, A.; König, J.; Steudel, W.I.; Fischer, U.; Meese, E. Autoantibodies against GLEA2 and PHF3 in glioblastoma: Tumor-associated autoantibodies correlated with prolonged survival. Int. J. Cancer 2005, 117, 456–459. [Google Scholar] [CrossRef]
- Aspenström, P. Activated rho GTPases in cancer—The beginning of a new paradigm. Int. J. Mol. Sci. 2018, 19, 3949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Koussa, H.; El Atat, O.; Jaafar, L.; Tashjian, H.; El-Sibai, M. The Role of Rho GTPases in Motility and Invasion of Glioblastoma Cells. Anal. Cell. Pathol. 2020, 2020, 9274016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matarredona, E.R.; Pastor, A.M. Extracellular Vesicle-Mediated Communication between the Glioblastoma and its microenvironment. Cells 2019, 9, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sippel, T.R.; White, J.; Nag, K.; Tsvankin, V.; Klaassen, M.; Kleinschmidt-DeMasters, B.K.; Waziri, A. Neutrophil degranulation and immunosuppression in patients with GBM: Restoration of cellular immune function by targeting arginase I. Clin. Cancer Res. 2011, 17, 6992–7002. [Google Scholar] [CrossRef] [Green Version]
- Mereiter, S.; Balmaña, M.; Campos, D.; Gomes, J.; Reis, C.A. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell 2019, 36, 6–16. [Google Scholar] [CrossRef]
- Veillon, L.; Fakih, C.; Abou-El-Hassan, H.; Kobeissy, F.; Mechref, Y. Glycosylation Changes in Brain Cancer. ACS Chem. Neurosci. 2018, 9, 51–72. [Google Scholar] [CrossRef]
- Fuentes-Fayos, A.C.; Vazques-Borrega, M.C.; Jiménez-Vacas, J.M.; Bejarano, L.; Pedraza-Arévalo, S.; Lopez, F.; Blanco-Acevedo, C.; Sánchez-Sánchez, R.; Reyes, O.; Ventura, S.; et al. Splicing machinery dysregulation drives glioblastoma development/aggressiveness: Oncogenic role of SRSF3. Brain 2021, 143, 3273–3293. [Google Scholar] [CrossRef]
- Larionova, T.D.; Kovalenko, T.F.; Shakhparonov, M.I.; Pavlyukov, M.S. The Prognostic Significance of Spliceosomal Proteins for Patients with Glioblastoma. Dokl. Biochem. Biophys. 2022, 503, 71–75. [Google Scholar] [CrossRef]
- Correa, B.R.; de Araujo, P.R.; Qiao, M.; Burns, S.C.; Chen, C.; Schlegel, R.; Agarwal, S.; Galante, P.A.F.; Penalva, L.O.F. Functional genomics analyses of RNA-binding proteins reveal the splicing regulator SNRPB as an oncogenic candidate in glioblastoma. Genome Biol. 2016, 17, 125. [Google Scholar] [CrossRef]
- Yi, G.Z.; Xiang, W.; Feng, W.Y.; Chen, Z.Y.; Li, Y.M.; Deng, S.Z.; Guo, M.I.; Zhao, L.; Sun, X.G.; He, M.Y.; et al. Identification of Key Candidate Proteins and Pathways Associated with Temozolomide Resistance in Glioblastoma Based on Subcellular Proteomics and Bioinformatical Analysis. Biomed Res. Int. 2018, 2018, 5238760. [Google Scholar] [CrossRef] [Green Version]
- Pavlyukov, M.S.; Yu, H.; Bastola, S.; Minata, M.; Shender, V.O.; Lee, Y.; Zhang, S.; Wang, J.; Komarova, S.; Wang, J.; et al. Apoptotic Cell-Derived Extracellular Vesicles Promote Malignancy of Glioblastoma Via Intercellular Transfer of Splicing Factors. Cancer Cell 2018, 34, 119–135.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelucci, C.; Lama, G.; Sica, G. Multifaceted functional role of semaphorins in glioblastoma. Int. J. Mol. Sci. 2019, 20, 2144. