Crystal Structure and Chemical Bonds in [CuII2(Tolf)4(MeOH)2]∙2MeOH
Abstract
:1. Introduction
2. Results
2.1. Crystal Structure of [CuII2(Tolf)4(MeOH)2]∙2MeOH
2.2. QTAIM Analysis of [CuII2(Tolf)4(MeOH)2]∙2MeOH, QEBQIX and ACURCU01
2.3. NCI Analysis of the Weak Interaction for the [CuII2(Tolf)4(MeOH)2]∙2MeOH and for QEBQIX
2.4. NBO, HOMO—LUMO and Fukui Parameters
2.5. Delocalization of Electrons
2.6. Decomposition of the Bonding Energy
3. Materials and Methods
3.1. Single-Crystal X-ray Diffraction
3.2. DTA, DTG
3.3. IR, Raman
3.4. Theoretical Analysis
3.5. Materials and Synthetic Procedures
4. Conclusions
- From the point of view of potential applications of double-core copper complexes with pharmaceutical ligands as new, promising therapeutic substances, it seems important to study the structure of compounds, the nature of chemical bonds, and weak interactions in the solid. Studying the nature of chemical bonds and interactions in the crystal may in the future be crucial in interpreting the mechanisms of drug delivery to cells and binding to proteins.
- The interactions linking the Cu2+∙∙∙Cu2+ cations as well as the core of the compound and the surrounding molecules are a weak, closed shell but very stable. Taking into account the value of the electron density at the critical point and the stability of the attracting Cu2+∙∙∙Cu2+ interaction, this interaction can be considered as one of the noncovalent interactions, affecting the overall geometry of the compound, the spatial arrangement of molecules in the crystal, and thus physicochemical properties, similar to the hydrogen bond, van der Waals, or pnictogen interaction.
- The interactions are formed by the orbital overlapping. The stabilizing force for the compounds is the electrostatic interaction of the Cu2+∙∙∙Cu2+ core with the rest of the molecule, especially with the carboxylate oxygen atoms.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herendeen, J.M.; Lindley, C. Use of NSAIDs for the chemoprevention of colorectal cancer. Ann. Pharmacother 2003, 37, 1664–1674. [Google Scholar] [CrossRef]
- Rao, C.V.; Reddy, B.S. NSAIDs and chemoprevention. Curr. Cancer Drug Targets 2004, 4, 29–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sporn, M.B.; Suh, N. Chemoprevention of cancer. Carcinogenesis 2000, 21, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Grossman, E.M.; Longo, W.E.; Panesar, N.; Mazuski, J.E.; Kaminski, D.L. The role of cyclooxygenase enzymes in the growth of human gall bladder cancer cells. Carcinogenesis 2000, 21, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Ritland, S.R.; Gendler, S.J. Chemoprevention of intestinal adenomas in the ApcMin mouse by piroxicam: Kinetics, strain effects and resistance to chemosuppression. Carcinogenesis 1999, 20, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Groot, D.J.A.; de Vries, E.G.E.; Groen, H.J.M.; de Jong, S. Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: From lab to clinic. Crit. Rev. Oncol. Hematol. 2007, 61, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Orido, T.; Fujino, H.; Hasegawa, Y.; Toyomura, K.; Kawashima, T.; Murayama, T. Indomethacin Decreases Arachidonic Acid Uptake in HCA-7 Human Colon Cancer Cells. J. Pharmacol. Sci. 2008, 108, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Glazko, A.J. Experimental observations on flufenamic, mefenamic and meclofenamic acids. 3. Metabolic disposition. Ann. Phys. Med. 1966, 23–36. [Google Scholar]
