Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis
Abstract
:1. Introduction
2. The Major Role Played by Cardiac Fibroblasts
3. Molecular Mechanisms Involved in the Development of Cardiac Fibrosis
- Growth Factors
- ✓
- TGFβ
- ✓
- PDGF
- ✓
- FGF
- ✓
- TNF
- Renin-Angiotensin-Aldosterone system (RAAS)
- β-adrenergic system
4. Emerging Techniques for the Detection of Cardiac Fibrosis
- ✓
- Imaging techniques
- ✓
- Circulating biomarkers of cardiac fibrosis
5. Potential Therapeutic Strategies for the Treatment of Cardiac Fibrosis
- ✓
- TGFβ1 inhibitors
- ✓
- RAAS targeting
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin Converting Enzyme |
Ang | Angiotensin |
β-AR | Beta Adrenergic Receptor |
ARB | Angiotensin-Renin Inhibitors |
ARNI | Angiotensin Receptor-Neprilysin Inhibitor |
AT1R | Angiotensin Type 1 Receptor |
BMP | Bone Morphogenetic Protein |
C1TP | Collagen 1 carboxy-Terminal Telopeptides |
CMR | Cardiovascular Magnetic Resonance |
CTGF | Connective Tissue Growth Factor |
ECM | Extracellular Matrix |
ECV | Extracellular Cardiac Volume |
EndoMT | Endothelial to Mesenchymal Transition |
ET-1 | Endothelin-1 |
FGF | Fibroblast Growth Factor |
GSK3 | Glycogen Synthase Kinase-3β |
HF | Heart Failure |
HFpEF | Heart Failure with preserved Ejection Fraction |
LAP | Latency-Associated Protein |
LGE | Late Gadolinium Enhancement |
LOX | Lysyl Oxidase enzyme |
LTBP | Latent TGF-β1-Binding Proteins |
MI | Mycocardial Infarction |
MMP | Matrix Metalloproteinase |
MR | Mineralocorticoid Receptor |
NE | Norepinephrine |
NOX | NADPH Oxidase |
OPN | Osteopontin |
PDGF | Platelet-Derived Growth Factor |
PET | Positron Emission Tomography |
RAAS | Renin Angiotensin Aldosterone System |
ROS | Reactive Oxygen Species |
SMA | α Smooth Muscle Actin |
sST2 | soluble ST2 |
STE | Speckle Tracking Echocardiography |
TAC | Transverse Aortic Constriction |
TGF | Transforming Growth Factor |
TIMP | Tissue Inhibitor of Matrix Metalloproteinase |
TNC | Tenascin-C |
TRI | TGFβ1 Receptor Type I |
TRII | TGFβ1 Receptor type II |
References
- Tuleta, I.; Frangogiannis, N.G. Fibrosis of the Diabetic Heart: Clinical Significance, Molecular Mechanisms, and Therapeutic Opportunities. Adv. Drug Deliv. Rev. 2021, 176, 113904. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart Disease and Stroke Statistics—2013 Update: A Report From the American Heart Association. Circulation 2013, 127, e6–e245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. Cardiac Fibrosis. Cardiovasc. Res. 2021, 117, 1450–1488. [Google Scholar] [CrossRef]
- Humeres, C.; Frangogiannis, N.G. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl. Sci. 2019, 4, 449–467. [Google Scholar] [CrossRef]
- González, A.; Schelbert, E.B.; Díez, J.; Butler, J. Myocardial Interstitial Fibrosis in Heart Failure. J. Am. Coll. Cardiol. 2018, 71, 1696–1706. [Google Scholar] [CrossRef]
- Verheule, S.; Schotten, U. Electrophysiological Consequences of Cardiac Fibrosis. Cells 2021, 10, 3220. [Google Scholar] [CrossRef]
- López, B.; Ravassa, S.; Moreno, M.U.; José, G.S.; Beaumont, J.; González, A.; Díez, J. Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nat. Rev. Cardiol. 2021, 18, 479–498. [Google Scholar] [CrossRef]