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, W.L.; Fu, L.; Ma, Y.J. Slit2/Robo1 signaling in glioma migration and invasion. Neurosci Bull. 2010, 26, 474–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.; Liu, H.; Chen, Y.; Wei, L.; Hong, J. Computational analysis and verification of molecular genetic targets for glioblastoma. Biosci. Rep. 2020, 40, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Shao, Z.; Zhang, P. Bioinformatic analysis of the potential molecular mechanisms of PAK7 expression in glioblastoma. Mol. Med. Rep. 2020, 22, 1362–1372. [Google Scholar] [CrossRef]
- Magnus, N.; D’Asti, E.; Garnier, D.; Meehan, B.; Rak, J. Brain Neoplasms and Coagulation. Semin. Thromb. Hemost. 2013, 39, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Magnus, N.; D’Asti, E.; Meehan, B.; Garnier, D.; Rak, J. Oncogenes and the coagulation system--forces that modulate dormant and aggressive states in cancer. Thromb. Res. 2014, 133 (S2), S1–S9. [Google Scholar] [CrossRef] [Green Version]
- Wojtukiewicz, M.Z.; Mysliwiec, M.; Matuszewska, E.; Sulkowski, S.; Zimnoch, L.; Politynska, B.; Wojtukiewicz, A.M.; Tucker, S.C.; Honn, K.V. Imbalance in coagulation/fibrinolysis inhibitors resulting in extravascular thrombin generation in gliomas of varying levels of malignancy. Biomolecules 2021, 11, 663. [Google Scholar] [CrossRef]
- Tawil, N.; Bassawon, R.; Rak, J. Oncogenes and Clotting Factors: The Emerging Role of Tumor Cell Genome and Epigenome in Cancer-Associated Thrombosis. Semin. Thromb. Hemost. 2019, 45, 373–384. [Google Scholar] [CrossRef]
- Garnier, D.; Magnus, N.; DAsti, E.; Hashemi, M.; Meehan, B.; Milsom, C.; Rak, J. Genetic pathways linking hemostasis and cancer. Thromb. Res. 2012, 129 (S1), S22–S29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Asti, E.; Rak, J. Biological basis of personalized anticoagulation in cancer: Oncogene and oncomir networks as putative regulators of coagulopathy. Thromb. Res. 2016, 140 (S1), S37–S43. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Gortany, N.K.; Panahi, G.; Ghafari, H.; Shekari, M.; Ghazi-Khansari, M. Foretinib induces G2/M cell cycle arrest, apoptosis, and invasion in human glioblastoma cells through c-MET inhibition. Cancer Chemother. Pharmacol. 2021, 87, 827–842. [Google Scholar] [CrossRef]
- Arcella, A.; Oliva, M.A.; Sanchez, M.; Staffieri, S.; Esposito, V.; Felice, G.; Giampaola, C. Effects of hispolon on glioblastoma cell growth. Environ. Toxicol. 2017, 32, 2113–2123. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; He, Z.; Zhou, K.; Cheng, J.; Yao, H.; Lu, D.; Cai, R.; Jin, Y.; Dong, B.; Xu, Y.; et al. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J. Natl. Cancer Inst. 2010, 102, 1052–1068. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, L.; Wang, Y.; Sun, J.; Wang, D.; Fan, S.; Ban, N.; Zhu, J.; Ji, B.; Wang, Y. Expression of CDC5L is associated with tumor progression in gliomas. Tumor Biol. 2016, 37, 4093–4103. [Google Scholar] [CrossRef]
- Fan, S.; Xu, Q.; Wang, L.; Wan, Y.; Qiu, S. SMBA1, a Bax Activator, Induces Cell Cycle Arrest and Apoptosis in Malignant Glioma Cells. Pharmacology 2020, 105, 164–172. [Google Scholar] [CrossRef]