- Kauppila, A.; Ylikorkala, O. Indomethacin and tolfenamic acid in primary dysmenorrhea. Eur. J. Obstet. Gynecol. Reprod. Biol. 1977, 7, 59–64. [Google Scholar] [CrossRef]
- Kajander, A.; Martio, J.; Mutru, O.; Gothoni, G. Prolonged treatment with tolfenamic acid in inflammatory rheumatic diseases. Scand. J. Rheum. 1976, 4, 158–160. [Google Scholar] [CrossRef]
- Rejholec, V.; Vapaatalo, H.; Tokola, O.; Gothoni, G. A comparative, double-blind study on tolfenamic acid in the treatment of rheumatoid arthritis. Scand. J. Rheum. 1979, 24, 13–16. [Google Scholar] [CrossRef]
- Thorsteinn, L. Drug solubilization by complexation. Int. J. Pharm. 2017, 531, 276–280. [Google Scholar]
- Rentrew, A.K. Transition metal complexes with bioactive ligands: Mechanisms for selective ligand release and applications for drug delivery. Metallomics 2014, 6, 1324–1335. [Google Scholar]
- Jurca, T.; Marian, E.; Vicaş, L.G.; Mureşan, M.; Fritea, L. Metal Complexes of Pharmaceutical Substances. In Spectroscopic Analyses-Developments and Applications; Sharmin, E., Zafar, F., Eds.; IntechOpen: London, UK, 2017; Available online: https://www.intechopen.com/chapters/54928 (accessed on 14 November 2022). [CrossRef] [Green Version]
- Zhang, X.C.; Lippard, S.J. New metal complexes as potential therapeutics. Curr. Opin. Chem. Biol. 2003, 7, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Drewry, J.A.; Gunning, P.T. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord. Chem. Rev. 2011, 255, 459–472. [Google Scholar] [CrossRef]
- Kovala-Demertzi, D.; Staninska, M.; Garcia-Santos, I.; Castineiras, A.; Demertzis, M.A. Synthesis, crystal structures and spectroscopy of meclofenamic acid and its metal complexes with manganese(II), copper(II), zinc(II) and cadmium(II). Antiproliferative and superoxide dismutase activity. J. Inorg. Biochem. 2011, 105, 1187–1195. [Google Scholar] [CrossRef]
- Roy, S.; Banerjee, R.; Sarkar, M.J. Direct binding of Cu(II)-complexes of oxicam NSAIDs with DNA backbone. Inorg. Biochem. 2006, 100, 1320–1331. [Google Scholar] [CrossRef]
- Weder, J.E.; Dillon, C.T.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; Biffin, J.T.; Regtop, H.L.; Davies, N.M. Copper Complexes of Non-Steroidal Anti-Inflammatory Drugs: An Opportunity Yet to Be Realized. Coord. Chem. Rev. 2002, 232, 95–126. [Google Scholar] [CrossRef]
- Marzano, C.; Pellei, M.; Tisato, F.; Santini, C. Copper complexes as anticancer agents. Anticancer Agents Med. Chem. 2009, 9, 185–211. [Google Scholar] [CrossRef]
- Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev. 2010, 30, 708–749. [Google Scholar] [CrossRef]
- Tardito, S.; Marchiò, L. Copper compounds in anticancer strategies. Curr. Med. Chem. 2009, 16, 1325–1348. [Google Scholar] [CrossRef] [PubMed]
