Red Blood Cell Substitutes: Liposome Encapsulated Hemoglobin and Magnetite Nanoparticle Conjugates as Oxygen Carriers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Docking of Hemoglobin with Bare Magnetite Nanoparticles
2.2. Production of Bare Magnetite Nanoparticles
2.3. Preparation of Deoxyhemoglobin Stock Solution
2.4. Preparation of Deoxyhemoglobin-Magnetite Conjugates
2.5. Analysis of the Presence of Hemoglobin in Blood Plasma from Conjugates and Presence of Blood Plasma Proteins on Conjugates
2.6. Development of RBC Substitutes
3. Materials and Methods
3.1. Materials, Software, and Apparatus
3.2. Docking of Hemoglobin with Bare Magnetite Nanoparticles
3.3. Production of Bare Magnetite Nanoparticles
3.4. Preparation of Deoxyhemoglobin Stock Solution
3.5. Preparation of Deoxyhemoglobin-Magnetite Conjugates
3.5.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.5.2. Zeta Potential Analysis
3.6. Analysis of the Presence of Hemoglobin in Blood Plasma from Conjugates and Presence of Blood Plasma Proteins on Conjugates
3.7. Development of RBC Substitutes
3.7.1. Transmission Electron Microscopy (TEM)
3.7.2. Zeta Potential Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bain, B.J. A Beginner’s Guide to Blood Cells; Wiley-Blackwell: Oxford, UK, 2017. [Google Scholar]
- Barrett, K.E.; Barman, S.M.; Boitano, S.; Brooks, H.L. Ganong’s Review of Medical Physiology; McGraw-Hill Medical: New York, NY, USA, 2010. [Google Scholar]
- Krause, W.J. Krause’s Essential Human Histology for Medical Students; Universal Publishers: Boca Raton, FL, USA, 2005. [Google Scholar]
- Gurevitz, S.A. Update and Utilization of Component Therapy in Blood Transfusions. Lab. Med. 2011, 42, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Moradi, S.; Jahanian-Najafabadi, A.; Roudkenar, M.H. Artificial Blood Substitutes: First Steps on the Long Route to Clinical Utility. Clin. Med. -Sights Blood Disord. 2016, 9, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Blood Safety and Availability. Available online: https://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability (accessed on 27 July 2020).
- Regional Status Report on Blood Safety and Availability. Available online: https://apps.who.int/iris/handle/10665/258923 (accessed on 27 July 2020).
- Arshad Ali, S.; Azim, D.; Hassan, H.; Iqbal, A.; Ahmed, N.; Kumar, S.; Nasim, S. The impact of covid-19 on transfusion-dependent thalassemia patients of Karachi, Pakistan: A single-center experience. Transfus. Clin. Et Biol. 2021, 28, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, H.U.; Anwar, N.; Fatima, N.; Naseer, I.; Borhany, M.; Shamsi, T. Utilization of blood products at a center in Pakistan. Is donating better than wasting? J. Pak. Med. Assoc. 2021, 71, 133–135. [Google Scholar]
- Chang, T. Nanobiotechnology for Hemoglobin-based Blood Substitutes. Crit. Care Clin. 2009, 25, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, L.M. Hemoglobin-based Oxygen Carriers: First, Second or Third Generation? Human or Bovine? Where are we Now? Crit. Care Clin. 2009, 25, 279–301. [Google Scholar] [CrossRef]
- Aghili, Z.; Taheri, S.; Zeinabad, H.A.; Pishkar, L.; Saboury, A.A.; Rahimi, A.; Falahati, M.A. Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and Molecular Docking Studies. PLoS ONE 2016, 11, e0164878. [Google Scholar] [CrossRef] [PubMed]
- Brancolini, G.; Kokh, D.B.; Calzolai, L.; Wade, R.C.; Corni, S. Docking of Ubiquitin to gold nanoparticles. ACS Nano 2012, 6, 9863–9878. [Google Scholar] [CrossRef]
