An Overview of the Dry Eye Disease in Sjögren’s Syndrome Using Our Current Molecular Understanding
Abstract
:1. Introduction
1.1. Classification of Sjögren’s Syndrome
1.2. Ophthalmic Manifestations of Sjögren’s Syndrome
1.3. Glandular Manifestation
1.4. Extra-Glandular/Systemic Manifestations
2. Pathogenesis
- Interaction between genetic susceptibility and environmental exposure
- Development of autoimmunity
- Destruction of lacrymal glands leads to aqueous tear deficiency (ATD)
- Affectation of functional lacrimal unit, with the initiation of DED vicious cycle
2.1. Genetic Predisposition
2.2. Environmental Triggers
2.3. Immune Response—Development of Autoimmunity
2.3.1. Alterations in the Innate Immune Response
2.3.2. Alterations in the Adaptative Immune Response
2.4. Destruction of Lacrymal Glands and Aqueous Tear Deficiency
2.5. Affectation of Functional Lacrimal Unit and Vicious Cycle of SSDE
- Meibomian gland dysfunction and atrophy reduce the lipid layer of the tear film, leading to increased evaporation.
- Apoptosis of goblet cells decreases the mucin layer of the tear film, leading to decreased wettability.
- Degeneration of epithelial cells leads to a loss of microvilli, also contributing to decreased wettability.
- Neurogenic inflammation of the lacrimal gland further contributes to aqueous tear deficiency.
- Disturbances of corneal nerves lead to decreased corneal sensation and blinking reflex.
3. Current Diagnostic Challenges Encountered by Clinicians
- Dry eye and dry mouth are highly prevalent, making it difficult for clinicians to identify patients with underlying SS [73].
- SS has a broad spectrum of non-specific clinical manifestation, as well as an insidious onset [74].
- Patients with SSDE may be asymptomatic or mildly symptomatic despite signs of significant ocular inflammation [74].
- Reliable and effective screening tools and algorithms to determine which DED patients should be worked up for SS are lacking [4].
- Ophthalmologists underestimate the importance of SS and consequently refer few patients with DED for SS workup [75].
3.1. Importance of SS Diagnosis
- How severe has your dryness been during the last 2 weeks?
- How severe has your fatigue been during the last 2 weeks?
- How severe has your pain (joint or muscular pain in your arms or legs) been during the last 2 weeks?
- Do you experience a dry mouth or dry eyes?
- Do you have difficulty swallowing or speaking due to a dry throat?
- Do you experience dryness or irritation in other areas of your body, such as your nose, skin, or vagina?
- Do you have joint pain or swelling?
- Do you have fatigue or a general feeling of being unwell?
- Do you have a family history of autoimmune disorders?
3.2. Conventional Diagnostic Tools and Criteria
- Labial salivary gland with focal lymphocytic sialadenitis and a focus score of 1 or more foci per 4 mm2. (3 points)
- Presence of auto-antibodies, including anti-Ro or anti-La. (3 points)
- Ocular staining score of 5 or higher or a van Bijsterveld score of 4 or higher in at least one eye. (1 point)
- Schirmer’s test 5 mm/5 min or lower in at least one eye. (1 point)
- Unstimulated whole saliva flow rate of 0.1 mL/min or lower. (1 point)
- The dosage of serological markers such as anti-RO/SSA and anti-La/SSB antibodies, as well as ANA and rheumatoid factor (RF), are insensitive and thus cannot be used to screen for SS. It was shown that the reliability of ANA titers for SS is approximately 80% [86] and reaches a highest sensitivity value of 68.3% [87]. The prevalence of serological RF in SS patients was shown to be approximately 51% [88], with a sensitivity value of 53% [89]. As for the autoantibodies, they might be undetectable at the early stages of the disease. In fact, it was shown that the sensitivity for anti-RO/SSA and anti-La/SSB antibodies varies between 69% and 77% and 39% and 44%, respectively [90].
- The saliva flow rate and Schirmer’s test are rarely performed in a clinical setting since they are not specific to SS [4] and take a significant amount of time to perform in busy ophthalmology practices.
- Van Bijsterveld Score (VBS) and Ocular Staining Score (OSS) systems are seldom used by ophthalmologists since the rose Bengal is an irritant to the ocular surface and that the lissamine green is not available in most of the eye clinics. Moreover, a high OSS remains unspecific for SSDE and can be seen in NSSDE [4].
- A minor salivary gland biopsy is insensitive at the onset of the disease. Although it is generally a well-tolerated procedure, the risk of hemorrhage, infection, paresthesia, and mucocele formation is still present [91].