- Hobza, P.; Zahradník, R.; Müller-Dethlefs, K. The world of non-covalent interactions. Collect. Czech. Chem. Commun. 2006, 71, 443–531. [Google Scholar] [CrossRef]
- de Azevedo Santos, L.; Hamlin, T.A.; Ramalho, T.C.; Bickelhaupt, F.M. The pnictogen bond: A quantitative molecular orbital picture. Phys. Chem. Chem. Phys. 2021, 23, 13842–13852. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Gurbanov, A.V.; Aliyeva, V.A.; Resnati, G.; Pombeiro, A.J.L. Pnictogen bonding in coordination chemistry. Coord. Chem. Rev. 2020, 418, 213381. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R.; Marques, H.M.; Yamashita, K. Definition of the Pnictogen Bond: A Perspective. Inorganics 2022, 10, 149. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Inomata, Y.; Howell, F.S. Characterization and crystal structure of copper(II) complex with betaine having a water-wheel-like structure. Inorg. Chim. Acta 1999, 295, 121–124. [Google Scholar] [CrossRef]
- Uekusa, H.; Ohba, S.; Saito, Y.; Kato, M.; Tokii, T.; Muto, Y. Structural comparison between dimeric copper(II) formate and acetate in pyridine and urea adducts. Acta Cryst. 1989, C45, 377–388. [Google Scholar] [CrossRef]
- Mehrotra, P.K.; Hoffmann, R. Copper(I)-copper(I) interactions. Bonding relationships in d10-d10 systems. Inorg. Chem. 1978, 17, 2187–2189. [Google Scholar] [CrossRef]
- Jiang, Y.; Alvarez, S.; Hoffmann, R. Binuclear and polymeric gold(I) complexes. Inorg. Chem. 1985, 24, 749–757. [Google Scholar] [CrossRef]
- Cotton, F.A.; Feng, X.; Matusz, M.; Poli, R. Experimental and theoretical studies of the copper(I) and silver(I) dinuclear N,N′-di-p-tolylformamidinato complexes. J. Am. Chem. Soc. 1988, 110, 7077–7083. [Google Scholar] [CrossRef]
- Pyykkӧ, P. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97, 597–636. [Google Scholar] [CrossRef] [PubMed]
- Pyykkӧ, P. Theoretical chemistry of gold. III. Chem. Soc. Rev. 2008, 37, 1967–1997. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, M.A.; Alvarez, S.; Novoa, J.J. The Nature of Intermolecular CuI⋅CuI Interactions: A Combined Theoretical and Structural Database Analysis. Chem. Eur. J. 2004, 10, 2117–2132. [Google Scholar] [CrossRef] [PubMed]
- Dinda, A.G. Samuelson, The Nature of Bond Critical Points in Dinuclear Copper(I) Complexes. Chem. Eur. J. 2012, 18, 3032–3042. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum Theory. In Atoms in Molecules; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Bader, R.F.W. Bond Paths Are Not Chemical Bonds. J. Phys. Chem. A 2009, 113, 10391–10396. [Google Scholar] [CrossRef] [Green Version]
- Bader, R.F.W. Definition of Molecular Structure: By Choice or by Appeal to Observation? J. Phys. Chem. A 2010, 114, 7431–7444. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Essen, H. The Characterization of Atomic Interactions. J. Chem. Phys. 1984, 80, 1943–1960. [Google Scholar] [CrossRef]
- Popelier, P.L.A.; Bader, R.F.W. Effect of Twisting a Polypeptide on Its Geometry and Electron Distribution. J. Phys. Chem. 1994, 98, 4473–4481. [Google Scholar] [CrossRef]
