Antibacterial Thin Films Deposited from Propane–Butane Mixture in Atmospheric Pressure Discharge
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Characterization
2.2. Antibacterial Properties
2.3. Cytocompatibility Results
3. Materials and Methods
3.1. Materials
3.2. Plasma Deposition
3.3. Surface Characterization
3.4. Antibacterial Tests
3.5. Cytocompatibility Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol. 2015, 33, 637–652. [Google Scholar] [CrossRef]
- Mitra, D.; Kang, E.T.; Neoh, K.G. Polymer-Based Coatings with Integrated Antifouling and Bactericidal Properties for Targeted Biomedical Applications. ACS Appl. Polym. Mater. 2021, 3, 2233–2263. [Google Scholar] [CrossRef]
- Rostami, S.; Garipcan, B. Evolution of antibacterial and antibiofouling properties of sharkskin-patterned surfaces. Surf. Innov. 2022, 10, 165–190. [Google Scholar] [CrossRef]
- Wang, T.; Huang, L.; Liu, Y.; Li, X.; Liu, C.; Handschuh-Wang, S.; Xu, Y.; Zhao, Y.; Tang, Y. Robust Biomimetic Hierarchical Diamond Architecture with a Self-Cleaning, Antibacterial, and Antibiofouling Surface. ACS Appl. Mater. Interfaces 2020, 12, 24432–24441. [Google Scholar] [CrossRef] [PubMed]
- Miola, M.; Perero, S.; Ferraris, S.; Battiato, A.; Manfredotti, C.; Vittone, E.; Del Vento, D.; Vada, S.; Fucale, G.; Ferraris, M. Silver nanocluster-silica composite antibacterial coatings for materials to be used in mobile telephones. Appl. Surf. Sci. 2014, 313, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Ghasemi, H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Adv. Colloid Interface Sci. 2020, 284. [Google Scholar] [CrossRef] [PubMed]
- Leng, C.; Hung, H.C.; Sun, S.; Wang, D.; Li, Y.; Jiang, S.; Chen, Z. Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins. ACS Appl. Mater. Interfaces 2015, 7, 16881–16888. [Google Scholar] [CrossRef] [PubMed]
- Zanini, S.; Müller, M.; Riccardi, C.; Orlandi, M. Polyethylene Glycol Grafting on Polypropylene Membranes for Anti-fouling Properties. Plasma Chem. Plasma Process. 2007, 27, 446–457. [Google Scholar] [CrossRef]
- Branch, D.W.; Wheeler, B.C.; Brewer, G.J.; Leckband, D.E. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials 2001, 22, 1035–1047. [Google Scholar] [CrossRef]
- Maan, A.M.C.; Hofman, A.H.; de Vos, W.M.; Kamperman, M. Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006, 3, 392–418. [Google Scholar] [CrossRef]
- Biederman, H. Plasma Polymer Films; Imperial College Press: London, UK, 2004. [Google Scholar]
- Stahel, P.; Mazankova, V.; Tomeckova, K.; Matouskova, P.; Brablec, A.; Prokes, L.; Jurmanova, J.; Bursikova, V.; Pribyl, R.; Lehocky, M.; et al. Atmospheric Pressure Plasma Polymerized Oxazoline-Based Thin Films-Antibacterial Properties and Cytocompatibility Performance. Polymers 2019, 11, 2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazankova, V.; Stahel, P.; Matouskova, P.; Brablec, A.; Cech, J.; Prokes, L.; Bursikova, V.; Stupavska, M.; Lehocky, M.; Ozaltin, K.; et al. Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-oxazoline Based Thin Films for Biomedical Purposes. Polymers 2020, 12, 2679. [Google Scholar] [CrossRef] [PubMed]
- Hays, H.L.; Spiller, H. Fluoropolymer-associated illness. Clin. Toxicol. 2014, 52, 848–855. [Google Scholar] [CrossRef]
- Dvorakova, H.; Cech, J.; Stupavska, M.; Prokes, L.; Jurmanova, J.; Bursikova, V.; Rahel, J.; Stahel, P. Fast Surface Hydrophilization via Atmospheric Pressure Plasma Polymerization for Biological and Technical Applications. Polymers 2019, 11, 1613. [Google Scholar] [CrossRef] [Green Version]
- Navratil, Z.; Bursikova, V.; Stahel, P.; Sira, M.; Zverina, P. On the analysis of surface free energy of DLC coatings deposited in low pressure RF discharge. Czech. J. Phys. 2004, 54, C877–C882. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R., Ed.; John Wiley & Sons: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Horňák, R. Bachelor’s Thesis. Available online: https://is.muni.cz/th/rda5f/?lang=en (accessed on 10 January 2023).