3.3. Other Diagnostic Tools
3.3.1. Serum Testing and Biomarkers
3.3.2. Tear Film Analysis
Tear Film Osmolarity
Tear Ferning
3.3.3. Advanced Imaging
In Vivo Confocal Microscopy
Meibography
MRI/CT/US Scan of the Lacrimal Gland
4. On the Horizon—Novel Diagnostic Modalities
4.1. Tear Film’s Molecular Analysis—Tear Proteomics
4.2. Saliva Molecular Analysis—Salivary Proteomics
4.3. Exosome as a Diagnostic Tool
4.3.1. What Are Exosomes?
4.3.2. Exosome Biogenesis
4.3.3. Composition of Exosomes in Sjogren’s Syndrome Pathogenesis
4.3.4. Exosomes as a Diagnostic Tool for Sjögren’s Syndrome
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SS | Sjögren’s Syndrome |
SSDE | Sjögren’s Syndrome Dry Eye |
NSSDE | Non- Sjögren’s Syndrome Dry Eye |
References
- Bombardieri, M.; Argyropoulou, O.D.; Ferro, F.; Coleby, R.; Pontarini, E.; Governato, G.; Lucchesi, D.; Fulvio, G.; Tzioufas, A.G.; Baldini, C. One Year in Review 2020: Pathogenesis of Primary Sjögren’s Syndrome. Clin. Exp. Rheumatol. 2020, 38 (Suppl. 126), 3–9. [Google Scholar]
- Stefanski, A.-L.; Tomiak, C.; Pleyer, U.; Dietrich, T.; Rüdiger Burmester, G.; Dörner, T. The Diagnosis and Treatment of Sjögren’s Syndrome. Dtsch. Ärztebl. Int. 2017, 114, 354–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpek, E.K.; Mathews, P.; Hahn, S.; Hessen, M.; Kim, J.; Grader-Beck, T.; Birnbaum, J.; Baer, A.N. Ocular and Systemic Morbidity in a Longitudinal Cohort of Sjögren’s Syndrome. Ophthalmology 2015, 122, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Caban, M.; Omulecki, W.; Latecka-Krajewska, B. Dry Eye in Sjögren’s Syndrome—Characteristics and Therapy. Eur. J. Ophthalmol. 2022, 32, 3174–3184. [Google Scholar] [CrossRef] [PubMed]
- van der Reijden, W.A.; Vissink, A.; Veerman, E.C.I.; Amerongen, A.V.N. Treatment of Oral Dryness Related Complaints (Xerostomia) in Sjogren’s Syndrome. Ann. Rheum. Dis. 1999, 58, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Parkin, B.; Chew, J.B.; White, V.A.; Garcia-Briones, G.; Chhanabhai, M.; Rootman, J. Lymphocytic Infiltration and Enlargement of the Lacrimal Glands: A New Subtype of Primary Sjögren’s Syndrome? Ophthalmology 2005, 112, 2040–2047. [Google Scholar] [CrossRef] [PubMed]
- Chung, A.; Wilgus, M.L.; Fishbein, G.; Lynch, J.P. Pulmonary and Bronchiolar Involvement in Sjogren’s Syndrome. Semin. Respir. Crit. Care Med. 2019, 40, 235–254. [Google Scholar] [CrossRef]
- François, H.; Mariette, X. Renal Involvement in Primary Sjögren Syndrome. Nat. Rev. Nephrol. 2016, 12, 82–93. [Google Scholar] [CrossRef]
- Weng, M.-Y.; Huang, Y.-T.; Liu, M.-F.; Lu, T.-H. Incidence of Cancer in a Nationwide Population Cohort of 7852 Patients with Primary Sjogren’s Syndrome in Taiwan. Ann. Rheum. Dis. 2012, 71, 524–527. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, M.N.; Robinson, D.; Mak, V.; Møller, H.; Isenberg, D.A. Incidence of Cancer in a Cohort of Patients with Primary Sjogren’s Syndrome. Rheumatol. Oxf. Engl. 2006, 45, 1012–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito-Zerón, P.; Kostov, B.; Fraile, G.; Caravia-Durán, D.; Maure, B.; Rascón, F.-J.; Zamora, M.; Casanovas, A.; Lopez-Dupla, M.; Ripoll, M.; et al. Characterization and Risk Estimate of Cancer in Patients with Primary Sjögren Syndrome. J. Hematol. Oncol. 2017, 10, 90. [Google Scholar] [CrossRef]
- Gottenberg, J.-E.; Busson, M.; Loiseau, P.; Dourche, M.; Cohen-Solal, J.; Lepage, V.; Charron, D.; Miceli, C.; Sibilia, J.; Mariette, X. Association of Transforming Growth Factor β1 and Tumor Necrosis Factor α Polymorphisms with Anti-SSB/La Antibody Secretion in Patients with Primary Sjögren’s Syndrome. Arthritis Rheum. 2004, 50, 570–580. [Google Scholar] [CrossRef]
- Cruz-Tapias, P.; Rojas-Villarraga, A.; Maier-Moore, S.; Anaya, J.-M. HLA and Sjögren’s Syndrome Susceptibility. A Meta-Analysis of Worldwide Studies. Autoimmun. Rev. 2012, 11, 281–287. [Google Scholar] [CrossRef]
- Song, I.-W.; Chen, H.-C.; Lin, Y.-F.; Yang, J.-H.; Chang, C.-C.; Chou, C.-T.; Lee, M.-T.M.; Chou, Y.-C.; Chen, C.-H.; Chen, Y.-T.; et al. Identification of Susceptibility Gene Associated with Female Primary Sjögren’s Syndrome in Han Chinese by Genome-Wide Association Study. Hum. Genet. 2016, 135, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Imgenberg-Kreuz, J.; Rasmussen, A.; Sivils, K.; Nordmark, G. Genetics and Epigenetics in Primary Sjögren’s Syndrome. Rheumatology 2021, 60, 2085–2098. [Google Scholar] [CrossRef] [Green Version]
- Maślińska, M. The Role of Epstein–Barr Virus Infection in Primary Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2019, 31, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Restrepo-Jiménez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramírez-Santana, C.; Leung, P.S.C.; Ansari, A.A.; Gershwin, M.E.; Anaya, J.-M. Molecular Mimicry and Autoimmunity. J. Autoimmun. 2018, 95, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Kawakami, A. What Is the Evidence for Sjögren’s Syndrome Being Triggered by Viral Infection? Subplot: Infections That Cause Clinical Features of Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2016, 28, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Ghrenassia, E.; Martis, N.; Boyer, J.; Burel-Vandenbos, F.; Mekinian, A.; Coppo, P. The Diffuse Infiltrative Lymphocytosis Syndrome (DILS). A Comprehensive Review. J. Autoimmun. 2015, 59, 19–25. [Google Scholar] [CrossRef]
- Yamaguchi, T. Inflammatory Response in Dry Eye. Investig. Opthalmol. Vis. Sci. 2018, 59, DES192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pflugfelder, S.C.; de Paiva, C.S. The Pathophysiology of Dry Eye Disease. Ophthalmology 2017, 124, S4–S13. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, U.S.; Nandula, S.R.; Thimmalapura, P.-R.; Scindia, Y.M.; Bagavant, H. Activation of Innate Immune Responses through Toll-like Receptor 3 Causes a Rapid Loss of Salivary Gland Function: TLR3 Engagement and Salivary Gland Function. J. Oral Pathol. Med. 2008, 38, 42–47. [Google Scholar] [CrossRef]
- Nandula, S.-R.; Scindia, Y.; Dey, P.; Bagavant, H.; Deshmukh, U. Activation of Innate Immunity Accelerates Sialoadenitis in a Mouse Model for Sjögren’s Syndrome-like Disease: Innate Immunity and Sjögren’s Syndrome. Oral Dis. 2011, 17, 801–807. [Google Scholar] [CrossRef]
- Zhou, J.; Jin, J.-O.; Du, J.; Yu, Q. Innate Immune Signaling Induces IL-7 Production, Early Inflammatory Responses, and Sjögren’s-Like Dacryoadenitis in C57BL/6 Mice. Investig. Opthalmol. Vis. Sci. 2015, 56, 7831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.; Ming, B.; Wu, X.; Cai, S.; Tang, J.; Dong, Y.; Zhou, T.; Tan, Z.; Zhong, J.; Zheng, F.; et al. Intratracheal Poly(I:C) Exposure Accelerates the Immunological Disorder of Salivary Glands in Sjogren’s-Like NOD/ShiLtJ Mice. Front. Med. 2021, 8, 645816. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, Y.; Carroll, V.A.; Deshmukh, U.; Gaskin, F.; Brown, M.G.; Fu, S.M. Severe Focal Sialadenitis and Dacryoadenitis in NZM2328 Mice Induced by MCMV: A Novel Model for Human Sjögren’s Syndrome. J. Immunol. 2006, 177, 7391–7397. [Google Scholar] [CrossRef] [Green Version]
- Weller, M.L.; Gardener, M.R.; Bogus, Z.C.; Smith, M.A.; Astorri, E.; Michael, D.G.; Michael, D.A.; Zheng, C.; Burbelo, P.D.; Lai, Z.; et al. Hepatitis Delta Virus Detected in Salivary Glands of Sjögren’s Syndrome Patients and Recapitulates a Sjögren’s Syndrome-Like Phenotype in Vivo. Pathog. Immun. 2016, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Sjögren’s Syndrome|Harrison’s Principles of Internal Medicine, 21e|AccessPharmacy|McGraw Hill Medical. Available online: https://accesspharmacy.mhmedical.com/content.aspx?bookid=3095§ionid=263362529 (accessed on 8 January 2023).
