Synthesis and Antimicrobial Activity of the Pathogenic E. coli Strains of p-Quinols: Additive Effects of Copper-Catalyzed Addition of Aryl Boronic Acid to Benzoquinones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Cytotoxic Studies of the Library of p-Quinols 1–10, and Parent Benzo- and Hydroquinones 11–14
2.3. Analysis of Bacterial DNA Isolated from E. coli R2–R4 Strains Modified with Tested p-Quinols
3. Materials and Methods
3.1. Microorganisms and Media
3.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.3. Chemicals
3.4. General Procedure for the Synthesis of p-Quinols
3.5. Preparation of Copper–PVP Colloids in Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIC | minimum inhibitory concentration |
MBC | minimum bactericidal concentration |
Oc | open circle |
Ccc | covalently closed circle |
BER | base excision repair |
Fpg | DNA-formamidopyrimidine glycosylase |
References
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, N.; Sugimoto, O.; Tanji, K.; Hirota, A. Identification of the Quinol Metabolite “Sorbicillinol”, a Key Intermediate Postulated in Bisorbicillinoid Biosynthesis. J. Am. Chem. Soc. 2000, 122, 12606–12607. [Google Scholar] [CrossRef]
- Urban, S.; Blunt, J.W.; Munro, M.H.G. Coproverdine, a Novel, Cytotoxic Marine Alkaloid from a New Zealand Ascidian. J. Nat. Prod. 2002, 65, 1371–1373. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.-H.; Hwang, T.-L.; Thang, T.D.; Leu, Y.-L.; Kuo, P.-C.; Nguyet, B.T.M.; Dai, D.N.; Wu, T.-S. Isolation and Synthesis of Melodamide A, a New Anti-inflammatory Phenolic Amide from the Leaves of Melodorum fruticosum. Planta Med. 2013, 79, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Magdziak, D.; Meek, S.J.; Pettus, T.R.R. Cyclohexadienone ketals and quinols: Four building blocks potentially useful for enantioselective synthesis. Chem. Rev. 2004, 104, 1383–1429. [Google Scholar] [CrossRef] [PubMed]
- Marco-Contelles, J.; Molina, M.T.; Anjum, S. Naturally Occurring Cyclohexane Epoxides: Sources, Biological Activities, and Synthesis. Chem. Rev. 2004, 104, 2857–2900. [Google Scholar] [CrossRef]
- You, Z.; Hoveyda, A.H.; Snapper, M.L. Catalytic Enantioselective Silylation of Acyclic and Cyclic Triols: Application to Total Syntheses of Cleroindicins D, F, and C. Angew. Chem. Int. Ed. 2009, 48, 547–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tello-Aburto, R.; Kalstabakken, K.A.; Volp, K.A.; Harned, A.M. Regioselective and stereoselective cyclizations of cyclohexadienones tethered to active methylene groups. Org. Biomol. Chem. 2011, 9, 7849–7859. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Yin, Z.; Zeng, H.; Khanna, K.; Huc, C.; Zheng, S. An expedient stereoselective and chemoselective synthesis of bicyclic oxazolidinones from quinols and isocyanates. Org. Biomol. Chem. 2013, 11, 2939–2942. [Google Scholar] [CrossRef]
- Xie, L.; Dong, S.; Zhang, Q.; Feng, X.; Liu, X. Asymmetric construction of dihydrobenzofuran- 2,5-dione derivatives via desymmetrization of p-quinols with azlactones. Chem. Commun. 2019, 55, 87–90. [Google Scholar] [CrossRef]