- Mazankova, V.; Torokova, L.; Moravsky, L.; Matejcik, S.; Trunec, D.; Navratil, Z.; Mason, N.J. Analysis of the products of a negative corona discharge in a N2-CH4 mixture with added CO2 used as a laboratory mimic of a prebiotic atmosphere. Contrib. Plasma Phys. 2018, 58, 995–1004. [Google Scholar] [CrossRef]
- Torokova, L.; Watson, J.; Krcma, F.; Mazankova, V.; Mason, N.J.; Horvath, G.; Matejcik, S. Gas Chromatography Analysis of Discharge Products in N2-CH4 Gas Mixture at Atmospheric Pressure: Study of Mimic Titan’s Atmosphere. Contrib. Plasma Phys. 2015, 55, 470–480. [Google Scholar] [CrossRef]
- Mazankova, V.; Manduchova, I.; Krcma, F.; Prokes, L.; Trunec, D. GC-MS and GC-FID analysis of products from glow discharge in N2 + CH4 mixture. Plasma Phys. Technol. 2018, 5, 103–106. [Google Scholar] [CrossRef]
- Kado, S.; Sekine, Y.; Fujimoto, K. Direct synthesis of acetylene from methane by direct current pulse discharge. Chem. Commun. 1999, 2485–2486. [Google Scholar] [CrossRef]
- Jauberteau, J.L.; Jauberteau, I. Synthesis of cyanides in N2 - CH4 discharge afterglow. J. Phys. D Appl. Phys. 2018, 51, 315201. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, R.; Kim, Y.; Rosocha, L.A.; Abbate, S. Methane and ethane decomposition in an atmospheric-pressure plasma jet. IEEE Trans. Plasma Sci. 2007, 35, 1669–1676. [Google Scholar] [CrossRef]
- Baidin, V.; Owens, T.W.; Lazarus, M.B.; Kahne, D. Simple Secondary Amines Inhibit Growth of Gram-Negative Bacteria through Highly Selective Binding to Phenylalanyl-tRNA Synthetase. J. Am. Chem. Soc. 2021, 143, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Tani, T.; Kodama, M. Antimicrobial Activity of Tertiary Amine Covalently Bonded to a Polystyrene Fiber. Appl. Environ. Microbiol. 1987, 53, 2050–2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadagouda, M.N.; Vijayasarathy, P.; Sin, A.; Nam, H.; Khan, S.; Parambath, J.B.M.; Mohamed, A.A.; Han, C. Antimicrobial activity of quaternary ammonium salts: Structure-activity relationship. Med. Chem. Res. 2022, 31, 1663–1678. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, W.; Xie, J.; Zhang, W.; Ji, Z.; Zou, J.; Cong, Z.; Xiao, X.; Gu, J.; Liu, R. Peptide-Mimicking Poly(2-oxazoline)s Displaying Potent Antimicrobial Properties. ChemMedChem 2021, 16, 309–315. [Google Scholar] [CrossRef]
- Mazankova, V.; Kostyleva, K.; Hornak, R.; Stahel, P. Deposition of Polymeric Thin Films from Propane-Butane in Atmospheric Pressure Discharge. Plasma Phys. Technol. 2022, 9, 1–5. [Google Scholar] [CrossRef]