- Chivasso, C.; Sarrand, J.; Perret, J.; Delporte, C.; Soyfoo, M.S. The Involvement of Innate and Adaptive Immunity in the Initiation and Perpetuation of Sjögren’s Syndrome. Int. J. Mol. Sci. 2021, 22, 658. [Google Scholar] [CrossRef]
- Nair, J.; Singh, T. Sjogren’s Syndrome: Review of the Aetiology, Pathophysiology a Potential Therapeutic Interventions. J. Clin. Exp. Dent. 2017, 9, e584. [Google Scholar] [CrossRef] [Green Version]
- Fasano, S.; Mauro, D.; Macaluso, F.; Xiao, F.; Zhao, Y.; Lu, L.; Guggino, G.; Ciccia, F. Pathogenesis of Primary Sjögren’s Syndrome beyond B Lymphocytes. Clin. Exp. Rheumatol. 2020, 38 (Suppl. 126), 315–323. [Google Scholar]
- Shimizu, S.; Kurashige, Y.; Nishimura, M.; Yamazaki, M.; Sato, J.; Saitoh, M.; Selimovic, D.; Abiko, Y. Involvement of Toll-like Receptors in Autoimmune Sialoadenitis of the Non-Obese Diabetic Mouse: Toll-like Receptors in Autoimmune Sialoadenitis. J. Oral Pathol. Med. 2012, 41, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Nocturne, G.; Mariette, X. Advances in Understanding the Pathogenesis of Primary Sjögren’s Syndrome. Nat. Rev. Rheumatol. 2013, 9, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Muskardin, T.L.W.; Niewold, T.B. Type I Interferon in Rheumatic Diseases. Nat. Rev. Rheumatol. 2018, 14, 214–228. [Google Scholar] [CrossRef]
- Gottenberg, J.-E.; Cagnard, N.; Lucchesi, C.; Letourneur, F.; Mistou, S.; Lazure, T.; Jacques, S.; Ba, N.; Ittah, M.; Lepajolec, C.; et al. Activation of IFN Pathways and Plasmacytoid Dendritic Cell Recruitment in Target Organs of Primary Sjögren’s Syndrome. Proc. Natl. Acad. Sci. USA 2006, 103, 2770–2775. [Google Scholar] [CrossRef] [Green Version]
- Brkic, Z.; Maria, N.I.; van Helden-Meeuwsen, C.G.; van de Merwe, J.P.; van Daele, P.L.; Dalm, V.A.; Wildenberg, M.E.; Beumer, W.; Drexhage, H.A.; Versnel, M.A. Prevalence of Interferon Type I Signature in CD14 Monocytes of Patients with Sjögren’s Syndrome and Association with Disease Activity and BAFF Gene Expression. Ann. Rheum. Dis. 2013, 72, 728–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfo, S.; Ciccia, F. JAK/STAT Pathway Targeting in Primary Sjögren Syndrome. Rheumatol. Immunol. Res. 2022, 3, 95–102. [Google Scholar] [CrossRef]
- Ogawa, N.; Ping, L.; Zhenjun, L.; Takada, Y.; Sugai, S. Involvement of the Interferon-?-Induced T Cell-Attracting Chemokines, Interferon-?-Inducible 10-Kd Protein (CXCL10) and Monokine Induced by Interferon-? (CXCL9), in the Salivary Gland Lesions of Patients with Sjögren’s Syndrome. Arthritis Rheum. 2002, 46, 2730–2741. [Google Scholar] [CrossRef]
- Oishi, A.; Miyamoto, K.; Kashii, S.; Yoshimura, N. Abducens Palsy and Sjogren’s Syndrome Induced by Pegylated Interferon Therapy. Br. J. Ophthalmol. 2007, 91, 843–844. [Google Scholar] [CrossRef]
- Onishi, S.; Nagashima, T.; Kimura, H.; Matsuyama, Y.; Yoshio, T.; Minota, S. Systemic Lupus Erythematosus and Sjögren’s Syndrome Induced in a Case by Interferon-α Used for the Treatment of Hepatitis C. Lupus 2010, 19, 753–755. [Google Scholar] [CrossRef]
- Ittah, M.; Miceli-Richard, C.; Eric Gottenberg, J.-; Lavie, F.; Lazure, T.; Ba, N.; Sellam, J.; Lepajolec, C.; Mariette, X. B Cell-Activating Factor of the Tumor Necrosis Factor Family (BAFF) Is Expressed under Stimulation by Interferon in Salivary Gland Epithelial Cells in Primary Sjögren’s Syndrome. Arthritis Res. Ther. 2006, 8, R51. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.-Z.; Nititham, J.; Taylor, K.; Miceli-Richard, C.; Sordet, C.; Wachsmann, D.; Bahram, S.; Georgel, P.; Criswell, L.A.; Sibilia, J.; et al. Differentiation of Follicular Helper T Cells by Salivary Gland Epithelial Cells in Primary Sjögren’s Syndrome. J. Autoimmun. 2014, 51, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Hillen, M.R.; Pandit, A.; Blokland, S.L.M.; Hartgring, S.A.Y.; Bekker, C.P.J.; van der Heijden, E.H.M.; Servaas, N.H.; Rossato, M.; Kruize, A.A.; van Roon, J.A.G.; et al. Plasmacytoid DCs From Patients With Sjögren’s Syndrome Are Transcriptionally Primed for Enhanced Pro-Inflammatory Cytokine Production. Front. Immunol. 2019, 10, 2096. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Kubo, S.; Nakayamada, S.; Shimajiri, S.; Zhang, X.; Yamaoka, K.; Tanaka, Y. Association of Plasmacytoid Dendritic Cells with B Cell Infiltration in Minor Salivary Glands in Patients with Sjögren’s Syndrome. Mod. Rheumatol. 2016, 26, 716–724. [Google Scholar] [CrossRef]
- Mariette, X. The Level of BLyS (BAFF) Correlates with the Titre of Autoantibodies in Human Sjogren’s Syndrome. Ann. Rheum. Dis. 2003, 62, 168–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsson, M.V.; Szodoray, P.; Jellestad, S.; Jonsson, R.; Skarstein, K. Association Between Circulating Levels of the Novel TNF Family Members APRIL and BAFF and Lymphoid Organization in Primary Sjögren’s Syndrome. J. Clin. Immunol. 2005, 25, 189–201. [Google Scholar] [CrossRef]