- Sabziparvar, N.; Saeedi, Y.; Nouri, M.; Bozorgi, A.S.N.; Alizadeh, E.; Attar, F.; Akhtari, K.; Mousavi, S.E.; Falahati, M. Investigating the interaction of silicon dioxide nanoparticles with human hemoglobin and lymphocyte cells by biophysical, computational, and Cellular Studies. J. Phys. Chem. B 2018, 122, 4278–4288. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, F.; Seddigh, M. Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Mater. Chem. Phys. 2016, 184, 318–323. [Google Scholar] [CrossRef]
- Mascolo, M.C.; Pei, Y.; Ring, T.A. Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 2013, 6, 5549–5567. [Google Scholar] [CrossRef]
- Hariani, P.L.; Faizal, M.; Ridwan, R.; Marsi, M.; Setiabudidaya, D. Synthesis and Properties of Fe3O4 Nanoparticles by Co-precipitation Method to Removal Procion Dye. Int. J. Environ. Sci. Dev. 2013, 4, 336–340. [Google Scholar] [CrossRef]
- Rahman, O.U.; Mohapatra, S.C.; Ahmad, S. Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater. Chem. Phys. 2012, 132, 196–202. [Google Scholar] [CrossRef]
- Nalbandian, L.; Patrikiadou, E.; Zaspalis, V.; Patrikidou, A.; Hatzidaki, E.; Papandreou, C.N. Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation. Curr. Nanosci. 2016, 12, 455–468. [Google Scholar] [CrossRef]
- Dimino, M.L.; Palmer, A.F. Purification of bovine hemoglobin via fast performance liquid chromatography. J. Chromatogr. B 2007, 856, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhao, D.; Su, Z. Purification of Hemoglobin by Ion Exchange Chromatography in Flow-Through Mode with PEG as an Escort. Artif. Cells Blood Substit. Biotechnol. 2004, 32, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Simoni, J.; Simoni, G.; Feola, M.; Canizaro, P.C. Evaluation of anion-ex-change liquid chromatography for purification of hemoglobin from peptides and other proteins. Anal. Chim. Acta 1991, 249, 169–183. [Google Scholar] [CrossRef]
- Sun, G.; Palmer, A. Preparation of ultrapure bovine and human hemoglobin by anion exchange chromatography. J. Chromatogr. B 2008, 867, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.F.; Sorstokke, R.B. Hemoglobin. Isolation and chemical proper-ties. J. Chem. Educ. 1973, 50, 347–350. [Google Scholar] [CrossRef]
- Szuberski, J.; Oliveira, J.L.; Hoyer, J.D. A comprehensive analysis of hemoglobin variants by high-performance liquid chromatography (HPLC). Int. J. Lab. Hematol. 2012, 34, 594–604. [Google Scholar] [CrossRef]
- Thomas, C.; Lumb, A.B. Physiology of haemoglobin. Contin. Educ. Anaesth. Crit. Care Pain 2012, 12, 251–256. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Fleschin, Ş.; Aboul-Enein, H.Y. Evaluation of the protein secondary structures using fourier transform infrared spectroscopy. Gazi Univ. J. Sci. 2014, 27, 637–644. [Google Scholar]
- Babalola, J.O.; Oyelakin, O.O.; Okonjo, K.O.; Brown-Acquaye, K. Determination of the tetramer-dimer equilibrium constant of rabbit hemoglobin. Afr. J. Educ. Stud. Math. Sci. 2008, 5, 71–76. [Google Scholar]
- Torres, L.D.; Okumura, J.V.; Silva, D.G.; Bonini-Domingos, C.R. Hemoglobin D-Punjab: Origin, distribution and laboratory diagnosis. Rev. Bras. Hematol. Hemoter. 2015, 37, 120–126. [Google Scholar]
- De La Cruz, G.G.; Rodríguez-Fragoso, P.; Reyes-Esparza, J.; Rodríguez-López, A.; Gómez-Cansino, R.; Rodriguez-Fragoso, R.G.-C.A.L. Interaction of Nanoparticles with Blood Components and Associated Pathophysiological Effects. In Unraveling the Safety Profile of Nanoscale Particles and MaterialsÏ; Gomes, A.C., Sarria, M.P., Eds.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Hirsh, S.L.; McKenzie, D.R.; Nosworthy, N.J.; Denman, J.A.; Sezerman, O.U.; Bilek, M.M. The vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf. B Biointerfaces 2013, 103, 395–404. [Google Scholar] [CrossRef]
