Vertical Transmission and Antifungal Susceptibility Profile of Yeast Isolates from the Oral Cavity, Gut, and Breastmilk of Mother–Child Pairs in Early Life
Abstract
:1. Introduction
2. Results
2.1. Clinical and Demographic Characterization
2.2. Fungal Carriage and Transmission Profile in Mother–Child Pairs
2.3. Antifungal Susceptibility Profile of the Isolates
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Fungal Identification
4.3. Microsatellite Selection, DNA Extraction, and Singleplex Amplification
4.4. Sequencing
4.5. Antifungal Susceptibility Profile
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huseyin, C.E.; O’Toole, P.W.; Cotter, P.D.; Scanlan, P.D. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 2017, 41, 479–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, R.A.; Noverr, M.C. Fungal interactions with the human host: Exploring the spectrum of symbiosis. Curr. Opin. Microbiol. 2017, 40, 58–64. [Google Scholar] [CrossRef]
- Paterson, M.J.; Oh, S.; Underhill, D.M. Host-microbe interactions: Commensal fungi in the gut. Curr. Opin. Microbiol. 2017, 40, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Kapitan, M.; Niemiec, M.J.; Steimle, A.; Frick, J.S.; Jacobsen, I.D. Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria. Curr. Top. Microbiol. Immunol. 2019, 422, 265–301. [Google Scholar] [CrossRef] [PubMed]
- Krom, B.P.; Kidwai, S.; Ten Cate, J.M. Candida and other fungal species: Forgotten players of healthy oral microbiota. J. Dent. Res. 2014, 93, 445–451. [Google Scholar] [CrossRef]
- Filippidi, A.; Galanakis, E.; Maraki, S.; Galani, I.; Drogari-Apiranthitou, M.; Kalmanti, M.; Mantadakis, E.; Samonis, G. The effect of maternal flora on Candida colonisation in the neonate. Mycoses 2014, 57, 43–48. [Google Scholar] [CrossRef]
- Ferrer, J. Vaginal candidosis: Epidemiological and etiological factors. Int. J. Gynaecol. Obstet. 2000, 71 (Suppl. 1), S21–S27. [Google Scholar] [CrossRef]
- Sarifakioglu, E.; Gunduz, C.; Gorpelioglu, C. Oral mucosa manifestations in 100 pregnant versus non-pregnant patients: An epidemiological observational study. Eur. J. Dermatol. 2006, 16, 674–676. [Google Scholar]
- Khadija, B.; Abbasi, A.; Khan, S.; Nadeem, M.; Badshah, L.; Faryal, R. Isolation of pathogenic Candida species from oral cavity of postpartum females, and its association with obstetric and dental problems. Microb. Pathog. 2019, 131, 40–46. [Google Scholar] [CrossRef]
- Al-Rusan, R.M.; Darwazeh, A.M.G.; Lataifeh, I.M. The relationship of Candida colonization of the oral and vaginal mucosae of mothers and oral mucosae of their newborns at birth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, 459–463. [Google Scholar] [CrossRef]
- Bliss, J.M.; Basavegowda, K.P.; Watson, W.J.; Sheikh, A.U.; Ryan, R.M. Vertical and horizontal transmission of Candida albicans in very low birth weight infants using DNA fingerprinting techniques. Pediatr. Infect. Dis. J. 2008, 27, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Schei, K.; Avershina, E.; Oien, T.; Rudi, K.; Follestad, T.; Salamati, S.; Odegard, R.A. Early gut mycobiota and mother-offspring transfer. Microbiome 2017, 5, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amir, L.H.; Garland, S.M.; Dennerstein, L.; Farish, S.J. Candida albicans: Is it associated with nipple pain in lactating women? Gynecol. Obstet. Invest. 1996, 41, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Betzold, C.M. Results of microbial testing exploring the etiology of deep breast pain during lactation: A systematic review and meta-analysis of nonrandomized trials. J. Midwifery Womens Health 2012, 57, 353–364. [Google Scholar] [CrossRef] [PubMed]