- Zhong, S.; Bai, Y.; Wu, B.; Ge, J.; Jiang, S.; Li, W.; Wang, X.; Ren, J.; Yu, H.; Chen, Y.; et al. Selected by gene co-expression network and molecular docking analyses, ENMD-2076 is highly effective in glioblastoma-bearing rats. Aging (Albany. N.Y.) 2019, 11, 9738–9766. [Google Scholar] [CrossRef] [PubMed]
- Shakya, S.; Gromovsky, A.D.; Hale, J.S.; Knudsen, A.M.; Prager, B.; Wallace, L.C.; Penalva, L.O.F.; Brown, A.; Kristensen, B.W.; Rich, J.N.; et al. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol. Commun. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Guo, D.; Bell, E.H.; Chakravarti, A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol. 2013, 2, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Geng, F.; Cheng, X.; Guo, Q.; Zhong, Y.; Cloughesy, T.F.; Yong, W.H.; Chakravarti, A.; Guo, D. Lipid Droplets Maintain Energy Homeostasis and Glioblastoma Growth via Autophagic Release of Stored Fatty Acids. iScience 2020, 23, 101569. [Google Scholar] [CrossRef]
- Taïb, B.; Aboussalah, A.M.; Moniruzzaman, M.; Chen, S.; Haughey, N.J.; Kim, S.F.; Ahima, R.S. Lipid accumulation and oxidation in glioblastoma multiforme. Sci. Rep. 2019, 9, 19593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Geng, F.; Pan, M.; Wu, X.; Zhong, Y.; Wang, C.; Tian, Z.; Cheng, C.; Zhang, R.; Puduvalli, V.; et al. Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell Metab. 2020, 32, 229–242. [Google Scholar] [CrossRef]
- Wolf, A.; Agnihotri, S.; Guha, A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 2010, 1, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Watters, A.; Cheng, N.; Perry, C.E.; Xu, K.; Alicea, G.; Parris, J.L.D.; Baraban, E.; Ray, P.; Nayak, A.; et al. Polyunsaturated Fatty Acids from Astrocytes Activate PPAR Gamma Signaling in Cancer Cells to Promote Brain Metastasis. Cancer Discov. 2019, 9, 1720–1735. [Google Scholar] [CrossRef] [Green Version]
- Kou, Y.; Geng, F.; Guo, D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines 2022, 10, 1943. [Google Scholar] [CrossRef]
- Dai, J.; Ma, Y.; Chu, S.; Le, N.; Cao, J.; Wang, Y. Identification of key genes and pathways in meningioma by bioinformatics analysis. Oncol. Lett. 2018, 15, 8245–8252. [Google Scholar] [CrossRef]
- Erkan, E.P.; Ströbel, T.; Dorfer, C.; Sonntagbauer, M.; Weinhäusel, A.; Saydam, N.; Saydam, O. Circulating tumor biomarkers in meningiomas reveal a signature of equilibrium between tumor growth and immune modulation. Front. Oncol. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ströbel, T.; Madlener, S.; Tuna, S.; Vose, S.; Lagerweij, T.; Wurdinger, T.; Vierlinger, K.; Wöhrer, A.; Price, B.D.; Demple, B.; et al. Ape1 guides DNA repair pathway choice that is associated with drug tolerance in glioblastoma. Sci. Rep. 2017, 7, 1031. [Google Scholar] [CrossRef] [Green Version]
- Stempfer, R.; Syed, P.; Vierlinger, K.; Pichler, R.; Meese, E.; Leidinger, P.; Ludwig, N.; Kriegner, A.; Nöhammer, C.; Weinhäusel, A. Tumour auto-antibody screening: Performance of protein microarrays using SEREX derived antigens. BMC Cancer 2010, 10, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brezina, S.; Soldo, R.; Kreuzhuber, R.; Hofer, P.; Gsur, A.; Weinhaeusel, A. Immune-Signatures for Lung Cancer Diagnostics: Evaluation of Protein Microarray Data Normalization Strategies. Microarrays 2015, 4, 162–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.r-project.org/ (accessed on 1 April 2021).