- Kitson, R.R.A.; Taylor, R.J.K.; Wood, J.L. A One-Pot, Base-Free Annelation Approach to r-Alkylidene-γ-butyrolactones. Org. Lett. 2009, 11, 5338–5341. [Google Scholar] [CrossRef]
- Moon, N.G.; Harned, A.M. A concise synthetic route to the stereotetrad core of the briarane diterpenoids. Org. Lett. 2015, 17, 2218–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-García, C.; Ortiz-Rojano, L.; Álvarez, S.; Álvarez, R.; Ribagorda, M.; Carreño, M.C. Friedel–Crafts Alkylation of Indoles with p-Quinols: The Role of Hydrogen Bonding of Water for the Desymmetrization of the Cyclohexadienone System. Org. Lett. 2016, 18, 2224–2227. [Google Scholar] [CrossRef] [PubMed]
- Imbos, R.; Minnaard, A.J.; Feringa, B.L. A Highly Enantioselective Intramolecular Heck Reaction with a Monodentate Ligand. J. Am. Chem. Soc. 2002, 124, 184–185. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Rovis, T. Asymmetric Synthesis of Hydrobenzofuranones via Desymmetrization of Cyclohexadienones Using the Intramolecular Stetter Reaction. J. Am. Chem. Soc. 2006, 128, 2552–2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, J.-J.; Gao, Y.-N.; Shi, M. Phosphine-Initiated Cascade Annulation of β′-Acetoxy Allenoate and p-Quinols: Access to Ring Fused Hexahydroindeno Furan Derivatives. Adv. Synth. Catal. 2018, 360, 2552–2559. [Google Scholar] [CrossRef]
- Zhao, F.; Li, N.; Zhu, Y.-F.; Han, Z.-Y. Enantioselective Construction of Functionalized Tetrahydrocarbazoles Enabled by Asymmetric Relay Catalysis of Gold Complex and Chiral Brønsted Acid. Org. Lett. 2016, 18, 1506–1509. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Xu, M.; Zhao, X.; Zhou, X.; Zhao, W.; Liu, L. Catalytic stereoselective cascade reactions of quinols with trifluoromethyl ketones: Direct access to CF3-containing 1,3-dioxolanes. Org. Biomol. Chem. 2016, 14, 3981–3988. [Google Scholar] [CrossRef]
- Berry, J.M.; Bradshaw, T.D.; Fichtner, I.; Ren, R.; Schwalbe, C.H.; Wells, G.; Chew, E.H.; Stevens, M.F.G.; Westwell, A.D. Quinols as Novel Therapeutic Agents. 2.1 4-(1-Arylsulfonylindol-2-yl)-4-hydroxycyclohexa-2,5-dien-1-ones and Related. Agents as Potent and Selective Antitumor Agents. J. Med. Chem. 2005, 48, 639–644. [Google Scholar] [CrossRef]
- Bradshaw, T.D.; Matthews, C.S.; Cookson, J.; Chew, E.H.; Shah, M.; Bailey, K.; Monks, A.; Harris, E.; Westwell, A.D.; Wells, G.; et al. Elucidation of Thioredoxin as a Molecular Target for Antitumor Quinols. Cancer Res. 2005, 65, 3911–3919. [Google Scholar] [CrossRef]
- Wells, G.; Berry, J.M.; Bradshaw, T.D.; Burger, A.M.; Seaton, A.; Wang, B.; Westwell, A.D.; Stevens, M.F.G. 4-Substituted 4-Hydroxycyclohexa-2,5-dien-1-ones with Selective Activities against Colon and Renal Cancer Cell Lines. J. Med. Chem. 2003, 46, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Pugh, C.W.; Wigfield, S.; Stevens, M.F.G.; Harris, A.L. Novel Thioredoxin Inhibitors Paradoxically Increase Hypoxia-Inducible Factor-A Expression but Decrease Functional Transcriptional Activity, DNABinding, and Degradation. Clin. Cancer Res. 2006, 12, 5384–5394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, T.R.; Romoff, P.; Fávero, O.A.; Reimão, J.Q.; Lourenço, W.C.; Tempone, A.G.; Hristov, A.D.; Di Santi, S.M.; Lago, J.H.G.; Sartorelli, P.; et al. Anti-malarial, anti-trypanosomal, and anti-leishmanial activities of jacaranone isolated from Pentacalia desiderabilis (Vell.) Cuatrec. (Asteraceae). Parasitol. Res. 2012, 110, 95–101. [Google Scholar] [CrossRef] [PubMed]