- St Clair-Brown, T.T.; Schwerer, K.E.; Dogbey, G.Y. Neonatal Thrush Is Not Associated with Mode of Delivery. J. Am. Board Fam. Med. 2018, 31, 537–541. [Google Scholar] [CrossRef]
- Wolf, R.; Wolf, D.; Tüzün, B.; Tüzün, Y. Diaper dermatitis. Clin. Dermatol. 2000, 18, 657–660. [Google Scholar] [CrossRef]
- Hamdy, R.F.; Zaoutis, T.E.; Seo, S.K. Antifungal stewardship considerations for adults and pediatrics. Virulence 2017, 8, 658–672. [Google Scholar] [CrossRef] [Green Version]
- Ferreras-Antolin, L.; Bielicki, J.; Warris, A.; Sharland, M.; Hsia, Y. Global Divergence of Antifungal Prescribing Patterns: Data From the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children Surveys. Pediatr. Infect. Dis. J. 2021, 40, 327–332. [Google Scholar] [CrossRef]
- Patangia, D.V.; Ryan, C.A.; Dempsey, E.; Stanton, C.; Ross, R.P. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis. Trends Microbiol. 2022, 30, 47–56. [Google Scholar] [CrossRef]
- Kozak, K.; Charbonneau, D.; Sanozky-Dawes, R.; Klaenhammer, T. Characterization of bacterial isolates from the microbiota of mothers’ breast milk and their infants. Gut Microbes 2015, 6, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Kinkelaar, D.; Huang, Y.; Li, Y.; Li, X.; Wang, H.H. Acquired antibiotic resistance: Are we born with it? Appl. Environ. Microbiol. 2011, 77, 7134–7141. [Google Scholar] [CrossRef] [PubMed]
- Stecksén-Blicks, C.; Granström, E.; Silfverdal, S.A.; West, C.E. Prevalence of oral Candida in the first year of life. Mycoses 2015, 58, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Kadir, T.; Uygun, B.; Akyüz, S. Prevalence of Candida species in Turkish children: Relationship between dietary intake and carriage. Arch. Oral Biol. 2005, 50, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Rozkiewicz, D.; Daniluk, T.; Zaremba, M.L.; Cylwik-Rokicka, D.; Stokowska, W.; Pawińska, M.; Dabrowska, E.; Marczuk-Kolada, G.; Waszkiel, D. Oral Candida albicans carriage in healthy preschool and school children. Adv. Med. Sci. 2006, 51 (Suppl. 1), 187–190. [Google Scholar]
- Kondori, N.; Nowrouzian, F.; Ajdari, M.; Hesselmar, B.; Saalman, R.; Wold, A.E.; Adlerberth, I. Candida species as commensal gut colonizers: A study of 133 longitudinally followed Swedish infants. Med. Mycol. 2020, 58, 485–492. [Google Scholar] [CrossRef]
- Ormälä, T.; Korppi, M.; Katila, M.L.; Ojanen, T.; Heinonen, K. Fungal gut colonization with Candida or Pityrosporum sp. and serum Candida antigen in preterm neonates with very low birth weights. Scand. J. Infect. Dis. 1992, 24, 781–785. [Google Scholar] [CrossRef]
- Xiao, J.; Fogarty, C.; Wu, T.T.; Alkhers, N.; Zeng, Y.; Thomas, M.; Youssef, M.; Wang, L.; Cowen, L.; Abdelsalam, H.; et al. Oral health and Candida carriage in socioeconomically disadvantaged US pregnant women. BMC Pregnancy Childbirth 2019, 19, 480. [Google Scholar] [CrossRef] [Green Version]
- Kamat, M.S.; Vanaki, S.S.; Puranik, R.S.; Puranik, S.R.; Kaur, R. Oral Candida carriage, quantification, and species characterization in oral submucous fibrosis patients and healthy individuals. J. Investig. Clin. Dent. 2011, 2, 275–279. [Google Scholar] [CrossRef]