- Lavie, F.; Miceli-Richard, C.; Quillard, J.; Roux, S.; Leclerc, P.; Mariette, X. Expression of BAFF(BLyS) in T Cells Infiltrating Labial Salivary Glands from Patients with Sjögren’s Syndrome. J. Pathol. 2004, 202, 496–502. [Google Scholar] [CrossRef]
- Dong, L.; Chen, Y.; Masaki, Y.; Okazaki, T.; Umehara, H. Possible Mechanisms of Lymphoma Development in Sjogren’s Syndrome. Curr. Immunol. Rev. 2013, 9, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Groom, J.; Kalled, S.L.; Cutler, A.H.; Olson, C.; Woodcock, S.A.; Schneider, P.; Tschopp, J.; Cachero, T.G.; Batten, M.; Wheway, J.; et al. Association of BAFF/BLyS Overexpression and Altered B Cell Differentiation with Sjögren’s Syndrome. J. Clin. Investig. 2002, 109, 59–68. [Google Scholar] [CrossRef]
- Szabó, K.; Papp, G.; Szántó, A.; Tarr, T.; Zeher, M. A Comprehensive Investigation on the Distribution of Circulating Follicular T Helper Cells and B Cell Subsets in Primary Sjögren’s Syndrome and Systemic Lupus Erythematosus. Clin. Exp. Immunol. 2015, 183, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Ibrahem, H.M. B Cell Dysregulation in Primary Sjögren’s Syndrome: A Review. Jpn. Dent. Sci. Rev. 2019, 55, 139–144. [Google Scholar] [CrossRef]
- Salomonsson, S.; Jonsson, M.V.; Skarstein, K.; Brokstad, K.A.; Hjelmström, P.; Wahren-Herlenius, M.; Jonsson, R. Cellular Basis of Ectopic Germinal Center Formation and Autoantibody Production in the Target Organ of Patients with Sjögren’s Syndrome: Ectopic Germinal Center Formation in Sjögren’s Syndrome. Arthritis Rheum. 2003, 48, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- Vosters, J.L.; Roescher, N.; Polling, E.J.; Illei, G.G.; Tak, P.P. The Expression of APRIL in Sjögren’s Syndrome: Aberrant Expression of APRIL in the Salivary Gland. Rheumatology 2012, 51, 1557–1562. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Brayer, J.; Gao, J.; Brown, V.; Killedar, S.; Yasunari, U.; Peck, A.B. A Dual Role for Interferon-Gamma in the Pathogenesis of Sjogren’s Syndrome-Like Autoimmune Exocrinopathy in the Nonobese Diabetic Mouse. Scand. J. Immunol. 2004, 60, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.C.; Casciola-Rosen, L.; Berger, A.E.; Kapsogeorgou, E.K.; Cheadle, C.; Tzioufas, A.G.; Baer, A.N.; Rosen, A. Precise Probes of Type II Interferon Activity Define the Origin of Interferon Signatures in Target Tissues in Rheumatic Diseases. Proc. Natl. Acad. Sci. USA 2012, 109, 17609–17614. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Cheng, Q.; Jiang, C.; An, S.; Xiao, L.; Gou, Y.; Yu, W.; Lei, L.; Chen, Q.; Wang, Y.; et al. The Immune Factors Involved in the Pathogenesis, Diagnosis, and Treatment of Sjogren’s Syndrome. Clin. Dev. Immunol. 2013, 2013, 160491. [Google Scholar] [CrossRef] [Green Version]
- Verstappen, G.M.; Corneth, O.B.J.; Bootsma, H.; Kroese, F.G.M. Th17 Cells in Primary Sjögren’s Syndrome: Pathogenicity and Plasticity. J. Autoimmun. 2018, 87, 16–25. [Google Scholar] [CrossRef]
- Manoussakis, M.N.; Spachidou, M.P.; Maratheftis, C.I. Salivary Epithelial Cells from Sjogren’s Syndrome Patients Are Highly Sensitive to Anoikis Induced by TLR-3 Ligation. J. Autoimmun. 2010, 35, 212–218. [Google Scholar] [CrossRef]
- Kiripolsky, J.; Kramer, J.M. Current and Emerging Evidence for Toll-Like Receptor Activation in Sjögren’s Syndrome. J. Immunol. Res. 2018, 2018, 1246818. [Google Scholar] [CrossRef]
- Kyriakidis, N.C.; Kapsogeorgou, E.K.; Gourzi, V.C.; Konsta, O.D.; Baltatzis, G.E.; Tzioufas, A.G. Toll-like Receptor 3 Stimulation Promotes Ro52/TRIM21 Synthesis and Nuclear Redistribution in Salivary Gland Epithelial Cells, Partially via Type I Interferon Pathway. Clin. Exp. Immunol. 2014, 178, 548–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayyaz, A.; Kurien, B.T.; Scofield, R.H. Autoantibodies in Sjögren’s Syndrome. Rheum. Dis. Clin. N. Am. 2016, 42, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, R. Autoantibodies Present Before Symptom Onset in Primary Sjögren Syndrome. JAMA 2013, 310, 1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauharoh, S.N.A.; Saegusa, J.; Sugimoto, T.; Ardianto, B.; Kasagi, S.; Sugiyama, D.; Kurimoto, C.; Tokuno, O.; Nakamachi, Y.; Kumagai, S.; et al. SS-A/Ro52 Promotes Apoptosis by Regulating Bcl-2 Production. Biochem. Biophys. Res. Commun. 2012, 417, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, R.; Chang, T.-H.; Wang, H.; Atsumi, T.; Morse, H.C.; Ozato, K. Gene Disruption Study Reveals a Nonredundant Role for TRIM21/Ro52 in NF-ΚB-Dependent Cytokine Expression in Fibroblasts. J. Immunol. 