Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases—What Is the Secret of Their Activity?
Abstract
:1. Introduction
2. sPLA2s Possess a Specific Pattern of Disulphide Bonds That Could Be Modulable
3. sPLA2 Activity Can Be Controlled by Post Translational Modifications
4. sPLA2s Are Globular Proteins, but They Can Form Active Condensates
5. How to Target sPLA2s in Inflammation-Associated Human Diseases
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambeau, G.; Gelb, M.H. Biochemistry and Physiology of Mammalian Secreted Phospholipases A2. Annu. Rev. Biochem. 2008, 77, 495–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, M.; Taketomi, Y.; Miki, Y.; Sato, H.; Yamamoto, K.; Lambeau, G. Emerging Roles of Secreted Phospholipase A2 Enzymes: The 3rd Edition. Biochimie 2014, 107 Pt A, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, T.J.; Cardoso, J.C.; Riikonen, P.T. Conserved Domains and Evolution of Secreted Phospholipases A(2). FEBS J. 2012, 279, 636–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaloske, R.H.; Dennis, E.A. The Phospholipase A2 Superfamily and Its Group Numbering System. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2006, 1761, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Taketomi, Y.; Sato, H.; Yamamoto, K. Secreted Phospholipase A2 Revisited. J. Biochem. 2011, 150, 233–255. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Ishizaki, J.; Yokota, Y.; Higashino, K.I.; Ono, T.; Ikeda, M.; Fujii, N.; Kawamoto, K.; Hanasaki, K. Structures, Enzymatic Properties, and Expression of Novel Human and Mouse Secretory Phospholipase A(2)S. J. Biol. Chem. 2000, 275, 5785–5793. [Google Scholar] [CrossRef] [Green Version]
- Yagami, T.; Yamamoto, Y.; Koma, H. The Role of Secretory Phospholipase A2; in the Central Nervous System and Neurological Diseases. Mol. Neurobiol. 2014, 49, 863–876. [Google Scholar] [CrossRef]
- Hui, D.Y. Group 1B Phospholipase A 2 in Metabolic and Inflammatory Disease Modulation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 784–788. [Google Scholar] [CrossRef]
- Karlsson Linnér, R.; Mallard, T.T.; Barr, P.B.; Sanchez-Roige, S.; Madole, J.W.; Driver, M.N.; Poore, H.E.; de Vlaming, R.; Grotzinger, A.D.; Tielbeek, J.J.; et al. Multivariate Analysis of 1.5 Million People Identifies Genetic Associations with Traits Related to Self-Regulation and Addiction. Nat. Neurosci. 2021, 24, 1367–1376. [Google Scholar] [CrossRef]
- Moses, G.S.D.; Jensen, M.D.; Lue, L.F.; Walker, D.G.; Sun, A.Y.; Simonyi, A.; Sun, G.Y. Secretory PLA2-IIA: A New Inflammatory Factor for Alzheimer’s Disease. J. Neuroinflamm. 2006, 3, 28. [Google Scholar] [CrossRef]
- Hathout, Y.; Brody, E.; Clemens, P.R.; Cripe, L.; DeLisle, R.K.; Furlong, P.; Gordish-Dressman, H.; Hache, L.; Henricson, E.; Hoffman, E.P.; et al. Large-Scale Serum Protein Biomarker Discovery in Duchenne Muscular Dystrophy. Proc. Natl. Acad. Sci. USA 2015, 112, 7153–7158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righino, B.; Minucci, A.; Pirolli, D.; Capoluongo, E.; Conti, G.; De Luca, D.; Rosa, M.C. De In Silico Investigation of the Molecular Effects Caused by R123H Variant in Secretory Phospholipase A2-IIA Associated with ARDS. J. Mol. Graph. Model. 2018, 81, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Dore, E.; Boilard, E. Roles of Secreted Phospholipase A. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.F.; Mann, T.J.; Fatima, S.; Sajinovic, M.; Razdan, A.; Kim, R.R.; Cooper, A.; Roohullah, A.; Bryant, K.J.; Gamage, K.K.; et al. Human Group Iia Phospholipase A2—Three Decades on from Its Discovery. Molecules 2021, 26, 7267. [Google Scholar] [CrossRef]