- Bougnoux, M.E.; Diogo, D.; François, N.; Sendid, B.; Veirmeire, S.; Colombel, J.F.; Bouchier, C.; Van Kruiningen, H.; d’Enfert, C.; Poulain, D. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J. Clin. Microbiol. 2006, 44, 1810–1820. [Google Scholar] [CrossRef] [Green Version]
- Boix-Amorós, A.; Martinez-Costa, C.; Querol, A.; Collado, M.C.; Mira, A. Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers. Sci. Rep. 2017, 7, 13016. [Google Scholar] [CrossRef] [Green Version]
- Gerós-Mesquita, Â.; Carvalho-Pereira, J.; Franco-Duarte, R.; Alves, A.; Gerós, H.; Pais, C.; Sampaio, P. Oral Candida albicans colonization in healthy individuals: Prevalence, genotypic diversity, stability along time and transmissibility. J. Oral. Microbiol. 2020, 12, 1820292. [Google Scholar] [CrossRef]
- Hannula, J.; Saarela, M.; Jousimies-Somer, H.; Takala, A.; Syrjänen, R.; Könönen, E.; Asikainen, S. Age-related acquisition of oral and nasopharyngeal yeast species and stability of colonization in young children. Oral Microbiol. Immunol. 1999, 14, 176–182. [Google Scholar] [CrossRef]
- Vainionpää, A.; Tuomi, J.; Kantola, S.; Anttonen, V. Neonatal thrush of newborns: Oral candidiasis? Clin. Exp. Dent. Res. 2019, 5, 580–582. [Google Scholar] [CrossRef] [Green Version]
- Issa, S.Y.; Badran, E.F.; Aqel, K.F.; Shehabi, A.A. Epidemiological characteristics of Candida species colonizing oral and rectal sites of Jordanian infants. BMC Pediatr. 2011, 11, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano Moraga, C.P.; Rodríguez Martínez, G.A.; Lefimil Puente, C.A.; Morales Bozo, I.C.; Urzúa Orellana, B.R. Prevalence of Candida albicans and carriage of Candida non-albicans in the saliva of preschool children, according to their caries status. Acta Odontol. Scand. 2017, 75, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Neu, N.; Malik, M.; Lunding, A.; Whittier, S.; Alba, L.; Kubin, C.; Saiman, L. Epidemiology of candidemia at a Children’s hospital, 2002 to 2006. Pediatr. Infect. Dis. J. 2009, 28, 806–809. [Google Scholar] [CrossRef]
- Pammi, M.; Holland, L.; Butler, G.; Gacser, A.; Bliss, J.M. Candida parapsilosis is a significant neonatal pathogen: A systematic review and meta-analysis. Pediatr. Infect. Dis. J. 2013, 32, e206–e216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, R.L. Candida infections in the neonate. Curr. Opin. Pediatr. 2003, 15, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Waggoner-Fountain, L.A.; Walker, M.W.; Hollis, R.J.; Pfaller, M.A.; Ferguson, J.E., II; Wenzel, R.P.; Donowitz, L.G. Vertical and horizontal transmission of unique Candida species to premature newborns. Clin. Infect. Dis. 1996, 22, 803–808. [Google Scholar] [CrossRef] [Green Version]
- Trofa, D.; Gácser, A.; Nosanchuk, J.D. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 2008, 21, 606–625. [Google Scholar] [CrossRef] [Green Version]
- Pathadka, S.; Yan, V.K.C.; Neoh, C.F.; Al-Badriyeh, D.; Kong, D.C.M.; Slavin, M.A.; Cowling, B.J.; Hung, I.F.N.; Wong, I.C.K.; Chan, E.W. Global Consumption Trend of Antifungal Agents in Humans From 2008 to 2018, Data From 65 Middle- and High-Income Countries. Drugs 2022, 82, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef] [PubMed]