- Ngan, M.; Simon, R.; Menenzes, S.; Zhao, Y.; Lam, A.; Li, M.-C. Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Inform. 2017, 3, 117693510700300. [Google Scholar]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.N.B.; Chu, G. Impute: Imputation for Microarray Data. R Package Version 1.64.0.; Bioconductor: New York, NY, USA, 2022. [Google Scholar]
- Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28, 882–883. [Google Scholar] [CrossRef] [Green Version]
- Gentleman, R.; Carey, V.J.; Huber, W.; Hahne, F. Genefilter: Methods for Filtering Genes from High-Throughput Experiments. R Package Version 1.80.2. 2021. Available online: https://bioconductor.org/packages/release/bioc/html/genefilter.html (accessed on 12 December 2022).
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. Jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; He, Q.-Y. ReactomePA: An R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 2016, 12, 477–479. [Google Scholar] [CrossRef]
A Contrast | Higher in | t-Statistic | Fold Change | p-Value | AUC | Gene | B Contrast | Higher in | t-Statistic | Fold Change | p-Value | AUC | Gene |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a-GBM-PRE vs. control | gbm-pre | −2.615 | −1.234 | 0.011 | 0.702 | VAT1L | c-MEN-PRE vs. control | men-pre | −5.229 | −0.749 | 0.000 | 0.816 | SART1 |
−2.441 | −0.901 | 0.018 | 0.726 | RNF213 | −2.775 | −0.698 | 0.007 | 0.639 | TLE2 | ||||
−3.816 | −0.897 | 0.000 | 0.741 | ARFGAP2 | −2.617 | −0.692 | 0.011 | 0.692 | MORF4L1 | ||||
−3.049 | −0.837 | 0.003 | 0.687 | KAT14 | −4.001 | −0.639 | 0.000 | 0.729 | DDX11 | ||||
−3.660 | −0.829 | 0.001 | 0.771 | ARFGAP2 | −4.666 | −0.626 | 0.000 | 0.782 | FAM209B | ||||
−3.002 | −0.691 | 0.004 | 0.753 | BTBD7 | −2.052 | −0.608 | 0.044 | 0.631 | CCNL2 | ||||
−2.302 | −0.689 | 0.025 | 0.721 | USP54 | −2.191 | −0.606 | 0.032 | 0.604 | MED4 | ||||
−2.623 | −0.668 | 0.011 | 0.687 | RPL37A | −2.395 | −0.596 | 0.019 | 0.698 | DDX18 | ||||
−2.079 | −0.668 | 0.042 | 0.725 | CCT6A | −3.898 | −0.592 | 0.000 | 0.764 | TTC3 | ||||
−3.328 | −0.640 | 0.002 | 0.807 | PCDHB14 | −2.946 | −0.589 | 0.004 | 0.689 | MED7 | ||||
control | 2.443 | 0.688 | 0.018 | 0.719 | MYBBP1A | control | 2.612 | 0.662 | 0.011 | 0.677 | NFIX | ||
2.569 | 0.700 | 0.013 | 0.752 | GCN1 | 3.053 | 0.692 | 0.003 | 0.695 | MAP1LC3B | ||||
2.826 | 0.704 | 0.006 | 0.798 | SNX15 | 3.310 | 0.700 | 0.001 | 0.684 | DMPK | ||||
3.099 | 0.808 | 0.003 | 0.844 | ALG3 | 2.975 | 0.766 | 0.004 | 0.695 | MAZ | ||||