Flow Rate (sccm) | C | N | O |
---|---|---|---|
20 | 31.1 | 48.9 | 20.0 |
35 | 40.2 | 43.0 | 16.8 |
50 | 47.9 | 37.5 | 14.6 |
65 | 55.2 | 31.8 | 13.0 |
80 | 54.4 | 33.0 | 12.6 |
Flow Rate (sccm) | Contact Angle () | Surface Free Energy (mJ/m) | ||||
---|---|---|---|---|---|---|
Water | CHI | Glycerol | Total | LW | AB | |
teflon | 83.5 ± 1.2 | 63.2 ± 1.3 | 74.7 ± 1.3 | 30.3 ± 1.0 | 26.7 ± 0.8 | 3.5 ± 0.8 |
20 | 12.7 ± 1.6 | 32.8 ± 1.7 | 58.1 ± 1.7 | 61.2 ± 3.6 | 43.0 ± 1.2 | 18.2 ± 2.5 |
35 | 16.2 ± 1.2 | 37.8 ± 0.8 | 60.0 ± 4.0 | 58.8 ± 4.9 | 40.7 ± 0.4 | 18.2 ± 4.5 |
50 | 21.0 ± 1.3 | 38.2 ± 1.0 | 60.9 ± 3.0 | 58.6 ± 5.4 | 40.2 ± 0.6 | 18.7 ± 4.8 |
65 | 20.9 ± 1.5 | 29.4 ± 5.0 | 62.8 ± 1.0 | 61.0 ± 2.2 | 40.1 ± 0.4 | 20.8 ± 1.8 |
80 | 22.8 ± 1.2 | 38.3 ± 1.1 | 62.9 ± 3.6 | 60.8 ± 3.9 | 40.5 ± 0.5 | 20.4 ± 3.4 |
Flow Rate (sccm) | S. aureus CCM 2022 (CFU/cm) | E. coli CCM 4517 (CFU/cm) |
---|---|---|
teflon | ||
20 | <1 | <1 |
35 | <1 | <1 |
50 | <1 | <1 |
65 | <1 | <1 |
80 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sťahel, P.; Mazánková, V.; Podzemná, D.; Podzemná, E.; Pizúrová, V.; Jurmanová, J.; Prokeš, L.; Lehocký, M.; Ozaltin, K.; Pištěková, H.; et al. Antibacterial Thin Films Deposited from Propane–Butane Mixture in Atmospheric Pressure Discharge. Int. J. Mol. Sci. 2023, 24, 1706. https://doi.org/10.3390/ijms24021706
Sťahel P, Mazánková V, Podzemná D, Podzemná E, Pizúrová V, Jurmanová J, Prokeš L, Lehocký M, Ozaltin K, Pištěková H, et al. Antibacterial Thin Films Deposited from Propane–Butane Mixture in Atmospheric Pressure Discharge. International Journal of Molecular Sciences. 2023; 24(2):1706. https://doi.org/10.3390/ijms24021706
Chicago/Turabian StyleSťahel, Pavel, Věra Mazánková, Daniela Podzemná, Erika Podzemná, Veronika Pizúrová, Jana Jurmanová, Lubomír Prokeš, Marián Lehocký, Kadir Ozaltin, Hana Pištěková, and et al. 2023. "Antibacterial Thin Films Deposited from Propane–Butane Mixture in Atmospheric Pressure Discharge" International Journal of Molecular Sciences 24, no. 2: 1706. https://doi.org/10.3390/ijms24021706
APA StyleSťahel, P., Mazánková, V., Podzemná, D., Podzemná, E., Pizúrová, V., Jurmanová, J., Prokeš, L., Lehocký, M., Ozaltin, K., Pištěková, H., & Trunec, D. (2023). Antibacterial Thin Films Deposited from Propane–Butane Mixture in Atmospheric Pressure Discharge. International Journal of Molecular Sciences, 24(2), 1706. https://doi.org/10.3390/ijms24021706