- Popelier, P.L.A. Characterization of a Dihydrogen Bond on the Basis of the Electron Density. J. Phys. Chem. 1998, 102, 1873–1878. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sanchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovala-Demertzi, D.; Galani, A.; Demertzis, M.A.; Skoulika, S.; Kotoglou, C. Binuclear copper(II) complexes of tolfenamic: Synthesis, crystal structure, spectroscopy and superoxide dismutase activity. J. Inorg. Biochem. 2004, 98, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Quaresma, S.; Andre, V.; Fernandes, A.; Duarte, M.T. Mechanochemistry–A green synthetic methodology leading to metallodrugs, metallopharmaceuticals and bio-inspired metal-organic frameworks. Inorg. Chim. Acta 2017, 455, 309–318. [Google Scholar] [CrossRef]
- Facchin, G.; Torre, M.H.; Kremer, E.; Piro, O.E.; Baran, E.J. Crystal Structure and Spectroscopic Behaviour of a Binuclear Copper(II) Complex of Mefenamic Acid and Dimethylsulfoxide. Z. Naturforsch. B Chem.Sci. 1998, 53, 871–874. [Google Scholar] [CrossRef]
- Mys’kiv, M.G.; Olijnik, V.V.; Kriss, E.E.; Konakhovich, N.F.; Grigor’eva, A.S. STRUCTURE CRISTALLINE DE COMPLEXES DE CUIVRE (II) AVEC DES DERIVES DE L’ACIDE N-PHENYLANTHRANILIQUE. Koord. Khim. Russ. Coord. Chem. 1982, 8, 1415. [Google Scholar]
- Xin, C.-W.; Liu, F.-C. Tetrakis(μ-2-anilinobenzoato)bis[methanolcopper(II)](Cu-Cu). Acta Cryst. 2008, E64, m1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tas, M.; Yesilel, O.Z.; Buyukgungor, O. Novel Copper(II) Complexes of N-Phenylanthranilic Acid Containing Ethanol and Hydroxo Ligands. J. Inorg. Organomet. Polym. Mater. 2010, 20, 298–305. [Google Scholar] [CrossRef]
- Batsanov, A.S.; Struchkov, Y.T.; Grigor’eva, A.S.; Kriss, E.E.; Konakhovich, N.F.; Fialkov, Y.A. Structure of Copper(II) Complex with N-3,4-dimethyl Phenyl Anthranilic Acid, Isomefenamic Acid. Koord. Khim. Coord. Chem. 1981, 7, 784. [Google Scholar]
- Tolia, C.; Papadopoulos, A.N.; Raptopoulou, C.P.; Psycharis, V.; Garino, C.; Salassa, L.; Psomas, G. Copper(II) interacting with the non-steroidal antiinflammatory drug flufenamic acid: Structure, antioxidant activity and binding to DNA and albumins. J. Inorg. Biochem. 2013, 123, 53–65. [Google Scholar] [CrossRef]
- Sabirov, V.K.; Batsanov, A.S.; Struchkov, Y.T.; Grigor’eva, A.S.; Kriss, E.E.; Konakhovich, N.F.; Fialkov, Y.A. Synthesis and Crystal-Structure of Dimeric Cooper(II) Complexes with N-3-Difluoromethylthiophenylanthranilic Acid. Koord. Khim. Russ. Coord. Chem. 1984, 10, 1474. [Google Scholar]
- Tas, M.; Karabag, E.; Titiz, A.; Kaya, M.; Ataseven, M.; Dal, H. Synthesis and characterization of Tetrakis-μ-[N-phenylanthranilato](O,O′)-bis[(4-vinylpyridine copper(II)] complex. Z. Krist. Cryst. Mater. 2013, 228, 92–99. [Google Scholar] [CrossRef]
- Tas, M.; Titiz, A.; Karabag, E.; Kaya, M.; Ataseven, M.; Dal, H. The Tetra–μ–[N-phenylanthranilato](O,O’)–bis [(2-amino-4-methyl)pyridine Copper(II)] Complex Crystal. Synth. React. Inorg., Met.-Org. Nano-Met. Chem. 2013, 43, 1212–1223. [Google Scholar] [CrossRef]