- König, J.; Wyllie, S.; Wells, G.; Stevens, M.F.; Wyatt, P.G.; Fairlamb, A.H. Antitumor Quinol PMX464 Is a Cytocidal Anti-trypanosomal Inhibitor Targeting Trypanothione Metabolism. J. Biol. Chem. 2011, 286, 8523–8533. [Google Scholar] [CrossRef] [Green Version]
- Capes, A.; Patterson, S.; Wyllie, S.; Hallyburton, I.; Collie, I.T.; McCarroll, A.J.; Stevens, M.F.G.; Frearson, J.A.; Wyatt, P.G.; Fairlamb, A.H.; et al. Quinol derivatives as potential trypanocidal agents. Bioorg. Med. Chem. 2012, 20, 1607–1615. [Google Scholar] [CrossRef] [Green Version]
- Lajide, L.; Escoubas, P.; Mizutani, J. Cyclohexadienones-insect growth inhibitors from the foliar surface and tissue extracts of Senecio cannabifolius. Experientia 1996, 52, 259–263. [Google Scholar] [CrossRef]
- Lia, H.-X.; Xiaoa, C.-J.; Wangb, M.; Cuib, S.-J.; Lia, H.-F.; Wanga, K.-L.; Donga, X.; Jiang, B. Four new phenylethanoid glycosides from Ternstroemia gymnanthera and their analgesic activities. Phytochem. Lett. 2019, 34, 25–29. [Google Scholar] [CrossRef]
- Abraham, I.; Joshi, R.; Pardasani, P.; Pardasani, R.T. Recent Advances in 1,4-Benzoquinone Chemistry. J. Braz. Chem. Soc. 2011, 22, 385–421. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Mishra, B.B.; Bajpai, S.; Singh, R.K.; Tiwari, V.K. Natural product based leads to fight against leishmaniasis. Bioorg. Med. Chem. 2014, 22, 18–45. [Google Scholar] [CrossRef]
- Drewes, S.E.; Khan, F.; van Vuuren, S.F.; Viljoen, A.M. Simple 1,4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochemistry 2005, 66, 1812–1816. [Google Scholar] [CrossRef]
- Kim, M.-H.; Jo, S.-H.; Ha, K.-S.; Song, J.-H.; Jang, H.-D.; Kwon, Y.-I. Antimicrobial Activities of 1,4-Benzoquinones and Wheat Germ Extract. J. Microbiol. Biotechnol. 2010, 20, 1204–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carcamo-Noriegaa, E.N.; Sathyamoorthib, S.; Banerjeeb, S.; Gnanamanib, E.; Mendoza-Trujillod, M.; Mata-Espinosad, D.; Hernández-Pandod, R.; Veytia-Buchelia, J.I.; Possania, L.D.; Zare, R.N. 1,4-Benzoquinone antimicrobial agents against Staphylococcus aureus and Mycobacterium tuberculosis derived from scorpion venom. Proc. Natl. Acad. Sci. USA 2019, 116, 12642–12647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; He, N.; Zhao, Y.; Xia, D.; Wei, J.; Kang, W. Antimicrobial Mechanism of Hydroquinone. Appl. Biochem. Biotechnol. 2019, 189, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Yakura, T.; Omoto, M. Efficient Synthesis of P-Quinols Using Catalytic Hypervalent Iodine Oxidation of 4-arylphenols with 4-iodophenoxyacetic Acid and Oxone. Chem. Pharm. Bull. 2009, 57, 643–645. [Google Scholar] [CrossRef] [Green Version]
- Felpin, F.-X. Oxidation of 4-arylphenol trimethylsilyl ethers to p-arylquinols using hypervalent iodine(III) reagents. Tetrahedron Lett. 2007, 48, 409–412. [Google Scholar] [CrossRef]