- Tallquist, M.D. Cardiac Fibroblast Diversity. Annu. Rev. Physiol. 2020, 82, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Krenning, G.; Zeisberg, E.M.; Kalluri, R. The Origin of Fibroblasts and Mechanism of Cardiac Fibrosis. J. Cell. Physiol. 2010, 225, 631–637. [Google Scholar] [CrossRef]
- Mollmann, H.; Nef, H.; Kostin, S.; Vonkalle, C.; Pilz, I.; Weber, M.; Schaper, J.; Hamm, C.; Elsasser, A. Bone Marrow-Derived Cells Contribute to Infarct Remodelling. Cardiovasc. Res. 2006, 71, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Endo, J.; Sano, M.; Fujita, J.; Hayashida, K.; Yuasa, S.; Aoyama, N.; Takehara, Y.; Kato, O.; Makino, S.; Ogawa, S.; et al. Bone Marrow–Derived Cells Are Involved in the Pathogenesis of Cardiac Hypertrophy in Response to Pressure Overload. Circulation 2007, 116, 1176–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Amerongen, M.; Bou-Gharios, G.; Popa, E.; van Ark, J.; Petersen, A.; van Dam, G.; van Luyn, M.; Harmsen, M. Bone Marrow-Derived Myofibroblasts Contribute Functionally to Scar Formation after Myocardial Infarction. J. Pathol. 2008, 214, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Garikipati, V.N.S.; Krishnamurthy, P.; Schumacher, S.M.; Grisanti, L.A.; Cimini, M.; Cheng, Z.; Khan, M.; Yue, Y.; Benedict, C.; et al. Interleukin-10 Inhibits Bone Marrow Fibroblast Progenitor Cell–Mediated Cardiac Fibrosis in Pressure-Overloaded Myocardium. Circulation 2017, 136, 940–953. [Google Scholar] [CrossRef]
- Moore-Morris, T.; Guimarães-Camboa, N.; Banerjee, I.; Zambon, A.C.; Kisseleva, T.; Velayoudon, A.; Stallcup, W.B.; Gu, Y.; Dalton, N.D.; Cedenilla, M.; et al. Resident Fibroblast Lineages Mediate Pressure Overload–Induced Cardiac Fibrosis. J. Clin. Investig. 2014, 124, 2921–2934. [Google Scholar] [CrossRef] [Green Version]
- von Gise, A.; Zhou, B.; Honor, L.B.; Ma, Q.; Petryk, A.; Pu, W.T. WT1 Regulates Epicardial Epithelial to Mesenchymal Transition through β-Catenin and Retinoic Acid Signaling Pathways. Dev. Biol. 2011, 356, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Moore-Morris, T.; Guimarães-Camboa, N.; Yutzey, K.E.; Pucéat, M.; Evans, S.M. Cardiac Fibroblasts: From Development to Heart Failure. J. Mol. Med. 2015, 93, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.R.; Ranjbarvaziri, S.; Talkhabi, M.; Zhao, P.; Subat, A.; Hojjat, A.; Kamran, P.; Müller, A.M.S.; Volz, K.S.; Tang, Z.; et al. Developmental Heterogeneity of Cardiac Fibroblasts Does Not Predict Pathological Proliferation and Activation. Circ. Res. 2014, 115, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Honor, L.B.; He, H.; Ma, Q.; Oh, J.-H.; Butterfield, C.; Lin, R.-Z.; Melero-Martin, J.M.; Dolmatova, E.; Duffy, H.S.; et al. Adult Mouse Epicardium Modulates Myocardial Injury by Secreting Paracrine Factors. J. Clin. Investig. 2011, 121, 1894–1904. [Google Scholar] [CrossRef] [Green Version]
- Zeisberg, E.M.; Tarnavski, O.; Zeisberg, M.; Dorfman, A.L.; McMullen, J.R.; Gustafsson, E.; Chandraker, A.; Yuan, X.; Pu, W.T.; Roberts, A.B.; et al. Endothelial-to-Mesenchymal Transition Contributes to Cardiac Fibrosis. Nat. Med. 2007, 13, 952–961. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Q.; Li, C.; Li, Y.; Wang, L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front. Physiol. 2020, 11, 416. [Google Scholar] [CrossRef] [PubMed]