2.371 | 0.823 | 0.021 | 0.736 | NFIX | 3.111 | 0.784 | 0.003 | 0.720 | ALAD | ||||
2.542 | 0.833 | 0.014 | 0.752 | CUL9 | 3.750 | 0.817 | 0.000 | 0.753 | OTUD1 | ||||
4.039 | 0.851 | 0.000 | 0.781 | EIF4EBP1 | 2.324 | 0.822 | 0.023 | 0.697 | TACC2 | ||||
2.927 | 0.857 | 0.005 | 0.818 | GIPC1 | 3.148 | 0.836 | 0.002 | 0.706 | RALGDS | ||||
2.141 | 0.909 | 0.036 | 0.790 | ZNF232 | 3.386 | 0.871 | 0.001 | 0.710 | RALGDS | ||||
4.324 | 1.123 | 0.000 | 0.819 | TELO2 | 2.552 | 1.157 | 0.013 | 0.697 | TTLL12 | ||||
b-GBM-POST vs. control | gbm-post | −4.271 | −0.968 | 0.000 | 0.757 | DBN1 | d-MEN-POST vs. control | men-post | −3.775 | −0.603 | 0.000 | 0.723 | INPP5B |
−2.045 | −0.894 | 0.045 | 0.707 | VAT1L | −3.526 | −0.526 | 0.001 | 0.704 | PSMB5 | ||||
−2.670 | −0.798 | 0.010 | 0.754 | CCNL2 | −3.040 | −0.506 | 0.003 | 0.685 | EEF1A1 | ||||
−2.359 | −0.797 | 0.021 | 0.697 | CEP57 | −3.809 | −0.499 | 0.000 | 0.743 | LMF2 | ||||
−3.301 | −0.766 | 0.002 | 0.756 | ZNF341 | −3.188 | −0.492 | 0.002 | 0.691 | ISCU | ||||
−2.757 | −0.696 | 0.008 | 0.754 | STK11IP | −2.340 | −0.486 | 0.022 | 0.679 | ERP29 | ||||
−3.512 | −0.695 | 0.001 | 0.722 | SNAP47 | −2.047 | −0.483 | 0.044 | 0.648 | BCL9 | ||||
−2.413 | −0.669 | 0.019 | 0.699 | UCHL1 | −3.553 | −0.482 | 0.001 | 0.712 | ARFGAP2 | ||||
−3.359 | −0.650 | 0.001 | 0.763 | PER1 | −3.044 | −0.482 | 0.003 | 0.664 | SLC20A2 | ||||
−2.195 | −0.635 | 0.032 | 0.673 | EDC4 | −2.802 | −0.461 | 0.006 | 0.689 | IGHA1 | ||||
control | 3.568 | 0.636 | 0.001 | 0.768 | CUL7 | control | 2.688 | 0.487 | 0.009 | 0.665 | ALG3 | ||
2.045 | 0.641 | 0.045 | 0.682 | MTMR14 | 2.138 | 0.498 | 0.036 | 0.616 | NFIX | ||||
2.097 | 0.651 | 0.040 | 0.666 | ALKBH5 | 3.213 | 0.508 | 0.002 | 0.728 | NPC2 | ||||
2.208 | 0.654 | 0.031 | 0.625 | PLOD1 | 2.112 | 0.542 | 0.038 | 0.625 | PRKRA | ||||
2.567 | 0.654 | 0.013 | 0.724 | BMS1 | 2.066 | 0.548 | 0.042 | 0.635 | GMIP | ||||
2.709 | 0.665 | 0.009 | 0.717 | RC3H2 | 2.856 | 0.556 | 0.006 | 0.700 | ALG12 | ||||
2.220 | 0.736 | 0.030 | 0.652 | RALGDS | 2.168 | 0.619 | 0.033 | 0.647 | STAT5A | ||||
3.317 | 0.758 | 0.002 | 0.793 | ALG3 | 2.997 | 0.644 | 0.004 | 0.709 | PPP2R1A | ||||
2.528 | 0.814 | 0.014 | 0.655 | KIFAP3 | 3.435 | 0.684 | 0.001 | 0.708 | OTUD1 | ||||
2.737 | 0.864 | 0.008 | 0.718 | NFIX | 2.402 | 0.815 | 0.019 | 0.678 | TACC2 | ||||
e-GBM-PRE vs. GBM-POST | gbm-pre | −3.350 | −0.858 | 0.002 | 0.859 | EIF3G | e-MEN-PRE vs. MEN-POST | men-pre | −2.473 | −0.766 | 0.017 | 0.647 | CCNL2 |