- Wiberg, K.B.; Bader, R.F.W.; Lau, C.D.H. A Theoretical Analysis of Hydrocarbon Properties: II. Additivity of Group Properties and the Origin of Strain Energy. J. Am. Chem. Soc. 1987, 109, 1001–1012. [Google Scholar] [CrossRef]
- Löwdin, P.-O. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev. 1955, 97, 1474–1489. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural localized molecular orbitals. J. Chem. Phys. 1985, 83, 1736–1740. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R. Natural Bond Orbitals and Extensions of Localized Bonding Concepts. Chem. Educ. Res. Pract. 2001, 2, 91–104. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 1984, 106, 4049–4050. [Google Scholar] [CrossRef]
- Herges, R.; Geuenich, D. Delocalization of Electrons in Molecules. J. Phys. Chem. A 2001, 105, 3214–3220. [Google Scholar] [CrossRef]
- Morokuma, K. Molecular Orbital Studies of Hydrogen Bonds. III. C=O... H–O Hydrogen Bond in H2CO. H2O and H2CO 2H2O. J. Chem. Phys. 1971, 55, 1236–1244. [Google Scholar] [CrossRef]
- Ziegler, T.; Rauk, A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta 1977, 46, 1–10. [Google Scholar] [CrossRef]
- Rigaku, O.D. CrysAlis PRO; Rigaku Oxford Diffraction: Yarnton, UK, 2015. [Google Scholar]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, K. Diamond; Crystal Impact GbR: Bonn, Germany, 2014. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian Inc 16, Revision, A. 03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Keith, T.A. AIMALL (Version 19.10.12); TK Gristmill Software: Overland Park, KS, USA, 2014. [Google Scholar]
- te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Hurtado, M.; Sankpal, U.T.; Chhabra, J.; Brown, D.T.; Maram, R.; Patel, R.; Gurung, R.K.; Simecka, J.; Holder, A.A.; Basha, R. Copper-tolfenamic acid: Evaluation of stability and anti-cancer activity. Investig. New Drugs 2019, 37, 27–34. [Google Scholar] [CrossRef]
- Jabeen, S.; Dines, T.J.; Leharne, S.A.; Babur, Z.C. Raman and IR spectroscopic studies of fenamates–Conformational differences in polymorphs of flufenamic acid, mefenamic acid and tolfenamic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 972–985. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sheraz, M.A.; Yorucu, C.; ur Rehman, I. Quantitative determination of tolfenamic acid and its pharmaceutical formulation using FTIR and UV spectrometry. Cent. Eur. J. Chem. 2013, 11, 1533–1541. [Google Scholar] [CrossRef]
Crystal Data | |
---|---|
Chemical formula | [Cu2(C14H11ClNO2)4(CH3OH)2]·2(CH3OH) |
Mr | 1298.00 |
Crystal system, space group | Triclinic, P |
Temperature (K) | 100(2) |
a (Å) | 11.3917(3) |
b (Å) | 11.7297(4) |
c (Å) | 12.1260(4) |
α (o) | 68.20(3) |
β (o) | 77.83(3) |
γ (o) | 81.46(3) |
V (Å3) | 1466.2(4) |
Z | 1 |
Radiation type | Mo Kα |
Crystal size (mm) | 0.64 × 0.11 × 0.08 |
Data collection | |
Diffractometer | Xcalibur Ruby-CCD κ-geometry diffractometer |
No. of measured, independent, and observed [I > 2σ(I)] reflections | 13,769, 8096, 6803 |
Rint | 0.026 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.092, 1.06 |