- Fischer, A.; Henderson, G.N. Reactions of organolithium reagents with p-benzoquinones and cyclohexadienones. Synthesis of 4-alkyl-4-hydroxycyclohexa-2,5-dien-1-ones and 1,4-dialkylcyclohexa-2,5-diene-1,4-diols. Tetrahedron Lett. 1980, 21, 701–704. [Google Scholar] [CrossRef]
- Ghandi, M.; Shahidzadeh, M. Experimental and semiemprical stud-ies of chemical reactivity of dialkylcadmium reagents addition to α,β-enones. J. Organometal. Chem. 2006, 691, 4918–4925. [Google Scholar] [CrossRef]
- Muthusamy, S.; Krishnamurthi, J. Multicomponent reactions involving p-benzoquinones, diazo esters, titanium(IV) isopropoxide and alcohol in the presence of rhodium(II) acetate as catalyst. Tetrahedron Lett. 2007, 48, 6692–6695. [Google Scholar] [CrossRef]
- Krause, K.P.; Kayser, O.; Mäder, K.; Gust, R.; Müller, R.H. Heavy metal contamination of nanosuspensions produced by high-pressure homogenisation. Int. J. Pharmaceut. 2000, 196, 169–172. [Google Scholar] [CrossRef]
- Koszelewski, D.; Paprocki, D.; Brodzka, A.; Kęciek, A.; Wilk, M.; Ostaszewski, R. The sustainable copper-catalyzed direct formation of highly functionalized p-quinols in water. Sustain. Chem. Pharm. 2022, 25, 100576. [Google Scholar] [CrossRef]
- Ranu, B.C.; Dey, R.; Chatterjee, T.; Ahammed, S. Copper Nanoparticle-Catalyzed Carbon-Carbon and Carbon-Heteroatom Bond Formation with a Greener Perspective. ChemSusChem 2012, 5, 22–44. [Google Scholar] [CrossRef] [PubMed]
- Iwamatsu, S.-i.; Matsubara, K.; Nagashima, H. Synthetic Studies of cis-3a-Aryloctahydroindole Derivatives by Copper-Catalyzed Cyclization of N-Allyltrichloroacetamides: Facile Construction of Benzylic Quaternary Carbons by Carbon−Carbon Bond-Forming Reactions. J. Org. Chem. 1999, 64, 9625–9631. [Google Scholar] [CrossRef]
- Shilpa, T.; Neetha, M.; Anilkumara, G. Recent Trends and Prospects in the Copper-Catalysed “on Water” Reactions. Adv. Synth. Catal. 2021, 363, 1559–1582. [Google Scholar] [CrossRef]
- Villalobos, J.M.; Srogl, J.; Liebeskind, L.S. A New Paradigm for Carbon−Carbon Bond Formation: Aerobic, Copper-Templated Cross-Coupling. J. Am. Chem. Soc. 2007, 129, 15734–15735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prokopcová, H.; Kappe, C.O. Palladium(0)-Catalyzed, Copper(I)-Mediated Coupling of Boronic Acids with Cyclic Thioamides. Selective Carbon−Carbon Bond Formation for the Functionalization of Heterocycles. J. Org. Chem. 2007, 72, 4440–4448. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Yavari, A.; Bahadorikhalili, S.; Moazzam, A.; Hosseini, S.; Larijani, B.; Iraji, A.; Moradi, S.; Mahdavi, M. Copper Catalyst-Supported Modified Magnetic Chitosan for the Synthesis of Novel 2-Arylthio-2,3-dihydroquinazolin-4(1H)-one Derivatives via Chan–Lam Coupling. Inorganics 2022, 10, 231. [Google Scholar] [CrossRef]
- Wu, F.; Ma, M.; Xie, J. Additive Effects on Copper-Catalyzed Tandem Reactions. Asian J. Org. Chem. 2019, 8, 755–766. [Google Scholar] [CrossRef]