- Pärnänen, K.; Karkman, A.; Hultman, J.; Lyra, C.; Bengtsson-Palme, J.; Larsson, D.G.J.; Rautava, S.; Isolauri, E.; Salminen, S.; Kumar, H.; et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 2018, 9, 3891. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Moon, Y.; Li, L.; Rustchenko, E.; Wakabayashi, H.; Zhao, X.; Feng, C.; Gill, S.R.; McLaren, S.; Malmstrom, H.; et al. Candida albicans Carriage in Children with Severe Early Childhood Caries (S-ECC) and Maternal Relatedness. PLoS ONE 2016, 11, e0164242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamadi, J.; Motaghi, M.; Panahi, J.; Havasian, M.R.; Delpisheh, A.; Azizian, M.; Pakzad, I. Anti-fungal resistance in candida isolated from oral and diaper rash candidiasis in neonates. Bioinformation 2014, 10, 667–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockhart, S.R.; Guarner, J. Emerging and reemerging fungal infections. Semin. Diagn. Pathol. 2019, 36, 177–181. [Google Scholar] [CrossRef] [PubMed]
- WHO. Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Fernandes, M.; Azevedo, M.J.; Campos, C.; Ferreira, A.F.; Azevedo, Á.; Falcão-Pires, I.; Zaura, E.; Ramalho, C.; Campos, J.; Sampaio-Maia, B. Potential Pathogenic and Opportunistic Oral Bacteria in Early Life: The Role of Maternal Factors in a Portuguese Population. Pathogens 2023, 12, 80. [Google Scholar] [CrossRef]
- Mackenzie, D.W. Serum tube identification of Candida albicans. J. Clin. Pathol. 1962, 15, 563–565. [Google Scholar] [CrossRef] [Green Version]
- Bretagne, S.; Costa, J.M.; Besmond, C.; Carsique, R.; Calderone, R. Microsatellite polymorphism in the promoter sequence of the elongation factor 3 gene of Candida albicans as the basis for a typing system. J. Clin. Microbiol. 1997, 35, 1777–1780. [Google Scholar] [CrossRef] [Green Version]
- Reiss, E.; Lasker, B.A.; Lott, T.J.; Bendel, C.M.; Kaufman, D.A.; Hazen, K.C.; Wade, K.C.; McGowan, K.L.; Lockhart, S.R. Genotyping of Candida parapsilosis from three neonatal intensive care units (NICUs) using a panel of five multilocus microsatellite markers: Broad genetic diversity and a cluster of related strains in one NICU. Infect. Genet. Evol. 2012, 12, 1654–1660. [Google Scholar] [CrossRef]
- Sampaio, P.; Gusmão, L.; Alves, C.; Pina-Vaz, C.; Amorim, A.; Pais, C. Highly polymorphic microsatellite for identification of Candida albicans strains. J. Clin. Microbiol. 2003, 41, 552–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicentefranqueira, R.; Moreno, M.A.; Leal, F.; Calera, J.A. The zrfA and zrfB genes of Aspergillus fumigatus encode the zinc transporter proteins of a zinc uptake system induced in an acid, zinc-depleted environment. Eukaryot Cell 2005, 4, 837–848. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antifungal Susceptibility Testing of Yeasts, 2nd ed.; CLSI Supplement M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Maheronnaghsh, M.; Fatahinia, M.; Dehghan, P.; Teimoori, A. Identification of Candida Species and Antifungal Susceptibility in Cancer Patients with Oral Lesions in Ahvaz, Southern West of Iran. Adv. Biomed. Res. 2020, 9, 50. [Google Scholar] [PubMed]
- Sav, H.; Baris, A.; Turan, D.; Altinbas, R.; Sen, S. The frequency, antifungal susceptibility and enzymatic profiles of Candida species in cases of onychomycosis infection. Microb. Pathog. 2018, 116, 257–262. [Google Scholar] [CrossRef]
Maternal and Infant Factors | |
---|---|