- Letsiou, E.; Htwe, Y.M.; Dudek, S.M. Secretory Phospholipase A2 Enzymes in Acute Lung Injury. Cell Biochem. Biophys. 2021, 79, 609–617. [Google Scholar] [CrossRef]
- Taketomi, Y.; Miki, Y.; Murakami, M. Old but New: Group IIA Phospholipase A2 as a Modulator of Gut Microbiota. Metabolites 2022, 12, 352. [Google Scholar] [CrossRef]
- Ishizaki, J.; Suzuki, N.; Higashino, K.I.; Yokota, Y.; Ono, T.; Kawamoto, K.; Fujii, N.; Arita, H.; Hanasaki, K. Cloning and Characterization of Novel Mouse and Human Secretory Phospholipase A(2)S. J. Biol. Chem. 1999, 274, 24973–24979. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M.; Miki, Y.; Sato, H.; Murase, R.; Taketomi, Y.; Yamamoto, K. Group IID, IIE, IIF and III Secreted Phospholipase A 2 S. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 803–818. [Google Scholar] [CrossRef]
- Khan, M.I.; Gupta, A.K.; Kumar, D.R.; Kumar, M.; Ethayathulla, A.S.; Hariprasad, G. Molecular Modeling of Gly80 and Ser80 Variants of Human Group IID Phospholipase A2 and Their Receptor Complexes: Potential Basis for Weight Loss in Chronic Obstructive Pulmonary Disease. J. Mol. Model. 2016, 22, 232. [Google Scholar] [CrossRef]
- Valentin, E.; Singer, A.G.; Ghomashchi, F.; Lazdunski, M.; Gelb, M.H.; Lambeau, G. Cloning and Recombinant Expression of Human Group IIF-Secreted Phospholipase A(2). Biochem. Biophys. Res. Commun. 2000, 279, 223–228. [Google Scholar] [CrossRef]
- Murakami, M.; Yoshihara, K.; Shimbara, S.; Lambeau, G.; Singer, A.; Gelb, M.H.; Sawada, M.; Inagaki, N.; Nagai, H.; Kudo, I. Arachidonate Release and Eicosanoid Generation by Group IIE Phospholipase A2. Biochem. Biophys. Res. Commun. 2002, 292, 689–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergouniotis, P.I.; Davidson, A.E.; MacKay, D.S.; Lenassi, E.; Li, Z.; Robson, A.G.; Yang, X.; Kam, J.H.; Isaacs, T.W.; Holder, G.E.; et al. Biallelic Mutations in PLA2G5, Encoding Group v Phospholipase A 2, Cause Benign Fleck Retina. Am. J. Hum. Genet. 2011, 89, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J.M.; Rodríguez, J.P.; Gil-de-Gómez, L.; Guijas, C.; Balboa, M.A.; Balsinde, J. Group V Secreted Phospholipase A2 Is Upregulated by IL-4 in Human Macrophages and Mediates Phagocytosis via Hydrolysis of Ethanolamine Phospholipids. J. Immunol. 2015, 194, 3327–3339. [Google Scholar] [CrossRef] [Green Version]
- Samuchiwal, S.K.; Balestrieri, B. Harmful and Protective Roles of Group V Phospholipase A2: Current Perspectives and Future Directions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Cupillard, L.; Koumanov, K.; Mattéi, M.G.; Lazdunski, M.; Lambeau, G. Cloning, Chromosomal Mapping, and Expression of a Novel Human Secretory Phospholipase A2. J. Biol. Chem. 1997, 272, 15745–15752. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Isogai, Y.; Masuda, S.; Taketomi, Y.; Miki, Y.; Kamei, D.; Hara, S.; Kobayashi, T.; Ishikawa, Y.; Ishii, T.; et al. Physiological Roles of Group X-Secreted Phospholipase A2 in Reproduction, Gastrointestinal Phospholipid Digestion, and Neuronal Function. J. Biol. Chem. 2011, 286, 11632–11648. [Google Scholar] [CrossRef] [Green Version]
- Nolin, J.D.; Murphy, R.C.; Gelb, M.H.; Altemeier, W.A.; Henderson, W.R.; Hallstrand, T.S. Function of Secreted Phospholipase A2 Group-X in Asthma and Allergic Disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Tonello, F.; Rigoni, M. Cellular Mechanisms of Action of Snake Phospholipase A2 Toxins; Inagaki, H., Vogel, C.W., Mukherjee, A., Rahmy, T., Eds.; Snake Venoms; Part of the Toxinology; Springer: Dordrecht, The Netherlands, 2017; pp. 49–65. [Google Scholar] [CrossRef]