2009, 182, 7527–7538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, T.; Pratt, G.A.; Sundararaman, B.; Townsend, M.J.; Chaivorapol, C.; Bhangale, T.; Graham, R.R.; Ortmann, W.; Criswell, L.A.; Yeo, G.W.; et al. The Ro60 Autoantigen Binds Endogenous Retroelements and Regulates Inflammatory Gene Expression. Science 2015, 350, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Xiong, K.; Szulwach, K.E.; Zhang, Y.; Wang, Z.; Peng, J.; Fu, M.; Jin, P.; Suzuki, H.I.; Liu, Q. Sjögren Syndrome Antigen B (SSB)/La Promotes Global MicroRNA Expression by Binding MicroRNA Precursors through Stem-Loop Recognition. J. Biol. Chem. 2013, 288, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, M.I.; Kapsogeorgou, E.K.; Moutsopoulos, H.M. Characteristics of the Minor Salivary Gland Infiltrates in Sjögren’s Syndrome. J. Autoimmun. 2010, 34, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Corsiero, E.; Sutcliffe, N.; Pitzalis, C.; Bombardieri, M. Accumulation of Self-Reactive Naïve and Memory B Cell Reveals Sequential Defects in B Cell Tolerance Checkpoints in Sjögren’s Syndrome. PLoS ONE 2014, 9, e114575. [Google Scholar] [CrossRef] [Green Version]
- Theander, E.; Vasaitis, L.; Baecklund, E.; Nordmark, G.; Warfvinge, G.; Liedholm, R.; Brokstad, K.; Jonsson, R.; Jonsson, M.V. Lymphoid Organisation in Labial Salivary Gland Biopsies Is a Possible Predictor for the Development of Malignant Lymphoma in Primary Sjogren’s Syndrome. Ann. Rheum. Dis. 2011, 70, 1363–1368. [Google Scholar] [CrossRef]
- Lemp, M.A.; Baudouin, C.; Baum, J.; Dogru, M.; Foulks, G.N.; Kinoshita, S.; Laibson, P.; McCulley, J.P.; Murube, J.; Pflugfelder, S.C.; et al. The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop. Ocul. Surf. 2007, 5, 75–92. [Google Scholar] [CrossRef]
- Pflugfelder, S.C. Tear Dysfunction and the Cornea: LXVII Edward Jackson Memorial Lecture. Am. J. Ophthalmol. 2011, 152, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, W.; Chauhan, S.K.; Dana, R. Dry Eye Disease: An Immune-Mediated Ocular Surface Disorder. Arch. Ophthalmol. 2012, 130, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, B.; Wang, J.; Yang, Z.; Yang, M.; Ma, N.; Huang, F.; Zhong, R. Epidemiology of Primary Sjögren’s Syndrome: A Systematic Review and Meta-Analysis. Ann. Rheum. Dis. 2015, 74, 1983–1989. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.S.; Lee, H.S.; Li, Y.; Choi, W.; Yoon, K.C. Manifestation of Meibomian Gland Dysfunction in Patients with Sjögren’s Syndrome, Non-Sjögren’s Dry Eye, and Non-Dry Eye Controls. Int. Ophthalmol. 2018, 38, 1161–1167. [Google Scholar] [CrossRef]
- Bunya, V.Y.; Fernandez, K.B.; Ying, G.-S.; Massaro-Giordano, M.; Macchi, I.; Sulewski, M.E.; Hammersmith, K.M.; Nagra, P.K.; Rapuano, C.J.; Orlin, S.E. Survey of Ophthalmologists Regarding Practice Patterns for Dry Eye and Sjogren Syndrome. Eye Contact Lens 2018, 44 (Suppl. 2), S196–S201. [Google Scholar] [CrossRef] [PubMed]
- Vivino, F.B.; Minerva, P.; Huang, C.H.; Orlin, S.E. Corneal Melt as the Initial Presentation of Primary Sjögren’s Syndrome. J. Rheumatol. 2001, 28, 379–382. [Google Scholar]
- Braithwaite, T.; Adderley, N.J.; Subramanian, A.; Galloway, J.; Kempen, J.H.; Gokhale, K.; Cope, A.P.; Dick, A.D.; Nirantharakumar, K.; Denniston, A.K. Epidemiology of Scleritis in the United Kingdom From 1997 to 2018: Population-Based Analysis of 11 Million Patients and Association Between Scleritis and Infectious and Immune-Mediated Inflammatory Disease. Arthritis Rheumatol. 2021, 73, 1267–1276. [Google Scholar] [CrossRef]
- Rosenbaum, J.T.; Bennett, R.M. Chronic Anterior and Posterior Uveitis and Primary Sjögren’s Syndrome. Am. J. Ophthalmol. 1987, 104, 346–352. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Liu, Z.; Zhao, P.; Liu, T. Optic Neuritis as an Initial Presentation of Primary Sjögren Syndrome: A Case Report and Literature Review. Medicine 2016, 95, e5194. [Google Scholar] [CrossRef]
- Foulks, G.N.; Forstot, S.L.; Donshik, P.C.; Forstot, J.Z.; Goldstein, M.H.; Lemp, M.A.; Nelson, J.D.; Nichols, K.K.; Pflugfelder, S.C.; Tanzer, J.M.; et al. Clinical Guidelines for Management of Dry Eye Associated with Sjögren Disease. Ocul. Surf. 2015, 13, 118–132. [Google Scholar] [CrossRef]
- Di Pascuale, M.A.; Liu, T.-S.; Trattler, W.; Tseng, S.C.G. Lipid Tear Deficiency in Persistent Dry Eye after Laser in Situ Keratomileusis and Treatment Results of New Eye-Warming Device. J. Cataract Refract. Surg. 2005, 31, 1741–1749. [Google Scholar] [CrossRef]
- Albietz, J.M.; Lenton, L.M.; McLennan, S.G. Dry Eye after LASIK: Comparison of Outcomes for Asian and Caucasian Eyes. Clin. Exp. Optom. 2005, 88, 89–96. [Google Scholar] [CrossRef]