- Fihri, A.; Cha, D.; Bouhrara, M.; Almana, N.; Polshettiwar, V. Fibrous Nano-Silica (KCC-1)-Supported Palladium Catalyst: Suzuki Coupling Reactions Under Sustainable Conditions. ChemSusChem 2012, 5, 85–89. [Google Scholar] [CrossRef]
- Miao, T.; Wang, L. Regioselective synthesis of 1, 2, 3-triazoles by use of a silica-supported copper (I) catalyst. Synthesis 2008, 2008, 363–368. [Google Scholar] [CrossRef]
- Chassaing, S.; Sido, A.S.; Alix, A.; Kumarraja, M.; Pale, P.; Sommer, J. “Click Chemistry” in Zeolites: Copper (I) Zeolites as New Heterogeneous and Ligand-Free Catalysts for the Huisgen [3 + 2] Cycloaddition. Chem. Eur. J. 2008, 14, 6713–6721. [Google Scholar] [CrossRef]
- Lipshutz, B.H.; Taft, B.R. Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angew. Chem. Int. Ed. 2006, 45, 8235–8238. [Google Scholar] [CrossRef] [PubMed]
- Girard, C.; Onen, E.; Aufort, M.; Beauviere, S.; Samson, E.; Herscovici, J. Reusable polymer-supported catalyst for the [3 + 2] Huisgen cycloaddition in automation protocols. Org. Lett. 2006, 8, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lu, X. Cationic Palladium Complex Catalyzed Highly Enantioselective Intramolecular Addition of Arylboronic Acids to Ketones. A Convenient Synthesis of Optically Active Cycloalkanols. J. Am. Chem. Soc. 2006, 128, 16504–16505. [Google Scholar] [CrossRef] [PubMed]
- Bosica, G.; Zammit, R. One-pot multicomponent nitro-Mannich reaction using a heterogeneous catalyst under solvent-free conditions. PeerJ 2018, 6, e5065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirion, U.; Bae, Y.J.; Lee, B.S.; Chi, D.Y. Ionic Polymer Supported Copper(I): A Reusable Catalyst for Huisgen’s 1,3-Dipolar Cycloaddition. Synlett 2008, 2008, 2326–2330. [Google Scholar] [CrossRef]
- Chavan, P.V.; Pandit, K.S.; Desai, U.V.; Kulkarni, M.A.; Wadgaonkar, P.P. Cellulose supported cuprous iodide nanoparticles (Cell-CuI NPs): A new heterogeneous and recyclable catalyst for the one pot synthesis of 1,4-disubstituted–1,2,3-triazoles in water. RSC Adv. 2014, 4, 42137–42146. [Google Scholar] [CrossRef]
- Subudhi, S.; Rath, D.; Parida, K. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review. Catal. Sci. Technol. 2018, 8, 679–696. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Gong, S.; Xie, J. MOF-Derived Cu@N-C Catalyst for 1,3-Dipolar Cycloaddition Reaction. Nanomaterials 2022, 12, 1070. [Google Scholar] [CrossRef]
- Mollabagher, H.; Taheri, S.; Mojtahedi, M.; Seyedmousavi, S.A. Cu-metal organic frameworks (Cu-MOF) as an environment-friendly and economical catalyst for one pot synthesis of tacrine derivatives. RSC Adv. 2020, 10, 1995–2003. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Akram, B.; Ali, H.; Zhang, H.; Yang, H.; Liu, Q.; Wang, X. 2-Methylimidazole assisted ultrafast synthesis of carboxylate-based metal–organic framework nano-structures in aqueous medium at room temperature. Sci. Bull. 2019, 64, 1103–1109. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [Green Version]
- Gniewek, A.; Trzeciak, A.M.; Ziółkowski, J.J.; Kępiński, L.; Wrzyszcz, J.; Tylus, W. Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies. J. Catal. 2005, 229, 332–343. [Google Scholar] [CrossRef]