- Dewald, O.; Ren, G.; Duerr, G.D.; Zoerlein, M.; Klemm, C.; Gersch, C.; Tincey, S.; Michael, L.H.; Entman, M.L.; Frangogiannis, N.G. Of Mice and Dogs. Am. J. Pathol. 2004, 164, 665–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodges, M.M.; Zgheib, C.; Xu, J.; Hu, J.; Dewberry, L.C.; Hilton, S.A.; Allukian, M.W.; Gorman, J.H.; Gorman, R.C.; Liechty, K.W. Differential Expression of Transforming Growth Factor-Β1 Is Associated With Fetal Regeneration After Myocardial Infarction. Ann. Thorac. Surg. 2019, 108, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.G. Ligation of Protease-Activated Receptor 1 Enhances v 6 Integrin-Dependent TGF- Activation and Promotes Acute Lung Injury. J. Clin. Investig. 2006, 116, 1606–1614. [Google Scholar] [CrossRef]
- Stawowy, P.; Margeta, C.; Kallisch, H.; Seidah, N.; Chretien, M.; Fleck, E.; Graf, K. Regulation of Matrix Metalloproteinase MT1-MMP/MMP-2 in Cardiac Fibroblasts by TGF-Β1 Involves Furin-Convertase. Cardiovasc. Res. 2004, 63, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Hu, C.; Song, Q.; Li, Y.; Da, X.; Yu, Y.; Li, H.; Clark, I.M.; Chen, Q.; Wang, Q.K. ADAMTS16 Activates Latent TGF-β, Accentuating Fibrosis and Dysfunction of the Pressure-Overloaded Heart. Cardiovasc. Res. 2020, 116, 956–969. [Google Scholar] [CrossRef]
- Dorn, L.E.; Petrosino, J.M.; Wright, P.; Accornero, F. CTGF/CCN2 Is an Autocrine Regulator of Cardiac Fibrosis. J. Mol. Cell. Cardiol. 2018, 121, 205–211. [Google Scholar] [CrossRef]
- Meng, X.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The Master Regulator of Fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Khalil, H.; Kanisicak, O.; Prasad, V.; Correll, R.N.; Fu, X.; Schips, T.; Vagnozzi, R.J.; Liu, R.; Huynh, T.; Lee, S.-J.; et al. Fibroblast-Specific TGF-β–Smad2/3 Signaling Underlies Cardiac Fibrosis. J. Clin. Investig. 2017, 127, 3770–3783. [Google Scholar] [CrossRef] [Green Version]
- Bujak, M.; Ren, G.; Kweon, H.J.; Dobaczewski, M.; Reddy, A.; Taffet, G.; Wang, X.-F.; Frangogiannis, N.G. Essential Role of Smad3 in Infarct Healing and in the Pathogenesis of Cardiac Remodeling. Circulation 2007, 116, 2127–2138. [Google Scholar] [CrossRef]
- Piersma, B.; Bank, R.A.; Boersema, M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front. Med. 2015, 2, 59. [Google Scholar] [CrossRef]
- Blyszczuk, P.; Müller-Edenborn, B.; Valenta, T.; Osto, E.; Stellato, M.; Behnke, S.; Glatz, K.; Basler, K.; Lüscher, T.F.; Distler, O.; et al. Transforming Growth Factor-β-Dependent Wnt Secretion Controls Myofibroblast Formation and Myocardial Fibrosis Progression in Experimental Autoimmune Myocarditis. Eur. Heart J. 2016, 38, ehw116. [Google Scholar] [CrossRef] [Green Version]
- Działo, E.; Rudnik, M.; Koning, R.; Czepiel, M.; Tkacz, K.; Baj-Krzyworzeka, M.; Distler, O.; Siedlar, M.; Kania, G.; Błyszczuk, P. WNT3a and WNT5a Transported by Exosomes Activate WNT Signaling Pathways in Human Cardiac Fibroblasts. Int. J. Mol. Sci. 2019, 20, 1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Xiong, Y.; Li, X.; Yang, Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front. Cardiovasc. Med. 2021, 8, 715258. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.; Ahmad, F.; Zhou, J.; Yu, J.E.; Vagnozzi, R.J.; Guo, Y.; Yu, D.; Tsai, E.J.; Woodgett, J.; Gao, E.; et al. Cardiac Fibroblast Glycogen Synthase Kinase-3β Regulates Ventricular Remodeling and Dysfunction in Ischemic Heart. Circulation 2014, 130, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gupte, M.; Umbarkar, P.; Singh, A.P.; Sui, J.Y.; Force, T.; Lal, H. Entanglement of GSK-3β, β-Catenin and TGF-Β1 Signaling Network to Regulate Myocardial Fibrosis. J. Mol. Cell Cardiol. 2017, 110, 109–120. [Google Scholar] [CrossRef]