Age of mothers (years) | 34.0 [27.5; 40.5] |
Age of children (weeks) | 7.0 [3.0; 11.0] |
Body mass index before pregnancy (kg/m2) | 23.2 [16.7; 29.7] |
Maternal diseases | |
Depression | 8.8% (n = 12) |
Burnout syndrome | 0.7% (n = 1) |
Anxiety disorder | 8.0% (n = 11) |
Neurological disorders | 0.7% (n = 1) |
Dyslipidemia | 2.2% (n = 3) |
Arterial hypertension | 5.8% (n = 8) |
Allergy | 12.4% (n = 17) |
Rhinitis | 12.4% (n = 17) |
Asthma | 7.3% (n = 10) |
Chronic bronchitis | 0.7% (n = 1) |
Heart disease | 0.7% (n = 1) |
Renal disease | 2.2% (n = 3) |
Cancer | 2.2% (n = 3) |
Vision disturbance | 19.0% (n = 26) |
Hearing problems | 0.7% (n = 1) |
Migraine | 13.1% (n = 18) |
Rheumatism | 2.2% (n = 3) |
Chronic infectious diseases | 0.7% (n = 1) |
Maternal vaginal candidiasis diagnosis during pregnancy | 4.1% (n = 3) |
Maternal vaginal candidiasis diagnosis postpartum | 1.4% (n = 1) |
Antifungals used by the mother | |
During pregnancy | 4.1% (n = 3) |
Intrapartum | 0% (n = 0) |
Postpartum | 1.4% (n = 1) |
Antibiotics used by the mother | |
During pregnancy | 12.5% (n = 9) |
Intrapartum | 46.6% (n = 34) |
Postpartum | 9.6% (n = 7) |
Oral hygiene habits | |
Dental appointments (n/last year) | 2 [0; 4] |
Frequency of toothbrushing (n/day) | 2 [1; 3] |
Use of mouthwash/dental floss/interdental brushes | 74.0% (n = 54) |
Child therapy | |
Probiotic | 40.3% (n = 29) |
Antibiotic | 4.2% (n = 3) |
Antifungal | 6.9% (n = 5) |
Child oral candidiasis diagnosis | 6.8% (n = 5) |
Sex of the child | |
Male | 47.1% (n = 33) |
Female | 52.9% (n = 37) |
Gestational age at birth (weeks) | 39.0 [37.0; 41.0] |
Type of delivery | |
Vaginal | 63.8% (n = 44) |
Caesarean section | 36.2% (n = 25) |
Child postpartum hospitalization | 17.6% (n = 13) |
Breastfeeding | 91.8% (n = 67) |
Child suctional habits | |
Fingers/Hand | 19.0% (n = 12) |
Pacifier | 25.4% (n = 16) |
Fingers/Hand and pacifier | 55.6% (n = 36) |
Mother licks pacifier | 10.5% (n = 6) |
Mother kisses child’s mouth | 11.3% (n = 8) |
Phylum | Genus | Mother Saliva | Child Oral Swab | Breastmilk | Mother Feces | Child Feces |
Species | ||||||
Ascomycota | Candida | |||||
Candida albicans | 68.4% | 28.6% a,b,c | 40.0% | 53.8% | 18.2% d,e | |
Candida parapsilosis | 10.5% | 57.1% | 60.0% | 30.8% | 72.7% | |
Candida dubliniensis | 10.5% | 0.0% | nf | nf | nf | |
Candida guilliermondii | 10.5% | 4.8% | nf | nf | nf | |
Candida tropicalis | nf | 4.8% | nf | nf | 4.5% | |
Lodderomyces | ||||||
Lodderomyces elongisporus | nf | 4.8% | nf | nf | 4.5% | |
Geotrichum | ||||||
Geotrichum silvicola | nf | nf | nf | 7.7% | nf | |
Basidiomycota | Rhodotorula | |||||
Rhodotorula mucilaginosa | nf | nf | nf | 7.7% | nf |
Species | Pair | Individual | Type of Sample (n) | Genotypic Profile |
---|---|---|---|---|
Candida parapsilosis | Pair 1 | Child | Oral swab (n = 1) | 1 |
Feces (n = 3) | 1 | |||
Mother | Saliva (n = 1) | 2 | ||
Pair 2 | Child | Oral swab (n = 2) | 3 | |
Feces (n = 1) | 3 | |||
Mother | Breastmilk (n = 1) | 4 | ||
Pair 3 | Child | Feces (n = 1) | 5 | |
Mother | Saliva (n = 1) | 6 | ||
Pair 4 | Child | Feces (n = 1) | 7 | |
Mother | Feces (n = 2) | 7 | ||
Candida albicans | Pair 5 | Child | Oral swab (n = 3) | 8 |
Feces (n = 6) | 8 | |||
Mother | Saliva (n = 1) | 8 | ||
Feces (n = 7) | 8 | |||
Breastmilk (n = 2) | 8 | |||
Pair 6 | Child | Oral swab (n = 2) | 9 | |