- Joshi, N.; Banerjee, S. PVP coated copper–iron oxide nanocomposite as an efficient catalyst for Click reactions. Tetrahedron Lett. 2015, 56, 4163–4169. [Google Scholar] [CrossRef]
- Raut, D.; Wankhede, K.; Vaidya, V.; Bhilare, S.; Darwatkar, N.; Deorukhkar, A.; Trivedi, G.; Salunkhe, M. Copper nanoparticles in ionic liquids: Recyclable and efficient catalytic system for 1,3-dipolar cycloaddition reaction. Catal. Commun. 2009, 10, 1240–1243. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, C.; Yang, C.; Hu, D.; Long, J.; Wang, L.; Li, H.; Chen, Y.; Kongthe, D. Stabilized Copper(I) Oxide Nanoparticles Catalyze Azide-Alkyne Click Reactions in Water. Adv. Synth. Catal. 2010, 352, 1600–1604. [Google Scholar] [CrossRef]
- Koszelewski, D.; Ostaszewski, R. Biocatalytic Promiscuity of Lipases in Carbon-Phosphorus Bond Formation. ChemCatChem 2019, 11, 2554–2558. [Google Scholar] [CrossRef]
- Koszelewski, D.; Ostaszewski, R.; Smigielski, P.; Hrunyk, A.; Kramkowski, K.; Laskowski, Ł.; Laskowska, M.; Lizut, R.; Szymczak, M.; Michalski, J.; et al. Pyridine Derivatives—A New Class of Compounds That Are Toxic to E. coli K12, R2–R4 Strains. Materials 2021, 14, 5401. [Google Scholar] [CrossRef] [PubMed]
- Koszelewski, D.; Kowalczyk, P.; Smigielski, P.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Szymczak, M.; Ostaszewski, R. Relationship between Structure and Antibacterial Activity of α-Aminophosphonate Derivatives Obtained via Lipase-Catalyzed Kabachnik-Fields Reaction. Materials 2022, 15, 3846. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Wilk, M.; Parul, P.; Szymczak, M.; Kramkowski, K.; Raj, S.; Skiba, G.; Sulejczak, D.; Kleczkowska, P.; Ostaszewski, R. The Synthesis and Evaluation of Aminocoumarin Peptidomimetics as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials 2021, 14, 5725. [Google Scholar] [CrossRef] [PubMed]
- Samsonowicz-Górski, J.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Szymczak, M.; Kramkowski, K.; Ostaszewski, R. The Synthesis and Evaluation of Amidoximes as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials 2021, 14, 7577. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Kramkowski, K.; Ostaszewski, R. 1,2-Diarylethanols—A New Class of Compounds that Are Toxic to E. coli K12, R2–R4 Strains. Materials 2021, 14, 1025. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Madej, A.; Szymczak, M.; Ostaszewski, R. α-Amidoamids as New Replacements of Antibiotics—Research on the Chosen K12, R2–R4 E. coli Strains. Materials 2020, 13, 5169. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Gawdzik, B.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Raj, S.; Kramkowski, K.; Lizut, R.; Ostaszewski, R. δ-Lactones—A New Class of Compounds that Are Toxic to E. coli K12 and R2–R4 Strains. Materials 2021, 14, 2956. [Google Scholar] [CrossRef] [PubMed]