−2.585 | −0.751 | 0.016 | 0.771 | POLD2 | −3.509 | −0.705 | 0.001 | 0.762 | DDX11 | ||||
−3.112 | −0.749 | 0.004 | 0.792 | GPATCH1 | −2.252 | −0.678 | 0.028 | 0.664 | LCK | ||||
−2.199 | −0.706 | 0.037 | 0.766 | GTF2IP4 | −2.215 | −0.659 | 0.031 | 0.627 | TLE2 | ||||
−2.229 | −0.693 | 0.035 | 0.682 | TPP2 | −3.383 | −0.611 | 0.001 | 0.767 | RPS2 | ||||
−2.465 | −0.690 | 0.021 | 0.734 | ARHGAP33 | −2.240 | −0.586 | 0.029 | 0.745 | CDC37 | ||||
−2.873 | −0.690 | 0.008 | 0.797 | NAA20 | −3.380 | −0.585 | 0.001 | 0.781 | GSTK1 | ||||
−3.203 | −0.685 | 0.004 | 0.891 | PLEKHA5 | −2.652 | −0.569 | 0.011 | 0.713 | PTK7 | ||||
−2.404 | −0.677 | 0.024 | 0.755 | TAX1BP3 | −3.108 | −0.565 | 0.003 | 0.733 | N4BP3 | ||||
−2.437 | −0.663 | 0.022 | 0.813 | GOLGB1 | −3.567 | −0.564 | 0.001 | 0.759 | KIF2C | ||||
gbm-post | 2.801 | 0.705 | 0.009 | 0.792 | GIPC1 | men-post | 2.237 | 0.491 | 0.030 | 0.685 | MSH2 | ||
2.462 | 0.712 | 0.021 | 0.734 | SYNE2 | 3.271 | 0.498 | 0.002 | 0.753 | RABGGTB | ||||
2.411 | 0.753 | 0.023 | 0.820 | SLC7A5 | 3.871 | 0.500 | 0.000 | 0.776 | AZI2 | ||||
2.170 | 0.767 | 0.039 | 0.724 | SAP30BP | 2.891 | 0.503 | 0.006 | 0.696 | PSMB5 | ||||
2.492 | 0.809 | 0.019 | 0.802 | EIF4EBP1 | 2.130 | 0.530 | 0.038 | 0.639 | RPS26 | ||||
2.584 | 0.925 | 0.016 | 0.771 | CCNL2 | 2.266 | 0.558 | 0.028 | 0.651 | MAP1LC3B | ||||
2.275 | 0.967 | 0.031 | 0.771 | BAIAP2 | 3.127 | 0.559 | 0.003 | 0.749 | NUCB1 | ||||
3.615 | 0.986 | 0.001 | 0.870 | LAMTOR2 | 2.291 | 0.570 | 0.026 | 0.687 | RALGDS | ||||
2.611 | 1.030 | 0.015 | 0.708 | TELO2 | 2.278 | 0.622 | 0.027 | 0.634 | DMPK | ||||
2.775 | 1.074 | 0.010 | 0.807 | IGKC | 2.349 | 0.625 | 0.023 | 0.678 | ALAD |
(A) TOP25-Higher in GBM | Entities | Entities | Entities | Entities | Entities | Reactions | Reactions | Reactions |
---|---|---|---|---|---|---|---|---|
Pathway Name | Found | Total | Ratio | p-Value | FDR | Found | Total | Ratio |
Endosomal/Vacuolar pathway | 77 | 82 | 0.005 | 1.11 × 10−16 | 2.42 × 10−14 | 4 | 4 | 0 |
SRP-dependent cotranslational protein targeting to membrane | 68 | 119 | 0.008 | 1.11 × 10−16 | 2.42 × 10−14 | 5 | 5 | 0 |
ER-Phagosome pathway | 97 | 173 | 0.011 | 1.11 × 10−16 | 2.42 × 10−14 | 10 | 10 | 0.001 |
Antigen processing-Cross presentation | 107 | 195 | 0.013 | 1.11 × 10−16 | 2.42 × 10−14 | 22 | 23 | 0.002 |
Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 77 | 108 | 0.007 | 1.11 × 10−16 | 2.42 × 10−14 | 15 | 16 | 0.001 |
Interferon Signaling | 180 | 395 | 0.026 | 1.11 × 10−16 | 2.42 × 10−14 | 33 | 71 | 0.005 |