No. of parameters | 386 |
No. of restraints | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.60, −0.52 |
Bond | Bond Length [Å] |
---|---|
Cu–O1A i | 1.9540(13) |
Cu–O2A | 1.9593(13) |
Cu–O1B i | 1.9689(15) |
Cu–O2B | 1.9692(14) |
Cu···Cu i | 2.5880(4) |
Cu–O1M | 2.1958(13) |
O1A–C1A | 1.269(2) |
O2A–C1A | 1.276(2) |
C1A–C2A | 1.487(2) |
C2A–C3A | 1.423(2) |
C3A–N1A | 1.380(2) |
N1A–C8A | 1.407(2) |
C9A–C14A | 1.512(2) |
C10A–Cl1 | 1.7511(18) |
O1B–C1B | 1.268(2) |
O2B–C1B | 1.277(2) |
C1B–C2B | 1.487(2) |
C2B–C3B | 1.423(2) |
N1B–C3B | 1.384(2) |
N1B–C8B | 1.413(2) |
C9B–C14B | 1.509(3) |
C10B–Cl2 | 1.754(2) |
Angle | Angle Value [o] |
---|---|
O1A–Cu–O2A i | 169.91(5) |
O1A–Cu–O2B i | 91.27(6) |
O2A–Cu–O1B i | 88.57(6) |
O2A–Cu–O2B | 88.63(6) |
O1B–Cu–O2B i | 169.77(5) |
O1A–Cu–O1M i | 95.45(6) |
O2A–Cu–O1M | 94.58(6) |
O1B–Cu–O1M i | 93.05(6) |
O2B–Cu–O1M | 96.99(6) |
O1A–C1A–O2A | 123.83(15) |
O1A–C1A–C2A | 117.40(15) |
O2A–C1A–C2A | 118.77(15) |
O1B–C1B–O2B | 123.99(16) |
O1B–C1B–C2B | 117.00(16) |
O2B–C1B–C2B | 119.01(15) |
C3A–N1A–C8A | 127.81(15) |
C3B–N1B–C8B | 126.21(16) |
D–H∙∙∙A | D–H [Å] | H∙∙∙A [Å] | D∙∙∙A [Å] | D–H∙∙∙A [°] |
---|---|---|---|---|
N1A–H1A∙∙∙O2A | 0.80(2) | 2.00(2) | 2.654(2) | 139(2) |
N1B–H1B∙∙∙O2B | 0.91(2) | 1.97(2) | 2.669(2) | 133(2) |
O1M–H1M∙∙∙O2M | 0.74(3) | 1.94(3) | 2.682(2) | 174(3) |
O2M–H2M∙∙∙O1B i | 0.83(3) | 2.52(3) | 3.008(2) | 119(3) |
Bonds | ρ(r) | ∇2(r) | ε(r) | d[Å] | δ(A,B) |
---|---|---|---|---|---|
[CuII2(Tolf)4(MeOH)2]∙2MeOH | |||||
Cu∙∙∙Cu i | 0.0319 | 0.0660 | 0.0096 | 0.0000 | 0.4990 |
Cu–O1A i | 0.0858 | 0.4508 | 0.0170 | 0.0017 | 0.4161 |
Cu–O1B i | 0.0827 | 0.4289 | 0.0188 | 0.0017 | 0.4010 |
Cu–O2A | 0.0854 | 0.4442 | 0.0170 | 0.0013 | 0.4082 |
Cu–O2B | 0.0832 | 0.4253 | 0.0151 | 0.0014 | 0.4074 |
O1A–C1A | 0.3609 | −0.3981 | 0.0342 | 0.0006 | 1.0692 |
O2A–C1A | 0.3561 | −0.4321 | 0.0367 | 0.0005 | 1.0673 |
O1B–C1B | 0.3626 | −0.4052 | 0.0352 | 0.0005 | 1.0691 |
O2B–C1B | 0.3550 | −0.4374 | 0.0360 | 0.0005 | 1.0666 |
C1B–C2B | 0.2644 | −0.6569 | 0.1389 | 0.0001 | 0.9734 |
C1A–C2A | 0.2647 | −0.6595 | 0.1374 | 0.0001 | 0.9723 |
Cu–O1M | 0.0498 | 0.2201 | 0.0531 | 0.0011 | 0.2520 |
Cl2∙∙∙C2B ii | 0.0053 | 0.0159 | 4.8375 | 0.1059 | 0.0261 |
Cl1–C10A | 0.1956 | −0.2760 | 0.0609 | 0.0000 | 1.1066 |
Cl2–C10B | 0.1956 | −0.2760 | 0.0609 | 0.0000 | 1.1066 |
H11B∙∙∙C4A ii | 0.1956 | 0.0092 | 0.6618 | 0.0183 | 0.0097 |
Symmetry codes: i = −x + 1, −y + 1, −z + 1; ii = −x + 1, −y, −z + 2 | |||||
QEBQIX | |||||
Cu∙∙∙Cu ii | 0.0260 | 0.0591 | 0.0176 | 0.0001 | 0.4169 |
Cu–O2 | 0.0557 | 0.2747 | 0.0215 | 0.0021 | 0.2764 |
Cu–O3 | 0.0761 | 0.3825 | 0.0224 | 0.0020 | 0.3792 |
Cu–O4 | 0.0793 | 0.4184 | 0.0237 | 0.0023 | 0.3819 |
Cu–O5 | 0.0806 | 0.4089 | 0.0186 | 0.0014 | 0.4048 |
Cuii–O6 | 0.0822 | 0.4201 | 0.0170 | 0.0011 | 0.4085 |
O3–C6 | 0.3763 | −0.3093 | 0.0384 | 0.0005 | 1.0948 |
O4–C7 | 0.3718 | −0.3336 | 0.0372 | 0.0005 | 1.0817 |
O5–C6 | 0.3753 | −0.3278 | 0.0402 | 0.0005 | 1.0965 |
O6–C7 | 0.3724 | −0.3837 | 0.0482 | 0.0004 | 1.1089 |