- Gawdzik, B.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Masternak, J.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Membranes 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Sahrawat, P.; Kowalczyk, P.; Koszelewski, D.; Szymczak, M.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. Influence of Open Chain and Cyclic Structure of Peptidomimetics on Antibacterial Activity in E. coli Strains. Molecules 2022, 27, 3633. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Koszelewski, D.; Gawdzik, B.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Lizut, R.; Ostaszewski, R. Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α-Acyloxy Phosphonate Derivatives. Materials 2022, 15, 1975. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Borkowski, A.; Czerwonka, G.; Cłapa, T.; Cieśla, J.; Misiewicz, A.; Borowiec, M.; Szala, M. The microbial toxicity of quaternary ammonium ionic liquids is dependent on the type of lipopolysaccharide. J. Mol. Liq. 2018, 266, 540–547. [Google Scholar] [CrossRef]
- Borkowski, A.; Kowalczyk, P.; Czerwonka, G.; Ciésla, J.; Cłapa, T.; Misiewicz, A.; Szala, M.; Drabik, M. Interaction of quaternary ammonium ionic liquids with bacterial membranes—Studies with Escherichia coli R1–R4-type lipopolysaccharides. J. Mol. Liq. 2017, 246, 282–289. [Google Scholar] [CrossRef]
- Maciejewska, A.; Kaszowska, M.; Jachymek, W.; Lugowski, C.; Lukasiewicz, J. Lipopolysaccharide-linked Enterobacterial Common Antigen (ECALPS) Occurs in Rough Strains of Escherichia coli R1, R2, and R4. Int. J. Mol. Sci. 2020, 21, 6038. [Google Scholar] [CrossRef]
- Prost, M.E.; Prost, R. Basic parameters of evaluation of the effectiveness of antibiotic therapy. Ophtha Ther. 2017, 4, 233–236. [Google Scholar] [CrossRef]
- Ramnial, T.; Taylor, S.A.; Clyburne, J.A.C.; Walsby, C.J. Grignard reagents in ionic solvents: Electron transfer reactions and evidence for facile Br–Mg exchange. Chem. Commun. 2007, 20, 2066–2068. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, J.; Soto-Acosta, R.; Mao, L.; Lian, J.; Chen, K.; Pillon, G.; Zhang, G.; Geraghty, R.J.; Zheng, S. One-Pot Synthesis of 1-Hydroxyacridones from para-Quinols and ortho-Methoxycarbonylaryl Isocyanates. J. Org. Chem. 2020, 85, 4515–4524. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.; Poturalski, M.J.; Johnson, W.L.; Jones, M.P.; Wang, Y.; Glover, S.A. 4‘-Substituted-4-biphenylyloxenium Ions: Reactivity and Selectivity in Aqueous Solution. J. Org. Chem. 2006, 71, 3778–3785. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Harned, A.M. Experimental evidence for the formation of cationic intermediates during iodine(III)-mediated oxidative dearomatization of phenols. Org. Biomol. Chem. 2018, 16, 6871–6874. [Google Scholar] [CrossRef]
- Li, P.; Sisto, T.J.; Darzi, E.R.; Jasti, R. The Effects of Cyclic Conjugation and Bending on the Optoelectronic Properties of Paraphenylenes. Org. Lett. 2014, 16, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Yakura, T.; Omoto, M.; Yamauchi, Y.; Tian, Y.; Ozono, A. Hypervalent iodine oxidation of phenol derivatives using a catalytic amount of 4-iodophenoxyacetic acid and Oxone® as a co-oxidant. Tetrahedron 2010, 66, 5833–5840. [Google Scholar] [CrossRef]
- Yang, B.; Yao, W.; Xia, X.-F.; Wang, D. Mn-Catalyzed 1,6-conjugate addition/aromatization of para-quinone methides. Org. Biomol. Chem. 2018, 16, 4547–4557. [Google Scholar] [CrossRef]