- Mamede, C.C.N.; de Sousa Simamoto, B.B.; da Cunha Pereira, D.F.; de Oliveira Costa, J.; Ribeiro, M.S.M.; de Oliveira, F. Edema, Hyperalgesia and Myonecrosis Induced by Brazilian Bothropic Venoms: Overview of the Last Decade. Toxicon 2020, 187, 10–18. [Google Scholar] [CrossRef]
- Kini, R.M. Structure-Function Relationships and Mechanism of Anticoagulant Phospholipase A2 Enzymes from Snake Venoms. Toxicon 2005, 45, 1147–1161. [Google Scholar] [CrossRef]
- Larréché, S.; Chippaux, J.P.; Chevillard, L.; Mathé, S.; Résière, D.; Siguret, V.; Mégarbane, B. Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. Int. J. Mol. Sci. 2021, 22, 9643. [Google Scholar] [CrossRef] [PubMed]
- Lomonte, B.; Gutiérrez, J.M. Phospholipases A2 from Viperidae Snake Venoms: How Do They Induce Skeletal Muscle Damage? Acta Chim. Slov. 2011, 58, 647–659. [Google Scholar] [PubMed]
- Šribar, J.; Oberčkal, J.; Križaj, I. Understanding the Molecular Mechanism Underlying the Presynaptic Toxicity of Secreted Phospholipases A(2): An Update. Toxicon 2014, 89, 9–16. [Google Scholar] [CrossRef]
- Ivanušec, A.; Šribar, J.; Križaj, I. Secreted Phospholipases A2–Not Just Enzymes: Revisited. Int. J. Biol. Sci. 2022, 18, 873–888. [Google Scholar] [CrossRef]
- van Hensbergen, V.P.; Wu, Y.; van Sorge, N.M.; Touqui, L. Type IIA Secreted Phospholipase A2 in Host Defense against Bacterial Infections. Trends Immunol. 2020, 41, 313–326. [Google Scholar] [CrossRef]
- Kim, R.R.; Chen, Z.; Mann, T.J.; Bastard, K.; Scott, K.F.; Church, W.B. Structural and Functional Aspects of Targeting the Secreted Human Group IIA Phospholipase A2. Molecules 2020, 25, 4459. [Google Scholar] [CrossRef]
- Galdiero, M.R.; Mormile, I.; Granata, F.; Loffredo, S.; Detoraki, A.; Della Casa, F.; Trocchia, M.L.; Ventrici, A.; de Paulis, A.; Rossi, F.W. Functional Modulation of Human Macrophages by Secreted Phospholipases A2: Implications in Cancer. Biomedicines 2022, 10, 2763. [Google Scholar] [CrossRef] [PubMed]
- Kuefner, M.S. Secretory Phospholipase A2s in Insulin Resistance and Metabolism. Front. Endocrinol. 2021, 12, 732726. [Google Scholar] [CrossRef]
- Sales, T.A.; Marcussi, S.; Ramalho, T.C. Current Anti-Inflammatory Therapies and the Potential of Secretory Phospholipase A2 Inhibitors in the Design of New Anti-Inflammatory Drugs: A Review of 2012–2018. Curr. Med. Chem. 2020, 27, 477–497. [Google Scholar] [CrossRef]
- Pungerčar, J.; Bihl, F.; Lambeau, G.; Križaj, I. What Do Secreted Phospholipases A2 Have to Offer in Combat against Different Viruses up to SARS-CoV-2? Biochimie 2021, 189, 40–50. [Google Scholar] [CrossRef]
- Bošnjak, I.; Bojović, V.; Šegvić-Bubić, T.S.; Bielen, A. Occurrence of Protein Disulfide Bonds in Different Domains of Life: A Comparison of Proteins from the Protein Data Bank. Protein Eng. Des. Sel. 2014, 27, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.J.W.; Verheij, H.M.; Slotboom, A.J.; Egmond, M.R. Engineering the Disulphide Bond Patterns of Secretory Phospholipases A2 into Porcine Pancreatic Isozyme. The Effects on Folding, Stability and Enzymatic Properties. Eur. J. Biochem. 1999, 261, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathys, L.; Balzarini, J. The Role of Cellular Oxidoreductases in Viral Entry and Virus Infection-Associated Oxidative Stress: Potential Therapeutic Applications. Expert Opin. Ther. Targets 2016, 20, 123–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Dupureur, C.M.; Zhang, X.; Tsai, M.D. Phospholipase A2 Engineering. The Roles of Disulfide Bonds in Structure, Conformational Stability, and Catalytic Function. Biochemistry 1995, 34, 15307–15314. [Google Scholar] [CrossRef]