- Saadat, D.; Dresner, S.C. Safety of Blepharoplasty in Patients with Preoperative Dry Eyes. Arch. Facial Plast. Surg. 2004, 6, 101–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seror, R.; Theander, E.; Brun, J.G.; Ramos-Casals, M.; Valim, V.; Dörner, T.; Bootsma, H.; Tzioufas, A.; Solans-Laqué, R.; Mandl, T.; et al. Validation of EULAR Primary Sjögren’s Syndrome Disease Activity (ESSDAI) and Patient Indexes (ESSPRI). Ann. Rheum. Dis. 2015, 74, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2017, 69, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Haga, H.J.; Hulten, B.; Bolstad, A.I.; Ulvestad, E.; Jonsson, R. Reliability and Sensitivity of Diagnostic Tests for Primary Sjögren’s Syndrome. J. Rheumatol. 1999, 26, 604–608. [Google Scholar]
- Tan, E.M.; Feltkamp, T.E.W.; Smolen, J.S.; Butcher, B.; Dawkins, R.; Fritzler, M.J.; Gordon, T.; Hardin, J.A.; Kalden, J.R.; Lahita, R.G.; et al. Range of Antinuclear Antibodies in “Healthy” Individuals. Arthritis Rheum. 1997, 40, 1601–1611. [Google Scholar] [CrossRef]
- Pecani, A.; Alessandri, C.; Spinelli, F.R.; Priori, R.; Riccieri, V.; Di Franco, M.; Ceccarelli, F.; Colasanti, T.; Pendolino, M.; Mancini, R.; et al. Prevalence, Sensitivity and Specificity of Antibodies against Carbamylated Proteins in a Monocentric Cohort of Patients with Rheumatoid Arthritis and Other Autoimmune Rheumatic Diseases. Arthritis Res. Ther. 2016, 18, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theander, E.; Jonsson, R.; Sjöström, B.; Brokstad, K.; Olsson, P.; Henriksson, G. Prediction of Sjögren’s Syndrome Years Before Diagnosis and Identification of Patients With Early Onset and Severe Disease Course by Autoantibody Profiling: PREDIAGNOSTIC AUTOANTIBODY PROFILING IN PRIMARY SS. Arthritis Rheumatol. 2015, 67, 2427–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veenbergen, S.; Kozmar, A.; van Daele, P.L.A.; Schreurs, M.W.J. Autoantibodies in Sjögren’s Syndrome and Its Classification Criteria. J. Transl. Autoimmun. 2022, 5, 100138. [Google Scholar] [CrossRef]
- Liao, R.; Yang, H.-T.; Li, H.; Liu, L.-X.; Li, K.; Li, J.-J.; Liang, J.; Hong, X.-P.; Chen, Y.-L.; Liu, D.-Z. Recent Advances of Salivary Gland Biopsy in Sjögren’s Syndrome. Front. Med. 2022, 8, 792593. [Google Scholar] [CrossRef]
- Athanassiou, P.; Mavragani, C.; Athanassiou, L.; Kostoglou-Athanassiou, I.; Koutsilieris, M. Vitamin D Deficiency in Primary Sjögren’s Syndrome: Association with Clinical Manifestations and Immune Activation Markers. Mediterr. J. Rheumatol. 2022, 33, 106. [Google Scholar] [CrossRef]
- Nilsson, A.; Tufvesson, E.; Hesselstrand, R.; Olsson, P.; Wollmer, P.; Mandl, T. Increased B-Cell Activating Factor, Interleukin-6, and Interleukin-8 in Induced Sputum from Primary Sjögren’s Syndrome Patients. Scand. J. Rheumatol. 2019, 48, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Padern, G.; Duflos, C.; Ferreira, R.; Assou, S.; Guilpain, P.; Maria, A.T.J.; Goulabchand, R.; Galea, P.; Jurtela, M.; Jorgensen, C.; et al. Identification of a Novel Serum Proteomic Signature for Primary Sjögren’s Syndrome. Front. Immunol. 2021, 12, 631539. [Google Scholar] [CrossRef] [PubMed]
- Versura, P.; Profazio, V.; Campos, E.C. Performance of Tear Osmolarity Compared to Previous Diagnostic Tests for Dry Eye Diseases. Curr. Eye Res. 2010, 35, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Potvin, R.; Makari, S.; Rapuano, C. Tear Film Osmolarity and Dry Eye Disease: A Review of the Literature. Clin. Ophthalmol. 2015, 9, 2039. [Google Scholar] [CrossRef] [Green Version]
- Willcox, M.D.P.; Argüeso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U.; et al. TFOS DEWS II Tear Film Report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruzat, A.; Qazi, Y.; Hamrah, P. In Vivo Confocal Microscopy of Corneal Nerves in Health and Disease. Ocul. Surf. 2017, 15, 15–47. [Google Scholar] [CrossRef] [Green Version]
- Luzu, J.; Labbé, A.; Réaux-Le Goazigo, A.; Rabut, G.; Liang, H.; Dupas, B.; Blautain, B.; Sène, D.; Baudouin, C. In Vivo Confocal Microscopic Study of Corneal Innervation in Sjögren’s Syndrome with or without Small Fiber Neuropathy. Ocul. Surf. 2022, 25, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Noh, S.R.; Chung, J.L.; Lee, J.M.; Seo, K.Y.; Koh, K. Meibomian Gland Atrophy with Duration of Sjogren’s Syndrome in Adult Females. Int. Ophthalmol. 2022, 42, 191–200. [Google Scholar] [CrossRef]
- Schäfer, V.S.; Schmidt, W.A. Ultraschalldiagnostik beim Sjögren-Syndrom. Z. Rheumatol. 2017, 76, 589–594. [Google Scholar] [CrossRef]