- Yang, D.; Kroe-Barrett, R.; Singh, S.; Laue, T. IGG charge: Practical and biological implications. Antibodies 2019, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Wiig, H.; Kolmannskog, O.; Tenstad, O.; Bert, J.L. Effect of charge on interstitial distribution of albumin in rat dermisin vitro. J. Physiol. 2003, 550, 505–514. [Google Scholar] [CrossRef]
- Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G.J.; Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 2010, 4, 3623–3632. [Google Scholar] [CrossRef]
- Pustulka, S.M.; Ling, K.; Pish, S.L.; Champion, J.A. Protein nanoparticle charge and hydrophobicity govern protein corona and macrophage uptake. ACS Appl. Mater. Interfaces 2020, 12, 48284–48295. [Google Scholar] [CrossRef]
- Huang, R.; Carney, R.P.; Stellacci, F.; Lau, B.L. Protein–nanoparticle interactions: The effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale 2013, 5, 6928. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, K.; Leneweit, G.; Nirschl, H. How to achieve high encapsulation efficiencies for macromolecular and sensitive APIs in liposomes. Pharmaceutics 2021, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- Colletier, J.; Chaize, B.; Winterhalter, M.; Fournier, D. Protein encapsulation in liposomes: Efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2002, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanjhan, R.; Pow, D.V.; Noakes, P.G.; Bellingham, M.C. The two-pore domain K channel TASK-1 is closely associated with brain barriers and meninges. J. Mol. Histol. 2010, 41, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Potter, R.; Groom, A. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc. Res. 1983, 25, 68–84. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, J.; Iorio, E.E.D.; Hauser, H.; Winterhalter, K.H. Encapsulation of hemoglobin in phospholipid liposomes: Characterization and stability. Biochemistry 1985, 24, 2827–2832. [Google Scholar] [CrossRef]
- Fernandes, H.P.; Cesar, C.L.; Barjas-Castro, M.D.L. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev. Bras. De Hematol. E Hemoter. 2011, 33, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Bonté, F.; Juliano, R. Interactions of liposomes with serum proteins. Chem. Phys. Lipids 1986, 40, 359–372. [Google Scholar] [CrossRef]
- Foteini, P.; Pippa, N.; Naziris, N.; Demetzos, C. Physicochemical study of the protein–liposome interactions: Influence of liposome composition and concentration on protein binding. J. Liposome Res. 2019, 29, 313–321. [Google Scholar] [CrossRef]
- Semple, S.C.; Chonn, A.; Cullis, P.R. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv. Drug Deliv. Rev. 1998, 32, 3–17. [Google Scholar] [CrossRef]
- Avogadro, Version 1.2; An Open-Source Molecular Builder and Visualization Tool: BioMed Central: London, UK, 2012. Available online: http://avogadro.cc/ (accessed on 24 August 2019).
- Thompson, M.A. Molecular Docking Using ArgusLab, an Efficient Shape-Based Search Algorithm and the a Score Scoring Function. In Proceedings of the ACS Meeting, Philadelphia, PA, USA, 2 August 2004. [Google Scholar]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods in Mol. Biol. 2015, 1263, 243–250. [Google Scholar]
- BIOVIA, version 21.1.0. Dassault Systèmes, Discovery Studio Visualizer. Dassault Systèmes: San Diego, CA, USA, 2021.