- Wu, X.; Sagave, J.; Rutkovskiy, A.; Haugen, F.; Baysa, A.; Nygård, S.; Czibik, G.; Dahl, C.P.; Gullestad, L.; Vaage, J.; et al. Expression of Bone Morphogenetic Protein 4 and Its Receptors in the Remodeling Heart. Life Sci. 2014, 97, 145–154. [Google Scholar] [CrossRef]
- Jin, Y.; Cheng, X.; Lu, J.; Li, X. Exogenous BMP-7 Facilitates the Recovery of Cardiac Function after Acute Myocardial Infarction through Counteracting TGF-β1 Signaling Pathway. Tohoku J. Exp. Med. 2018, 244, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, P.; Li, D.; Zhao, Q.; Cai, M.; Wu, Z.; Shi, Y.; Su, L. Gsα Deficiency Facilitates Cardiac Remodeling via CREB/ Bmp10-Mediated Signaling. Cell Death Discov. 2021, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, A.; Li, L.; Zhao, G.; Jia, J.; Wang, K.; Ge, J.; Zou, Y. Up-Regulation of BMP-2 Antagonizes TGF-Β1/ROCK-Enhanced Cardiac Fibrotic Signalling through Activation of Smurf1/Smad6 Complex. J. Cell. Mol. Med. 2012, 16, 2301–2310. [Google Scholar] [CrossRef] [PubMed]
- Salido-Medina, A.B.; Gil, A.; Expósito, V.; Martínez, F.; Redondo, J.M.; Hurlé, M.A.; Nistal, J.F.; García, R. BMP7-Based Peptide Agonists of BMPR1A Protect the Left Ventricle against Pathological Remodeling Induced by Pressure Overload. Biomed. Pharmacother. 2022, 149, 112910. [Google Scholar] [CrossRef]
- Morine, K.J.; Qiao, X.; York, S.; Natov, P.S.; Paruchuri, V.; Zhang, Y.; Aronovitz, M.J.; Karas, R.H.; Kapur, N.K. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure. Circulation 2018, 138, 513–526. [Google Scholar] [CrossRef]
- Tang, N.; Rao, S.; Ying, Y.; Huang, Y. New Insights into BMP9 Signaling in Organ Fibrosis. Eur. J. Pharmacol. 2020, 882, 173291. [Google Scholar] [CrossRef]
- Chen, R.-R.; Fan, X.-H.; Chen, G.; Zeng, G.-W.; Xue, Y.-G.; Liu, X.-T.; Wang, C.-Y. Irisin Attenuates Angiotensin II-Induced Cardiac Fibrosis via Nrf2 Mediated Inhibition of ROS/ TGFβ1/Smad2/3 Signaling Axis. Chem. Biol. Interact. 2019, 302, 11–21. [Google Scholar] [CrossRef]
- Cucoranu, I.; Clempus, R.; Dikalova, A.; Phelan, P.J.; Ariyan, S.; Dikalov, S.; Sorescu, D. NAD(P)H Oxidase 4 Mediates Transforming Growth Factor-Β1–Induced Differentiation of Cardiac Fibroblasts Into Myofibroblasts. Circ. Res. 2005, 97, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Liu, G.-S.; Dusting, G.J.; Chan, E.C. NADPH Oxidase-Dependent Redox Signaling in TGF-β-Mediated Fibrotic Responses. Redox Biol. 2014, 2, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Uribe, A.P.; Gómez-Sierra, T.; Aparicio-Trejo, O.E.; Orozco-Ibarra, M.; Pedraza-Chaverri, J. Backstage Players of Fibrosis: NOX4, MTOR, HDAC, and S1P; Companions of TGF-β. Cell Signal. 2021, 87, 110123. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, D.; Chen, S.; Chen, Z.; Zhao, J. New Insights into the Functions of MicroRNAs in Cardiac Fibrosis: From Mechanisms to Therapeutic Strategies. Genes 2022, 13, 1390. [Google Scholar] [CrossRef]
- Xue, R.; Tan, W.; Wu, Y.; Dong, B.; Xie, Z.; Huang, P.; He, J.; Dong, Y.; Liu, C. Role of Exosomal MiRNAs in Heart Failure. Front. Cardiovasc. Med. 2020, 7, 592412. [Google Scholar] [CrossRef]