- Muntean, D.D.; Bădărînză, M.; Ștefan, P.A.; Lenghel, M.L.; Rusu, G.M.; Csutak, C.; Coroian, P.A.; Lupean, R.A.; Fodor, D. The Diagnostic Value of MRI-Based Radiomic Analysis of Lacrimal Glands in Patients with Sjögren’s Syndrome. Int. J. Mol. Sci. 2022, 23, 10051. [Google Scholar] [CrossRef]
- Yu, D.F.; Chen, Y.; Han, J.M.; Zhang, H.; Chen, X.P.; Zou, W.J.; Liang, L.Y.; Xu, C.C.; Liu, Z.G. MUC19 Expression in Human Ocular Surface and Lacrimal Gland and Its Alteration in Sjögren Syndrome Patients. Exp. Eye Res. 2008, 86, 403–411. [Google Scholar] [CrossRef]
- Pflugfelder, S.; Fang, B.; De Paiva, C. Matrix Metalloproteinase-9 in the Pathophysiology and Diagnosis of Dry Eye Syndrome. Met. Med. 2017, 4, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Masli, S.; Akpek, E.K. Reduced Tear Thrombospondin-1/Matrix Metalloproteinase-9 Ratio Can Aid in Detecting Sjögren’s Syndrome Etiology in Patients with Dry Eye. Clin. Transl. Sci. 2022, 15, 1999–2009. [Google Scholar] [CrossRef]
- Tan, X.; Chen, Y.; Foulsham, W.; Amouzegar, A.; Inomata, T.; Liu, Y.; Chauhan, S.K.; Dana, R. The Immunoregulatory Role of Corneal Epithelium-Derived Thrombospondin-1 in Dry Eye Disease. Ocul. Surf. 2018, 16, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Bunya, V.Y.; Ying, G.-S.; Maguire, M.G.; Kuklinski, E.; Lin, M.C.; Peskin, E.; Asbell, P.A.; the DREAM Study Research Group. Prevalence of Novel Candidate Sjogren Syndrome Autoantibodies in the Dry Eye Assessment and Management (DREAM) Study. Cornea 2018, 37, 1425–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Versura, P.; Giannaccare, G.; Vukatana, G.; Mulè, R.; Malavolta, N.; Campos, E.C. Predictive Role of Tear Protein Expression in the Early Diagnosis of Sjögren’s Syndrome. Ann. Clin. Biochem. Int. J. Lab. Med. 2018, 55, 561–570. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, D.; Chen, X.; Bian, F.; Gao, N.; Li, J.; Pflugfelder, S.C.; Li, D.-Q. Autophagy Activation Protects Ocular Surface from Inflammation in a Dry Eye Model In Vitro. Int. J. Mol. Sci. 2020, 21, 8966. [Google Scholar] [CrossRef] [PubMed]
- Shinzawa, M.; Dogru, M.; Den, S.; Ichijima, T.; Higa, K.; Kojima, T.; Seta, N.; Nomura, T.; Tsubota, K.; Shimazaki, J. Epidermal Fatty Acid-Binding Protein: A Novel Marker in the Diagnosis of Dry Eye Disease in Sjögren Syndrome. Int. J. Mol. Sci. 2018, 19, 3463. [Google Scholar] [CrossRef] [Green Version]
- Sembler-Møller, M.L.; Belstrøm, D.; Locht, H.; Pedersen, A.M.L. Proteomics of Saliva, Plasma, and Salivary Gland Tissue in Sjögren’s Syndrome and Non-Sjögren Patients Identify Novel Biomarker Candidates. J. Proteom. 2020, 225, 103877. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Kim, J.-W.; Kim, H.-A.; Suh, C.-H. Salivary Biomarkers in Patients with Sjögren’s Syndrome—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 12903. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The Exosome Journey: From Biogenesis to Uptake and Intracellular Signalling. Cell Commun. Signal. 2021, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.L.; Lettman, M.M.; Audhya, A. Lgd Regulates ESCRT-III Complex Accumulation at Multivesicular Endosomes to Control Intralumenal Vesicle Formation. Mol. Biol. Cell 2022, 33, ar144. [Google Scholar] [CrossRef] [PubMed]
- Marcelić, M.; Mahmutefendić Lučin, H.; Jurak Begonja, A.; Blagojević Zagorac, G.; Lučin, P. Early Endosomal Vps34-Derived Phosphatidylinositol-3-Phosphate Is Indispensable for the Biogenesis of the Endosomal Recycling Compartment. Cells 2022, 11, 962. [Google Scholar] [CrossRef]
- Sun, W.; Yan, Q.; Vida, T.A.; Bean, A.J. Hrs Regulates Early Endosome Fusion by Inhibiting Formation of an Endosomal SNARE Complex. J. Cell Biol. 2003, 162, 125–137. [Google Scholar] [CrossRef]
- Lu, Q.; Hope, L.W.; Brasch, M.; Reinhard, C.; Cohen, S.N. TSG101 Interaction with HRS Mediates Endosomal Trafficking and Receptor Down-Regulation. Proc. Natl. Acad. Sci. USA 2003, 100, 7626–7631. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Turner, C.; Gardner, J.; Temple, B.; Brennwald, P. The Exo70 Subunit of the Exocyst Is an Effector for Both Cdc42 and Rho3 Function in Polarized Exocytosis. Mol. Biol. Cell 2010, 21, 430–442. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef]
- Kapsogeorgou, E.K.; Abu-Helu, R.F.; Moutsopoulos, H.M.; Manoussakis, M.N. Salivary Gland Epithelial Cell Exosomes: A Source of Autoantigenic Ribonucleoproteins. Arthritis Rheum. 2005, 52, 1517–1521. [Google Scholar] [CrossRef]
- Gallo, A.; Jang, S.-I.; Ong, H.L.; Perez, P.; Tandon, M.; Ambudkar, I.; Illei, G.; Alevizos, I. Targeting the Ca2+ Sensor STIM1 by Exosomal Transfer of Ebv-MiR-BART13-3p Is Associated with Sjögren’s Syndrome. eBioMedicine 2016, 10, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Cortes-Troncoso, J.; Jang, S.-I.; Perez, P.; Hidalgo, J.; Ikeuchi, T.; Greenwell-Wild, T.; Warner, B.M.; Moutsopoulos, N.M.; Alevizos, I. T Cell Exosome–Derived MiR-142-3p Impairs Glandular Cell Function in Sjögren’s Syndrome. JCI Insight 2020, 5, e133497. [Google Scholar] [CrossRef] [PubMed]