Cytokine Signaling in Immune system | 338 | 1094 | 0.072 | 1.11 × 10−16 | 2.42 × 10−14 | 244 | 710 | 0.051 |
Interferon gamma signaling | 156 | 250 | 0.017 | 1.11 × 10−16 | 2.42 × 10−14 | 5 | 16 | 0.001 |
Interferon alpha/beta signaling | 104 | 190 | 0.013 | 1.11 × 10−16 | 2.42 × 10−14 | 7 | 24 | 0.002 |
SARS-CoV-2-host interactions | 124 | 314 | 0.021 | 2.22 × 10−16 | 4.35 × 10−14 | 20 | 67 | 0.005 |
Peptide chain elongation | 59 | 97 | 0.006 | 7.77 × 10−16 | 1.38 × 10−13 | 4 | 5 | 0 |
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 59 | 101 | 0.007 | 4.33 × 10−15 | 7.06 × 10−13 | 1 | 1 | 0 |
Eukaryotic Translation Elongation | 59 | 102 | 0.007 | 6.55 × 10−15 | 9.89 × 10−13 | 7 | 9 | 0.001 |
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 119 | 316 | 0.021 | 2.04 × 10−14 | 2.86 × 10−12 | 39 | 44 | 0.003 |
Formation of a pool of free 40S subunits | 59 | 106 | 0.007 | 3.26 × 10−14 | 4.24 × 10−12 | 2 | 2 | 0 |
Eukaryotic Translation Termination | 58 | 106 | 0.007 | 1.07 × 10−13 | 1.31 × 10−11 | 3 | 5 | 0 |
SARS-CoV-2 activates/modulates innate and adaptive immune responses | 93 | 226 | 0.015 | 1.25 × 10−13 | 1.44 × 10−11 | 17 | 47 | 0.003 |
Response of EIF2AK4 (GCN2) to amino acid deficiency | 60 | 115 | 0.008 | 2.90 × 10−13 | 3.16 × 10−11 | 6 | 16 | 0.001 |
Selenocysteine synthesis | 58 | 112 | 0.007 | 9.59 × 10−13 | 9.88 × 10−11 | 2 | 7 | 0.001 |
L13a-mediated translational silencing of Ceruloplasmin expression | 60 | 120 | 0.008 | 1.62 × 10−12 | 1.58 × 10−10 | 3 | 3 | 0 |
(B) TOP25-Higher in NORMAL | Entities | Entities | Entities | Entities | Entities | Reactions | Reactions | Reactions |
Pathway Name | Found | Total | Ratio | p-Value | FDR | Found | Total | Ratio |
Neuronal System | 238 | 489 | 0.032 | 1.11 × 10−16 | 1.03 × 10−13 | 182 | 216 | 0.016 |
Transmission across Chemical Synapses | 155 | 343 | 0.023 | 1.11 × 10−16 | 1.03 × 10−13 | 136 | 163 | 0.012 |
Neurotransmitter receptors and postsynaptic signal transmission | 112 | 232 | 0.015 | 4.44 × 10−15 | 2.75 × 10−12 | 105 | 109 | 0.008 |
Protein-protein interactions at synapses | 56 | 93 | 0.006 | 1.27 × 10−11 | 5.87 × 10−09 | 32 | 33 | 0.002 |
Neurexins and neuroligins | 40 | 60 | 0.004 | 6.14 × 10−10 | 2.28 × 10−07 | 19 | 19 | 0.001 |
Potassium Channels | 56 | 107 | 0.007 | 1.90 × 10−09 | 5.88 × 10−07 | 14 | 19 | 0.001 |
Activation of NMDA receptors and postsynaptic events | 55 | 113 | 0.007 | 2.87 × 10−08 | 7.62 × 10−06 | 71 | 71 | 0.005 |