- Pijning, A.E.; Chiu, J.; Yeo, R.X.; Wong, J.W.H.; Hogg, P.J. Identification of Allosteric Disulfides from Labile Bonds in X-ray Structures. R. Soc. Open Sci. 2018, 5, 171058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šribar, J.; Anderluh, G.; Fox, J.W.; Križaj, I. Protein Disulphide Isomerase Binds Ammodytoxin Strongly: Possible Implications for Toxin Trafficking. Biochem. Biophys. Res. Commun. 2005, 329, 733–737. [Google Scholar] [CrossRef]
- Šribar, J.; Kovačič, L.; Oberčkal, J.; Ivanušec, A.; Petan, T.; Fox, J.W.; Križaj, I. The Neurotoxic Secreted Phospholipase A2 from the Vipera a. Ammodytes Venom Targets Cytochrome c Oxidase in Neuronal Mitochondria. Sci. Rep. 2019, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Dickson-Murray, E.; Nedara, K.; Modjtahedi, N.; Tokatlidis, K. The Mia40/CHCHD4 Oxidative Folding System: Redox Regulation and Signaling in the Mitochondrial Intermembrane Space. Antioxidants 2021, 10, 592. [Google Scholar] [CrossRef]
- Singer, A.G.; Ghomashchi, F.; Le Calvez, C.; Bollinger, J.; Bezzine, S.; Rouault, M.; Sadilek, M.; Nguyen, E.; Lazdunski, M.; Lambeau, G.; et al. Interfacial Kinetic and Binding Properties of the Complete Set of Human and Mouse Groups I, II, V, X, and XII Secreted Phospholipases A2. J. Biol. Chem. 2002, 277, 48535–48549. [Google Scholar] [CrossRef] [Green Version]
- López-Mirabal, H.R.; Winther, J.R. Redox Characteristics of the Eukaryotic Cytosol. Biochim. Biophys. Acta 2008, 1783, 629–640. [Google Scholar] [CrossRef]
- Petrovič, U.; Šribar, J.; Pariš, A.; Rupnik, M.; Kržan, M.; Vardjan, N.; Gubenšek, F.; Zorec, R.; Križaj, I. Ammodytoxin, a Neurotoxic Secreted Phospholipase A(2), Can Act in the Cytosol of the Nerve Cell. Biochem. Biophys. Res. Commun. 2004, 324, 981–985. [Google Scholar] [CrossRef]
- Li, J.; Rix, U.; Fang, B.; Bai, Y.; Edwards, A.; Colinge, J.; Bennett, K.L.; Gao, J.; Song, L.; Eschrich, S.; et al. A Chemical and Phosphoproteomic Characterization of Dasatinib Action in Lung Cancer. Nat. Chem. Biol. 2010, 6, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and Recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artemenko, K.A.; Lind, S.B.; Elfineh, L.; Mayrhofer, C.; Zubarev, R.A.; Bergquist, J.; Pettersson, U. Optimization of Immunoaffinity Enrichment and Detection: Toward a Comprehensive Characterization of the Phosphotyrosine Proteome of K562 Cells by Liquid Chromatography-Mass Spectrometry. Analyst 2011, 136, 1971–1978. [Google Scholar] [CrossRef] [PubMed]
- Udeshi, N.D.; Svinkina, T.; Mertins, P.; Kuhn, E.; Mani, D.R.; Qiao, J.W.; Carr, S.A. Refined Preparation and Use of Anti-Diglycine Remnant (K-ε-GG) Antibody Enables Routine Quantification of 10,000s of Ubiquitination Sites in Single Proteomics Experiments. Mol. Cell. Proteom. 2013, 12, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, I.A.; D’Souza, R.C.J.; Yang, B.; Verlaan-De Vries, M.; Mann, M.; Vertegaal, A.C.O. Uncovering Global SUMOylation Signaling Networks in a Site-Specific Manner. Nat. Struct. Mol. Biol. 2014, 21, 927–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.I.; Hariprasad, G. Human Secretary Phospholipase A2 Mutations and Their Clinical Implications. J. Inflamm. Res. 2020, 13, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.R.; Noble, M.E.M.; Endicott, J.A.; Johnson, L.N. The Structural Basis for Specificity of Substrate and Recruitment Peptides for Cyclin-Dependent Kinases. Nat. Cell Biol. 1999, 1, 438–443. [Google Scholar] [CrossRef]
- Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen Synthase Kinase-3 (GSK3): Regulation, Actions, and Diseases. Pharmacol. Ther. 2015, 148, 114–131. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, J.; Di, L.J. Glycogen Synthesis and beyond, a Comprehensive Review of GSK3 as a Key Regulator of Metabolic Pathways and a Therapeutic Target for Treating Metabolic Diseases. Med. Res. Rev. 2022, 42, 946–982. [Google Scholar] [CrossRef]
- Verhees, K.J.P.; Pansters, N.A.M.; Baarsma, H.A.; Remels, A.H.V.; Haegens, A.; de Theije, C.C.; Schols, A.M.W.J.; Gosens, R.; Langen, R.C.J. Pharmacological Inhibition of GSK-3 in a Guinea Pig Model of LPS-Induced Pulmonary Inflammation: II. Effects on Skeletal Muscle Atrophy. Respir. Res. 2013, 14, 117. [Google Scholar] [CrossRef] [Green Version]
- Peggion, C.; Tonello, F. Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2. Toxins 2021, 13, 290. [Google Scholar] [CrossRef]
- Murakami, M.; Yoshihara, K.; Shimbara, S.; Gelb, G.L.M.H.; Singer, A.G.; Sawada, M.; Inagaki, N.; Nagai, H.; Ishihara, M.; Ishikawa, Y.; et al. Cellular Arachidonate-Releasing Function and Inflammation-Associated Expression of Group IIF Secretory Phospholipase A2. J. Biol. Chem. 2002, 277, 19145–19155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loffredo, S.; Borriello, F.; Iannone, R.; Ferrara, A.L.; Galdiero, M.R.; Gigantino, V.; Esposito, P.; Varricchi, G.; Lambeau, G.; Cassatella, M.A.; et al. Group V Secreted Phospholipase A2 Induces the Release of Proangiogenic and Antiangiogenic Factors by Human Neutrophils. Front. Immunol. 2017, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Gambero, A.; Landucci, E.C.T.; Toyama, M.H.; Marangoni, S.; Giglio, J.R.; Nader, H.B.; Dietrich, C.P.; De Nucci, G.; Antunes, E. Human Neutrophil Migration in Vitro Induced by Secretory Phospholipases A2: A Role for Cell Surface Glycosaminoglycans. Biochem. Pharmacol. 2002, 63, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Kambe, T.; Shimbara, S.; Yamamoto, S.; Kuwata, H.; Kudo, I. Functional Association of Type IIA Secretory Phospholipase A(2) with the Glycosylphosphatidylinositol-Anchored Heparan Sulfate Proteoglycan in the Cyclooxygenase-2-Mediated Delayed Prostanoid-Biosynthetic Pathway. J. Biol. Chem. 1999, 274, 29927–29936. [Google Scholar] [CrossRef] [Green Version]
- Code, C.; Domanov, Y.; Jutila, A.; Kinnunen, P.K.J. Amyloid-Type Fiber Formation in Control of Enzyme Action: Interfacial Activation of Phospholipase A2. Biophys. J. 2008, 95, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Massimino, M.L.; Simonato, M.; Spolaore, B.; Franchin, C.; Arrigoni, G.; Marin, O.; Monturiol-Gross, L.; Fernández, J.; Lomonte, B.; Tonello, F. Cell Surface Nucleolin Interacts with and Internalizes Bothrops Asper Lys49 Phospholipase A. Sci. Rep. 2018, 8, 10619. [Google Scholar] [CrossRef] [Green Version]
- Nesterov, S.V.; Ilyinsky, N.S.; Uversky, V.N. Liquid-Liquid Phase Separation as a Common Organizing Principle of Intracellular Space and Biomembranes Providing Dynamic Adaptive Responses. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119102. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Zhou, F.; Zhao, T.; Zhao, H.; Wang, X.; Chen, L.; Li, J.P.; Luo, S.Z. Phase Separation on Cell Surface Facilitates BFGF Signal Transduction with Heparan Sulphate. Nat. Commun. 2022, 13, 1112. [Google Scholar] [CrossRef]