- Pontén, A.; Li, X.; Thorén, P.; Aase, K.; Sjöblom, T.; Östman, A.; Eriksson, U. Transgenic Overexpression of Platelet-Derived Growth Factor-C in the Mouse Heart Induces Cardiac Fibrosis, Hypertrophy, and Dilated Cardiomyopathy. Am. J. Pathol. 2003, 163, 673–682. [Google Scholar] [CrossRef]
- Gallini, R.; Lindblom, P.; Bondjers, C.; Betsholtz, C.; Andrae, J. PDGF-A and PDGF-B Induces Cardiac Fibrosis in Transgenic Mice. Exp. Cell Res. 2016, 349, 282–290. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, W.; Meng, W.; Zhao, T.; Chen, Y.; Ahokas, R.A.; Liu, H.; Sun, Y. Platelet-Derived Growth Factor Blockade on Cardiac Remodeling Following Infarction. Mol. Cell Biochem. 2014, 397, 295–304. [Google Scholar] [CrossRef]
- Zhao, T.; Zhao, W.; Chen, Y.; Li, V.S.; Meng, W.; Sun, Y. Platelet-Derived Growth Factor-D Promotes Fibrogenesis of Cardiac Fibroblasts. Am. J. Physiol. -Heart Circ. Physiol. 2013, 304, H1719–H1726. [Google Scholar] [CrossRef] [Green Version]
- Zymek, P.; Bujak, M.; Chatila, K.; Cieslak, A.; Thakker, G.; Entman, M.L.; Frangogiannis, N.G. The Role of Platelet-Derived Growth Factor Signaling in Healing Myocardial Infarcts. J. Am. Coll. Cardiol. 2006, 48, 2315–2323. [Google Scholar] [CrossRef] [Green Version]
- Klinkhammer, B.M.; Floege, J.; Boor, P. PDGF in Organ Fibrosis. Mol. Asp. Med. 2018, 62, 44–62. [Google Scholar] [CrossRef]
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; et al. FGF/FGFR Signaling in Health and Disease. Sig. Transduct. Target Ther. 2020, 5, 181. [Google Scholar] [CrossRef]
- Khosravi, F.; Ahmadvand, N.; Bellusci, S.; Sauer, H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front. Cell Dev. Biol. 2021, 9, 672935. [Google Scholar] [CrossRef]
- Stevens, K.R.; Rolle, M.W.; Minami, E.; Ueno, S.; Nourse, M.B.; Virag, J.I.; Reinecke, H.; Murry, C.E. Chemical Dimerization of Fibroblast Growth Factor Receptor-1 Induces Myoblast Proliferation, Increases Intracardiac Graft Size, and Reduces Ventricular Dilation in Infarcted Hearts. Hum. Gene Ther. 2007, 18, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Pellieux, C.; Foletti, A.; Peduto, G.; Aubert, J.-F.; Nussberger, J.; Beermann, F.; Brunner, H.-R.; Pedrazzini, T. Dilated Cardiomyopathy and Impaired Cardiac Hypertrophic Response to Angiotensin II in Mice Lacking FGF-2. J. Clin. Investig. 2001, 108, 1843–1851. [Google Scholar] [CrossRef]
- Sun, C.; Tian, X.; Jia, Y.; Yang, M.; Li, Y.; Fernig, D.G. Functions of Exogenous FGF Signals in Regulation of Fibroblast to Myofibroblast Differentiation and Extracellular Matrix Protein Expression. Open Biol. 2022, 12, 210356. [Google Scholar] [CrossRef]
- Rolski, F.; Błyszczuk, P. Complexity of TNF-α Signaling in Heart Disease. J. Clin. Med. 2020, 9, 3267. [Google Scholar] [CrossRef]
- Hamid, T.; Gu, Y.; Ortines, R.V.; Bhattacharya, C.; Wang, G.; Xuan, Y.-T.; Prabhu, S.D. Divergent Tumor Necrosis Factor Receptor-Related Remodeling Responses in Heart Failure: Role of Nuclear Factor-KappaB and Inflammatory Activation. Circulation 2009, 119, 1386–1397. [Google Scholar] [CrossRef]
- Berry, M.F.; Woo, Y.J.; Pirolli, T.J.; Bish, L.T.; Moise, M.A.; Burdick, J.W.; Morine, K.J.; Jayasankar, V.; Gardner, T.J.; Sweeney, H.L. Administration of a Tumor Necrosis Factor Inhibitor at the Time of Myocardial Infarction Attenuates Subsequent Ventricular Remodeling. J. Heart Lung Transplant. 2004, 23, 1061–1068. [Google Scholar] [CrossRef]