Mother | Saliva (n = 2) | 9 | ||
Breastmilk (n = 1) | 9 | |||
Pair 7 | Child | Oral swab (n = 2) | 10 | |
Feces (n = 1) | 10 | |||
Mother | Saliva (n = 2) | 11 | ||
Pair 8 | Child | Oral swab (=3) | 12 | |
Feces (n = 1) | 12 | |||
Mother | Feces (n = 2) | 12 | ||
Pair 9 | Child | Oral swab (n = 2) | 13 | |
Feces (n = 1) | 13 | |||
Mother | Saliva (n = 2) | 14 | ||
Feces (n = 1) | 14 |
Antifungal | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Voriconazole | Fluconazole | Miconazole | Anidulafungin | Nystatin | |||||
MIC | R | MIC | R | MIC | R | MIC | R | MIC | R | |
Candida albicans (n = 62) | 0.015–>8 | 6.45% (n = 4) | 0.12–>64 | 6.45% (n = 4) | 0.015–2 | 0% | 0.015–0.06 | 0% | 1–2 | 0% |
Candida parapsilosis (n = 51) | 0.015–0.25 | 0% | 0.5–4 | 0% | 0.25–1 | 0% | 0.5–2 | 0% | 1–2 | 0% |
Candida tropicalis (n = 4) | 0.03 | 0% | 0.5 | 0% | 0.12–0.5 | 0% | 0.03 | 0% | 2 | 0% |
Lodderomyces elongisporus (n = 4) | 0.015 | 0% | 0.12–0.25 | 0% | 0.03 | 0% | 0.015–0.03 | 0% | 1–2 | 0% |
Candida guilliermondii (n = 3) | 0.06–0.12 | 0% | 8 | 0% | 0.25–1 | 0% | 0.5–1 | 0% | 1–2 | 0% |
Other * | 0.12–4 | 33.3% (n = 1) # | 0.015–>64 | 33.3% (n = 1) # | 0.015–>8 | 33.3% (n = 1) # | 0.015–8 | 33.3% (n = 1) # | 1–2 | 0% |
Species | Marker | Primer | Reference |
---|---|---|---|
Candida albicans | CA1 | F 5′-ATGCCATG AGT GGA ATT GG-3′ R 5′-AGTGGCTTG TGT TGG GTT TT-3′ | Sampaio et al. [52] |
CA3 | F 5′-TTGGAATCACTTCACCAGGA-3‘ R 5′-TTTCCGTGGCATCAGTATCA-3′ | Sampaio et al. [52] | |
Candida parapsilosis sensu stricto | CP4a | F 5′-GTGTACACCAACCAATCATCG-3′ R 5′-TTGGAGTAACAAGCGCAGAAG-3′ | Reiss et al. [51] |
CP6 | F 5′-AATGGAGCAGCTACCACTACC-3′ R 5′-TTGGGGTTTGACGTATTGTCAC-3′ | Reiss et al. [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, M.J.; Araujo, R.; Campos, J.; Campos, C.; Ferreira, A.F.; Falcão-Pires, I.; Ramalho, C.; Zaura, E.; Pinto, E.; Sampaio-Maia, B. Vertical Transmission and Antifungal Susceptibility Profile of Yeast Isolates from the Oral Cavity, Gut, and Breastmilk of Mother–Child Pairs in Early Life. Int. J. Mol. Sci. 2023, 24, 1449. https://doi.org/10.3390/ijms24021449
Azevedo MJ, Araujo R, Campos J, Campos C, Ferreira AF, Falcão-Pires I, Ramalho C, Zaura E, Pinto E, Sampaio-Maia B. Vertical Transmission and Antifungal Susceptibility Profile of Yeast Isolates from the Oral Cavity, Gut, and Breastmilk of Mother–Child Pairs in Early Life. International Journal of Molecular Sciences. 2023; 24(2):1449. https://doi.org/10.3390/ijms24021449
Chicago/Turabian StyleAzevedo, Maria João, Ricardo Araujo, Joana Campos, Carla Campos, Ana Filipa Ferreira, Inês Falcão-Pires, Carla Ramalho, Egija Zaura, Eugénia Pinto, and Benedita Sampaio-Maia. 2023. "Vertical Transmission and Antifungal Susceptibility Profile of Yeast Isolates from the Oral Cavity, Gut, and Breastmilk of Mother–Child Pairs in Early Life" International Journal of Molecular Sciences 24, no. 2: 1449. https://doi.org/10.3390/ijms24021449
APA StyleAzevedo, M. J., Araujo, R., Campos, J., Campos, C., Ferreira, A. F., Falcão-Pires, I., Ramalho, C., Zaura, E., Pinto, E., & Sampaio-Maia, B. (2023). Vertical Transmission and Antifungal Susceptibility Profile of Yeast Isolates from the Oral Cavity, Gut, and Breastmilk of Mother–Child Pairs in Early Life. International Journal of Molecular Sciences, 24(2), 1449. https://doi.org/10.3390/ijms24021449