- Tonello, F.; Massimino, M.L.; Peggion, C. Nucleolin: A Cell Portal for Viruses, Bacteria, and Toxins. Cell. Mol. Life Sci. 2022, 79, 271. [Google Scholar] [CrossRef]
- Paulin, D.; Lilienbaum, A.; Kardjian, S.; Agbulut, O.; Li, Z. Vimentin: Regulation and Pathogenesis. Biochimie 2022, 197, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Bean, D.M.; Heimbach, J.; Ficorella, L.; Micklem, G.; Oliver, S.G.; Favrin, G. EsyN: Network Building, Sharing and Publishing. PLoS ONE 2014, 9, e106035. [Google Scholar] [CrossRef] [PubMed]
- Birts, C.N.; Barton, C.H.; Wilton, D.C. A Catalytically Independent Physiological Function for Human Acute Phase Protein Group IIA Phospholipase A2: Cellular Uptake Facilitates Cell Debris Removal. J. Biol. Chem. 2008, 283, 5034–5045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, E.A.; Norris, P.C. Eicosanoid Storm in Infection and Inflammation. Nat. Rev. Immunol. 2015, 15, 511–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar Dilly, A.; Tang, K.; Guo, Y.; Joshi, S.; Ekambaram, P.; Maddipati, K.R.; Cai, Y.; Tucker, S.C.; Honn, K.V. Convergence of Eicosanoid and Integrin Biology: Role of Src in 12-LOX Activation. Exp. Cell Res. 2017, 351, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.; Gutierrez, B.; Cordova, C.; Roman, A.S.; Alvarez, Y.; Hernandez, M.; Cachofeiro, V.; Nieto, M.L. Secreted Phospholipase A2-IIA Modulates Transdifferentiation of Cardiac Fibroblast through EGFR Transactivation: An Inflammation-Fibrosis Link. Cells 2020, 9, 396. [Google Scholar] [CrossRef] [Green Version]
- Ramos, I.; Stamatakis, K.; Oeste, C.L.; Pérez-Sala, D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int. J. Mol. Sci. 2020, 21, 4675. [Google Scholar] [CrossRef]
- Lee, L.K.; Bryant, K.J.; Bouveret, R.; Lei, P.W.; Duff, A.P.; Harrop, S.J.; Huang, E.P.; Harvey, R.P.; Gelb, M.H.; Gray, P.P.; et al. Selective Inhibition of Human Group IIA-Secreted Phospholipase A2 (HGIIA) Signaling Reveals Arachidonic Acid Metabolism Is Associated with Colocalization of HGIIA to Vimentin in Rheumatoid Synoviocytes. J. Biol. Chem. 2013, 288, 15269–15279. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M.; Nakatani, Y.; Kuwata, H.; Kudo, I. Cellular Components That Functionally Interact with Signaling Phospholipase A2s. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2000, 1488, 159–166. [Google Scholar] [CrossRef]
- Bunimov, N.; Laneuville, O. Characterization of Proteins Associating with 5’ Terminus of PGHS-1 MRNA. Cell. Mol. Biol. Lett. 2010, 15, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, K.; Mayer, C.; Czemmel, S.; Huber, S.M.; Peter Rodemann, H. New Roles for Nuclear EGFR in Regulating the Stability and Translation of MRNAs Associated with VEGF Signaling. PLoS ONE 2017, 12, e0189087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomonte, B.; Rangel, J. Snake Venom Lys49 Myotoxins: From Phospholipases A(2) to Non-Enzymatic Membrane Disruptors. Toxicon 2012, 60, 520–530. [Google Scholar] [CrossRef]
- Moreira, V.; Leiguez, E.; Janovits, P.M.; Maia-Marques, R.; Fernandes, C.M.; Teixeira, C. Inflammatory Effects of Bothrops Phospholipases A2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins 2021, 13, 868. [Google Scholar] [CrossRef] [PubMed]