- Zhang, S.; Song, F.; Zhao, D.; You, J. Tandem oxidation–oxidative C–H/C–H cross-coupling: Synthesis of arylquinones from hydroquinones. Chem. Commun. 2013, 49, 4558–4560. [Google Scholar] [CrossRef]
Entry | Additive | T (°C) | Solvent | Yield 1 [%] d | Yield 15 [%] d |
---|---|---|---|---|---|
1 | None | 20 | H2O | 51 | 9 |
2 | Amberlite IRA-400 | 20 | H2O | 58 | 7 |
3 | Montmorillonite | 20 | H2O | 64 | <1 |
4 | Amberlyst | 20 | H2O | 18 | <1 |
5 | Dowex-1 | 20 | H2O | 68 | 6 |
6 | Silica gel | 20 | H2O | 50 | 8 |
7 | Al2O3 | 20 | H2O | 54 | 11 |
8 | Cellulose | 20 | H2O | 49 | <1 |
9 | MOF-1 | 20 | H2O | 38 | 11 |
10 | MOF-2 | 20 | H2O | 42 | <1 |
11 | PVP 8000 | 20 | H2O | 74 | <1 |
12 | PVP 3500 | 20 | H2O | 84 | <1 |
13 | PVP 24000 | 20 | H2O | 62 | <1 |
14 | PVP 3500 [b] | 20 | H2O | 81 | <1 |
15 | PVP 3500 [c] | 20 | H2O | 79 | <1 |
16 | PVP 3500 | 30 | H2O | 89 | <1 |
17 | PVP 3500 | 40 | H2O | 83 | <1 |
18 | PVP 3500 | 30 | Methanol | 71 | <1 |
No. of Samples | 5 | 7 | 10, 11 | Type of Test |
---|---|---|---|---|
K12 | ** | ** | ** | MIC |
R2 | ** | ** | ** | MIC |
R3 | ** | ** | ** | MIC |
R4 | ** | ** | ** | MIC |
K12 | ** | ** | *** | MBC |
R2 | ** | ** | *** | MBC |
R3 | ** | ** | *** | MBC |
R4 | ** | ** | *** | MBC |
K12 | *** | *** | * | MBC/MIC |
R2 | *** | *** | * | MBC/MIC |
R3 | *** | *** | * | MBC/MIC |
R4 | *** | *** | * | MBC/MIC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koszelewski, D.; Kowalczyk, P.; Samsonowicz-Górski, J.; Hrunyk, A.; Brodzka, A.; Łęcka, J.; Kramkowski, K.; Ostaszewski, R. Synthesis and Antimicrobial Activity of the Pathogenic E. coli Strains of p-Quinols: Additive Effects of Copper-Catalyzed Addition of Aryl Boronic Acid to Benzoquinones. Int. J. Mol. Sci. 2023, 24, 1623. https://doi.org/10.3390/ijms24021623
Koszelewski D, Kowalczyk P, Samsonowicz-Górski J, Hrunyk A, Brodzka A, Łęcka J, Kramkowski K, Ostaszewski R. Synthesis and Antimicrobial Activity of the Pathogenic E. coli Strains of p-Quinols: Additive Effects of Copper-Catalyzed Addition of Aryl Boronic Acid to Benzoquinones. International Journal of Molecular Sciences. 2023; 24(2):1623. https://doi.org/10.3390/ijms24021623
Chicago/Turabian StyleKoszelewski, Dominik, Paweł Kowalczyk, Jan Samsonowicz-Górski, Anastasiia Hrunyk, Anna Brodzka, Justyna Łęcka, Karol Kramkowski, and Ryszard Ostaszewski. 2023. "Synthesis and Antimicrobial Activity of the Pathogenic E. coli Strains of p-Quinols: Additive Effects of Copper-Catalyzed Addition of Aryl Boronic Acid to Benzoquinones" International Journal of Molecular Sciences 24, no. 2: 1623. https://doi.org/10.3390/ijms24021623
APA StyleKoszelewski, D., Kowalczyk, P., Samsonowicz-Górski, J., Hrunyk, A., Brodzka, A., Łęcka, J., Kramkowski, K., & Ostaszewski, R. (2023). Synthesis and Antimicrobial Activity of the Pathogenic E. coli Strains of p-Quinols: Additive Effects of Copper-Catalyzed Addition of Aryl Boronic Acid to Benzoquinones. International Journal of Molecular Sciences, 24(2), 1623. https://doi.org/10.3390/ijms24021623