- Laemmli, U.K. Cleavage of structural proteins during the Assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Kalantari, M.; Raji, M.; Fekri, H.S.; Saber, R.; Asnani, G.; Mortazavi, S.; Mozafari, M.; Rasti, B.; Taheriazam, A. Probing nanoliposomes using single particle analytical techniques: Effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018, 4, e01088. [Google Scholar] [CrossRef] [PubMed]
- Farmer, M.C.; Gaber, B.P. Liposome-encapsulated hemoglobin as an artificial oxygen-carrying system. Methods Enzym. 1987, 149, 184–200. [Google Scholar]
- Zhang, H. Thin-Film Hydration Followed by Extrusion Method for Liposome Preparation. Methods Mol. Biol. Liposomes 2016, 1522, 17–22. [Google Scholar]
Hemoglobin Variants | Binding Energy kcal/mol | Interacting Residues | Interaction Types |
---|---|---|---|
HbA1 | −20.4 (1st Binding Pose) | Chain Alpha: | |
GLN-54 | Conventional Hydrogen Bond | ||
HIS-45 | Metal-Acceptor | ||
LYS-90 | Metal-Acceptor | ||
HEME | Metal-Acceptor | ||
Chain Beta: | |||
GLU-466 | Metal-Acceptor | ||
SER-467 | Metal-Acceptor | ||
PHE-468 | van der Waals | ||
GLY-469 | Metal-Acceptor | ||
ASP-470 | Metal-Acceptor | ||
LYS-482 | Metal-Acceptor | ||
−20.4 (2nd Binding Pose) | Chain Alpha: | ||
PRO-44 | Metal-Acceptor | ||
HIS-45 | Metal-Acceptor | ||
PHE-46 | Metal-Acceptor | ||
Chain Beta: | |||
LEU-48 | Carbon-Hydrogen Bond | ||
GLU-90 | Metal-Acceptor | ||
ASP-94 | Metal-Acceptor | ||
HbA2 | 0.0 | ||
HbF | −11.6 (1st Binding Pose) | Chain Alpha: | |
HIS-327 | Metal-Acceptor | ||
ASP-329 | Metal-Acceptor | ||
GLN-336 | Metal-Acceptor | ||
LYS-372 | Metal-Acceptor | ||
Chain Gamma: | |||
ASP-184 | Metal-Acceptor | ||
SER-185 | Metal-Acceptor | ||
LYS-236 | Conventional Hydrogen Bond | ||
−11.6 (2nd Binding Pose) | Chain Alpha: | ||
HIS-45 | Metal-Acceptor | ||
ASP-47 | Metal-Acceptor | ||
GLN-54 | Metal-Acceptor | ||
LYS-90 | Metal-Acceptor | ||
Chain Gamma: | |||
ASP-467 | Metal-Acceptor |
Sample | Variants | Retention Time (min) |
---|---|---|
Impure Hemoglobin | HbF, HbA1c, HbA1, HbA2 | 1.13, 1.54, 2.46 and 3.60 |
Purified Hemoglobin | HbA1 | 2.44 |
Conjugates of Impure Hb and MNPs | HbA1 | 2.44 |
Conjugates of Purified Hb and MNPs | HbA1 | 2.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafeez, S.; Zaidi, N.U.S.S. Red Blood Cell Substitutes: Liposome Encapsulated Hemoglobin and Magnetite Nanoparticle Conjugates as Oxygen Carriers. Int. J. Mol. Sci. 2023, 24, 1618. https://doi.org/10.3390/ijms24021618
Hafeez S, Zaidi NUSS. Red Blood Cell Substitutes: Liposome Encapsulated Hemoglobin and Magnetite Nanoparticle Conjugates as Oxygen Carriers. International Journal of Molecular Sciences. 2023; 24(2):1618. https://doi.org/10.3390/ijms24021618
Chicago/Turabian StyleHafeez, Saleha, and Najam Us Sahar Sadaf Zaidi. 2023. "Red Blood Cell Substitutes: Liposome Encapsulated Hemoglobin and Magnetite Nanoparticle Conjugates as Oxygen Carriers" International Journal of Molecular Sciences 24, no. 2: 1618. https://doi.org/10.3390/ijms24021618
APA StyleHafeez, S., & Zaidi, N. U. S. S. (2023). Red Blood Cell Substitutes: Liposome Encapsulated Hemoglobin and Magnetite Nanoparticle Conjugates as Oxygen Carriers. International Journal of Molecular Sciences, 24(2), 1618. https://doi.org/10.3390/ijms24021618