- Tonello, F.; Simonato, M.; Aita, A.; Pizzo, P.; Fernández, J.; Lomonte, B.; Gutiérrez, J.M.M.; Montecucco, C. A Lys49-PLA2 Myotoxin of Bothrops Asper Triggers a Rapid Death of Macrophages That Involves Autocrine Purinergic Receptor Signaling. Cell Death Dis. 2012, 3, e343. [Google Scholar] [CrossRef] [Green Version]
- Spolaore, B.; Fernández, J.; Lomonte, B.; Massimino, M.L.; Tonello, F. Enzymatic Labelling of Snake Venom Phospholipase A. Toxicon 2019, 170, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Dias, E.H.V.; Pereira, D.F.C.; de Sousa, B.B.; Matias, M.S.; de Queiroz, M.R.; Santiago, F.M.; Silva, A.C.A.; Dantas, N.O.; Santos-Filho, N.A.; de Oliveira, F. In Vitro Tracking of Phospholipase A2 from Snake Venom Conjugated with Magic-Sized Quantum Dots. Int. J. Biol. Macromol. 2019, 122, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Sakane, F.; Hoshino, F.; Murakami, C. New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int. J. Mol. Sci. 2020, 21, 6794. [Google Scholar] [CrossRef]
- Li, R.H.; Tian, T.; Ge, Q.W.; He, X.Y.; Shi, C.Y.; Li, J.H.; Zhang, Z.; Liu, F.Z.; Sang, L.J.; Yang, Z.Z.; et al. A Phosphatidic Acid-Binding LncRNA SNHG9 Facilitates LATS1 Liquid-Liquid Phase Separation to Promote Oncogenic YAP Signaling. Cell Res. 2021, 31, 1088–1105. [Google Scholar] [CrossRef] [PubMed]
- Quach, N.D.; Arnold, R.D.; Cummings, B.S. Secretory Phospholipase A2 Enzymes as Pharmacological Targets for Treatment of Disease. Biochem. Pharmacol. 2014, 90, 338–348. [Google Scholar] [CrossRef]
- Boija, A.; Klein, I.A.; Young, R.A. Biomolecular Condensates and Cancer. Cancer Cell 2021, 39, 174–192. [Google Scholar] [CrossRef]
- Patel, A.; Mitrea, D.; Namasivayam, V.; Murcko, M.A.; Wagner, M.; Klein, I.A. Principles and Functions of Condensate Modifying Drugs. Front. Mol. Biosci. 2022, 9, 1007744. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Inglis, A.S.; Scott, K.F. Native Peptide Inhibition. Specific Inhibition of Type II Phospholipases A2 by Synthetic Peptides Derived from the Primary Sequence. J. Biol. Chem. 1996, 271, 23992–23998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolgin, E. Drug Startups Coalesce around Condensates. Nat. Biotechnol. 2021, 39, 123–125. [Google Scholar] [CrossRef] [PubMed]
sPLA2 Group Gene Name | Tissue Specificity * | Single Cell Type Specificity * | Diseases | Refs. |
---|---|---|---|---|
IB PLA2G1B | Pancreas, lung, liver, colon, and kidney. At lower levels in ovary and testis, gastric mucosa, spleen, and brain | Exocrine glandular cells, pneumocytes, neuronal cells, plasma cells | Metabolic diseases Behavior disorders Arthritis rheumatoid Spinal cord and brain injury Cancer, mainly of lung, pancreas, liver, pituitary, colon, and adrenal glands | [6,7,8,9] |
IIA PLA2G2A | Liver, colon and small intestine, eyes, lung, pancreas, placenta, skeletal muscle, prostate, ovary, heart, kidney, synovium | Exocrine glandular cells, adipocytes, epithelium cells, megakaryocyte–erythroid progenitor cells, chondrocytes, oocytes, granulocytes | Gut microbiota modulator Arthritis rheumatoid Atherosclerosis Acute respiratory distress syndrome, Asthma Coronary artery disease Duchenne muscular dystrophy Alzheimer’s disease Spinal cord and brain injury Cancer, mainly of prostate, colon, rectum, liver, breast, and skin | [6,10,11,12,13,14,15,16] |
IID PLA2G2D | Spleen and lymph nodes, pharynges, pancreas, lacrimal gland. At lower levels in colon, thymus, placenta, small intestine, and prostate | Dendritic cells, macrophages, plasma cells | Psoriasis Infectious diseases Cancer: breast, skin Chronic obstructive pulmonary disease Asthma | [17,18,19] |