C6–C8 | 0.2468 | −0.5667 | 0.0653 | 0.0001 | 0.8162 |
C7–C9 | 0.2544 | −0.6160 | 0.0704 | 0.0001 | 0.8590 |
Symmetry code: ii = −x, −y, −z | |||||
ACURCU01 | |||||
Cu∙∙∙Cu ii | 0.0298 | 0.0633 | 0.0114 | 0.0000 | 0.4315 |
Cu–O(1) | 0.0791 | 0.4095 | 0.0132 | 0.0018 | 0.3891 |
Cu–O(2) | 0.0830 | 0.4292 | 0.0238 | 0.0014 | 0.4018 |
Cu–O(3) | 0.0843 | 0.4445 | 0.0179 | 0.0018 | 0.4096 |
Cu–O(4) | 0.0822 | 0.4184 | 0.0220 | 0.0014 | 0.4022 |
Cu–O(5) | 0.0545 | 0.2642 | 0.0144 | 0.0026 | 0.2742 |
O(2)–C(1) | 0.3640 | −0.4092 | 0.0347 | 0.0005 | 1.0739 |
C(1)–O(3) ii | 0.3814 | −0.2553 | 0.0409 | 0.0005 | 1.0954 |
O(1)–C(3) | 0.3717 | −0.2895 | 0.0229 | 0.0005 | 1.0620 |
C(3)–O(4) ii | 0.3742 | −0.3495 | 0.0428 | 0.0005 | 1.1049 |
C(1)–C(2) | 0.2544 | −0.6161 | 0.0602 | 0.0002 | |
C(3)–C(4) | 0.2532 | −0.6048 | 0.0747 | 0.0001 | |
Symmetry code: ii = −x, −y, −z |
Atom | q(A) | N(A) | %δ(A,A’) | δBond(A,A’)/2 |
---|---|---|---|---|
[CuII2(Tolf)4(MeOH)2]∙2MeOH | ||||
Cu | 1.0854 | 27.9146 | 4.96380 | 1.1623 |
Cu i | 1.0968 | 27.9032 | 4.97900 | 1.1641 |
O1B | −1.1178 | 9.1178 | 12.6534 | 0.7642 |
O1A | −1.1264 | 9.1264 | 12.5390 | 0.7426 |
O2B | −1.1237 | 9.1237 | 12.4814 | 0.7387 |
O2A | −1.1224 | 9.1224 | 12.6440 | 0.7627 |
C1B | 1.5054 | 4.4946 | 37.0094 | 1.5546 |
C1A | 1.5018 | 4.4982 | 36.9938 | 1.5544 |
Symmetry code: i = −x + 1, −y + 1, −z + 1 | ||||
QEBQIX | ||||
Cu | 1.1063 | 27.8937 | 4.8781 | 1.1339 |
Cu ii | 1.1063 | 27.8937 | 4.8779 | 1.1338 |
O3 | −1.1427 | 9.1427 | 12.1171 | 0.7370 |
O4 | −1.1575 | 9.1575 | 12.2690 | 0.7450 |
O5 | −1.1227 | 9.1227 | 12.2236 | 0.7507 |
O6 | −1.1062 | 9.1062 | 12.2468 | 0.7586 |
C6 | 1.5921 | 4.4079 | 36.8333 | 1.5038 |
C7 | 1.5770 | 4.4230 | 36.9083 | 1.5248 |
O1 | −1.2126 | 9.2126 | 11.4775 | 0.7210 |
Symmetry code: ii = −x, −y, −z | ||||
ACURCU01 | ||||
Cu | 1.0937 | 27.9063 | 4.9487 | 1.1542 |
Cu iii | 1.0950 | 27.9050 | 4.9512 | 1.1570 |
O(1) | −1.1702 | 9.1702 | 12.2270 | |
O(2) | −1.1321 | 9.1321 | 12.3285 | |
O(3) | −1.1456 | 9.1456 | 12.1876 | 0.7502 |
O(4) | −1.1082 | 9.1082 | 12.2871 | 0.7543 |
O(5) | −1.1643 | 9.1643 | 11.0018 | |
O(5) iii | −1.1560 | 9.1560 | 11.0123 | |
Symmetry code: iii = −x + 1, −y + 1, −z + 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majerz, I.; Krawczyk, M.S. Crystal Structure and Chemical Bonds in [CuII2(Tolf)4(MeOH)2]∙2MeOH. Int. J. Mol. Sci. 2023, 24, 1745. https://doi.org/10.3390/ijms24021745
Majerz I, Krawczyk MS. Crystal Structure and Chemical Bonds in [CuII2(Tolf)4(MeOH)2]∙2MeOH. International Journal of Molecular Sciences. 2023; 24(2):1745. https://doi.org/10.3390/ijms24021745
Chicago/Turabian StyleMajerz, Irena, and Marta S. Krawczyk. 2023. "Crystal Structure and Chemical Bonds in [CuII2(Tolf)4(MeOH)2]∙2MeOH" International Journal of Molecular Sciences 24, no. 2: 1745. https://doi.org/10.3390/ijms24021745
APA StyleMajerz, I., & Krawczyk, M. S. (2023). Crystal Structure and Chemical Bonds in [CuII2(Tolf)4(MeOH)2]∙2MeOH. International Journal of Molecular Sciences, 24(2), 1745. https://doi.org/10.3390/ijms24021745