Post NMDA receptor activation events | 48 | 96 | 0.006 | 9.80 × 10−08 | 2.27 × 10−05 | 39 | 39 | 0.003 |
Trafficking of AMPA receptors | 25 | 37 | 0.002 | 7.23 × 10−07 | 1.49 × 10−04 | 4 | 4 | 0 |
Glutamate binding, activation of AMPA receptors and synaptic plasticity | 25 | 39 | 0.003 | 1.81 × 10−06 | 3.35 × 10−04 | 9 | 9 | 0.001 |
Cardiac conduction | 57 | 138 | 0.009 | 2.74 × 10−06 | 4.64 × 10−04 | 24 | 27 | 0.002 |
Voltage gated Potassium channels | 26 | 44 | 0.003 | 4.78 × 10−06 | 7.36 × 10−04 | 1 | 1 | 0 |
Long-term potentiation | 21 | 31 | 0.002 | 5.15 × 10−06 | 7.37 × 10−04 | 7 | 7 | 0.001 |
Unblocking of NMDA receptors, glutamate binding and activation | 18 | 27 | 0.002 | 2.88 × 10−05 | 3.80 × 10−03 | 5 | 5 | 0 |
CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 22 | 39 | 0.003 | 4.83 × 10−05 | 5.94 × 10−03 | 7 | 7 | 0.001 |
LGI-ADAM interactions | 12 | 14 | 0.001 | 6.08 × 10−05 | 6.65 × 10−03 | 5 | 5 | 0 |
CaM pathway | 23 | 43 | 0.003 | 7.23 × 10−05 | 6.65 × 10−03 | 23 | 24 | 0.002 |
Calmodulin induced events | 23 | 43 | 0.003 | 7.23 × 10−05 | 6.65 × 10−03 | 22 | 23 | 0.002 |
GABA receptor activation | 31 | 68 | 0.005 | 8.74 × 10−05 | 7.47 × 10−03 | 11 | 12 | 0.001 |
Negative regulation of NMDA receptor-mediated neuronal transmission | 17 | 27 | 0.002 | 9.34 × 10−05 | 7.47 × 10−03 | 4 | 4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milchram, L.; Kulovics, R.; Sonntagbauer, M.; Schönthaler, S.; Vierlinger, K.; Dorfer, C.; Cameron, C.; Saydam, O.; Weinhäusel, A. Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas. Int. J. Mol. Sci. 2023, 24, 1411. https://doi.org/10.3390/ijms24021411
Milchram L, Kulovics R, Sonntagbauer M, Schönthaler S, Vierlinger K, Dorfer C, Cameron C, Saydam O, Weinhäusel A. Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas. International Journal of Molecular Sciences. 2023; 24(2):1411. https://doi.org/10.3390/ijms24021411
Chicago/Turabian StyleMilchram, Lisa, Ronald Kulovics, Markus Sonntagbauer, Silvia Schönthaler, Klemens Vierlinger, Christian Dorfer, Charles Cameron, Okay Saydam, and Andreas Weinhäusel. 2023. "Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas" International Journal of Molecular Sciences 24, no. 2: 1411. https://doi.org/10.3390/ijms24021411
APA StyleMilchram, L., Kulovics, R., Sonntagbauer, M., Schönthaler, S., Vierlinger, K., Dorfer, C., Cameron, C., Saydam, O., & Weinhäusel, A. (2023). Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas. International Journal of Molecular Sciences, 24(2), 1411. https://doi.org/10.3390/ijms24021411