IIE PLA2G2E | Adipose tissue, lacrimal gland, brain, heart, coronary artery, lung, placenta, and hair follicles | Smooth muscle cells, contractile cells, plasma cells, and melanocytes | Metabolic diseases Alopecia Spinal cord injury Ulcerative colitis Chronic rhinosinusitis Cancer: cutaneous melanoma, breast adenocarcinoma | [6,7,18] |
IIF PLA2G2F | Epidermis, placenta, testis, and thymus. At lower levels in the heart, kidney, liver, and prostate | Keratinocytes, plasma cells, osteoclast, astrocytes, synovial cells, and capillary endothelial cells | Psoriasis Actinic keratosis Arthritis rheumatoid Cancer: myeloma, lymphoma, and skin | [18,20,21] |
V PLA2G5 | Heart, retina, placenta, and adipose tissue. At lower levels in lung | Sertoli cells, Leydig cells, cardiomyocytes, peritubular cells, cone photoreceptor cells, smooth muscle cells, monocytes, and macrophages | Endometriosis Osteoarthritis Acute coronary syndrome Late onset retinal degeneration Familial benign flacked retina Cancer: central nervous system, prostate | [7,22,23,24] |
X PLA2G10 | Spleen, thymus, peripheral blood leukocytes, pancreas, lung, colon, neuronal fibers, white adipose tissue, and prostate | Distal enterocytes, Paneth cells, intestinal goblet cells, exocrine glandular cells, gastric mucus-secreting cells, and pneumocytes | Acute coronary syndrome Cancer: colon-rectum, gastric, and esophagus | [25,26,27] |
Toxic Effect | Number of Proteins | Description | Refs. |
---|---|---|---|
Edema | Group I: 4 Group II: 82 | Local swelling that may appear within 15 min, spread, and become massive in two to three days and persist for up to three weeks | [29] |
Hemostasis impairing | Group I: 35 Group II: 66 | Many venom PLA2s have anticoagulant activity, some by inhibition of coagulation factors (FXa, Factor VII), others by interfering with platelet aggregation. Platelet aggregation can be affected by reaction product of the phospholipase activity, however, not all PLA2s affect platelet aggregation, despite their common catalytic activity. Another possibility is the alteration of membrane receptors. | [30,31] |
Myotoxins | Group I: 11 Group II: 81 1 | The myotoxic activity of PLA2s can be local or systemic. Some myotoxins act only on muscle cells, and others have less specific activity and may be termed cytotoxins. | [32] |
Neurotoxins | Group I: 38 2 Group II: 53 3 | Venom neurotoxic PLA2s mostly act at the pre-synaptic level. Their specificity is thought to be due to interaction with membrane receptors. They cause paralysis by interfering with the release of acetyl choline. | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonello, F. Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases—What Is the Secret of Their Activity? Int. J. Mol. Sci. 2023, 24, 1579. https://doi.org/10.3390/ijms24021579
Tonello F. Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases—What Is the Secret of Their Activity? International Journal of Molecular Sciences. 2023; 24(2):1579. https://doi.org/10.3390/ijms24021579
Chicago/Turabian StyleTonello, Fiorella. 2023. "Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases—What Is the Secret of Their Activity?" International Journal of Molecular Sciences 24, no. 2: 1579. https://doi.org/10.3390/ijms24021579
APA StyleTonello, F. (2023). Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases—What Is the Secret of Their Activity? International Journal of Molecular Sciences, 24(2), 1579. https://doi.org/10.3390/ijms24021579