- Aqrawi, L.A.; Galtung, H.K.; Vestad, B.; Øvstebø, R.; Thiede, B.; Rusthen, S.; Young, A.; Guerreiro, E.M.; Utheim, T.P.; Chen, X.; et al. Identification of Potential Saliva and Tear Biomarkers in Primary Sjögren’s Syndrome, Utilising the Extraction of Extracellular Vesicles and Proteomics Analysis. Arthritis Res. Ther. 2017, 19, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Li, R.; Ye, S.; Lin, S.; Yin, G.; Xie, Q. Recent Advances in the Use of Exosomes in Sjögren’s Syndrome. Front. Immunol. 2020, 11, 1509. [Google Scholar] [CrossRef]
- Michael, A.; Bajracharya, S.; Yuen, P.; Zhou, H.; Star, R.; Illei, G.; Alevizos, I. Exosomes from Human Saliva as a Source of MicroRNA Biomarkers: MicroRNA Biomarkers in Salivary Exosomes. Oral Dis. 2010, 16, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-X.; Wang, N.; Wu, W.-C.; Li, C.-Q.; Chen, R.-H.; Zhang, Y.; Li, X. The Role of MiR-23b in Cancer and Autoimmune Disease. J. Oncol. 2021, 2021, 6473038. [Google Scholar] [CrossRef]
- Zhu, S.; Pan, W.; Song, X.; Liu, Y.; Shao, X.; Tang, Y.; Liang, D.; He, D.; Wang, H.; Liu, W.; et al. The MicroRNA MiR-23b Suppresses IL-17-Associated Autoimmune Inflammation by Targeting TAB2, TAB3 and IKK-α. Nat. Med. 2012, 18, 1077–1086. [Google Scholar] [CrossRef]
- Alevizos, I.; Alexander, S.; Turner, R.J.; Illei, G.G. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren’s Syndrome. Arthritis Rheum. 2011, 63, 535–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakan, S.S.; Janga, S.R.; Cooperman, B.; Craig, D.W.; Edman, M.C.; Okamoto, C.T.; Hamm-Alvarez, S.F. Small RNA Deep Sequencing Identifies a Unique MiRNA Signature Released in Serum Exosomes in a Mouse Model of Sjögren’s Syndrome. Front. Immunol. 2020, 11, 1475. [Google Scholar] [CrossRef]
- Zhao, J.; An, Q.; Zhu, X.; Yang, B.; Gao, X.; Niu, Y.; Zhang, L.; Xu, K.; Ma, D. Research Status and Future Prospects of Extracellular Vesicles in Primary Sjögren’s Syndrome. Stem Cell Res. Ther. 2022, 13, 230. [Google Scholar] [CrossRef]
- Yamashiro, K.; Hamada, T.; Mori, K.; Nishi, K.; Nakamura, M.; Beppu, M.; Tanaka, A.; Hijioka, H.; Kamikawa, Y.; Sugiura, T. Exosome-Derived MicroRNAs from Mouthrinse Have the Potential to Be Novel Biomarkers for Sjögren Syndrome. J. Pers. Med. 2022, 12, 1483. [Google Scholar] [CrossRef]
Biomarker | Role in Sjogren’s Syndrome |
---|---|
Anti-RO/SSA antibodies | Autoantigen presentation to autoreactive lymphocytes |
Anti-La/SSB antibodies | |
Sm ribonucleoproteins | Pro-inflammatory role |
ebv-miR-BART13 | Alteration in calcium homeostasis |
miR-142-3p | Impaired salivary secretion of salivary grand epithelial cells |
miR-23a | Downregulation in Th17 cells and IL-17 levels Inhibition of IKK-α pathway |
let-7b-5p | Enhanced expression in SS |
miR-1290 | |
miR-34a-5p | |
miR-3648 |
Biomarker | Sensitivity (%) | Reference |
---|---|---|
ANA | 68.3 | Theander et al., 2015 [89] |
RF | 53 | Theander et al., 2015 [89] |
Anti-RO/SSA | 69–77 | Theander et al., 2015 [89] |
Anti-La/SSB | 39–44 | Veenbergen et al., 2022 [90] |
let-7b-5p | 62.5 | Yamashiro et al., 2022 [131] |
miR-34a-5p | 62.5 | Yamashiro et al., 2022 [131] |
miR-512-3p | 87.5 | Yamashiro et al., 2022 [131] |
let-7b-5p and miR-1290 | 91.7 | Yamashiro et al., 2022 [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.Y.; Kulbay, M.; Tanasescu, C.; Jiao, B.; Nguyen, B.H.; Tran, S.D. An Overview of the Dry Eye Disease in Sjögren’s Syndrome Using Our Current Molecular Understanding. Int. J. Mol. Sci. 2023, 24, 1580. https://doi.org/10.3390/ijms24021580
Wu KY, Kulbay M, Tanasescu C, Jiao B, Nguyen BH, Tran SD. An Overview of the Dry Eye Disease in Sjögren’s Syndrome Using Our Current Molecular Understanding. International Journal of Molecular Sciences. 2023; 24(2):1580. https://doi.org/10.3390/ijms24021580
Chicago/Turabian StyleWu, Kevin Y., Merve Kulbay, Cristina Tanasescu, Belinda Jiao, Bich H. Nguyen, and Simon D. Tran. 2023. "An Overview of the Dry Eye Disease in Sjögren’s Syndrome Using Our Current Molecular Understanding" International Journal of Molecular Sciences 24, no. 2: 1580. https://doi.org/10.3390/ijms24021580
APA StyleWu, K. Y., Kulbay, M., Tanasescu, C., Jiao, B., Nguyen, B. H., & Tran, S. D. (2023). An Overview of the Dry Eye Disease in Sjögren’s Syndrome Using Our Current Molecular Understanding. International Journal of Molecular Sciences, 24(2), 1580. https://doi.org/10.3390/ijms24021580