- Lindner, D.; Zietsch, C.; Tank, J.; Sossalla, S.; Fluschnik, N.; Hinrichs, S.; Maier, L.; Poller, W.; Blankenberg, S.; Schultheiss, H.-P.; et al. Cardiac Fibroblasts Support Cardiac Inflammation in Heart Failure. Basic Res. Cardiol. 2014, 109, 428. [Google Scholar] [CrossRef]
- Porter, K.; Turner, N.; Oregan, D.; Ball, S. Tumor Necrosis Factor? Induces Human Atrial Myofibroblast Proliferation, Invasion and MMP-9 Secretion: Inhibition by Simvastatin. Cardiovasc. Res. 2004, 64, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Siwik, D.A.; Chang, D.L.-F.; Colucci, W.S. Interleukin-1β and Tumor Necrosis Factor-α Decrease Collagen Synthesis and Increase Matrix Metalloproteinase Activity in Cardiac Fibroblasts In Vitro. Circ. Res. 2000, 86, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.E.; Kandalam, V.; Chakrabarti, S.; Wang, X.; Penninger, J.M.; Davidge, S.T.; Oudit, G.Y.; Kassiri, Z. Tumor Necrosis Factor Induces Matrix Metalloproteinases in Cardiomyocytes and Cardiofibroblasts Differentially via Superoxide Production in a PI3Kγ-Dependent Manner. Am. J. Physiol. Cell Physiol. 2010, 298, C679–C692. [Google Scholar] [CrossRef]
- Fearon, W.F.; Fearon, D.T. Inflammation and Cardiovascular Disease: Role of the Interleukin-1 Receptor Antagonist. Circulation 2008, 117, 2577–2579. [Google Scholar] [CrossRef] [Green Version]
- Abbate, A.; Salloum, F.N.; Van Tassell, B.W.; Vecile, E.; Toldo, S.; Seropian, I.; Mezzaroma, E.; Dobrina, A. Alterations in the Interleukin-1/Interleukin-1 Receptor Antagonist Balance Modulate Cardiac Remodeling Following Myocardial Infarction in the Mouse. PLoS ONE 2011, 6, e27923. [Google Scholar] [CrossRef] [Green Version]
- Vromman, A.; Ruvkun, V.; Shvartz, E.; Wojtkiewicz, G.; Santos Masson, G.; Tesmenitsky, Y.; Folco, E.; Gram, H.; Nahrendorf, M.; Swirski, F.K.; et al. Stage-Dependent Differential Effects of Interleukin-1 Isoforms on Experimental Atherosclerosis. Eur. Heart J. 2019, 40, 2482–2491. [Google Scholar] [CrossRef]
- Vianello, E.; Dozio, E.; Tacchini, L.; Frati, L.; Corsi Romanelli, M.M. ST2/IL-33 Signaling in Cardiac Fibrosis. Int. J. Biochem. Cell Biol. 2019, 116, 105619. [Google Scholar] [CrossRef]
- Homsak, E.; Gruson, D. Soluble ST2: A Complex and Diverse Role in Several Diseases. Clin. Chim. Acta 2020, 507, 75–87. [Google Scholar] [CrossRef]
- Karpiński, L.; Płaksej, R.; Kosmala, W.; Witkowska, M. Serum Levels of Interleukin-6, Interleukin-10 and C-Reactive Protein in Relation to Left Ventricular Function in Patients with Myocardial Infarction Treated with Primary Angioplasty. Kardiol. Pol. 2008, 66, 1279–1285. [Google Scholar]
- Jing, R.; Long, T.-Y.; Pan, W.; Li, F.; Xie, Q.-Y. IL-6 Knockout Ameliorates Myocardial Remodeling after Myocardial Infarction by Regulating Activation of M2 Macrophages and Fibroblast Cells. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6283–6291. [Google Scholar] [CrossRef]
- Zhao, L.; Cheng, G.; Jin, R.; Afzal, M.R.; Samanta, A.; Xuan, Y.-T.; Girgis, M.; Elias, H.K.; Zhu, Y.; Davani, A.; et al. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction. Circ. Res. 2016, 118, 1918–1929. [Google Scholar] [CrossRef]
- Wang, J.-H.; Zhao, L.; Pan, X.; Chen, N.-N.; Chen, J.; Gong, Q.-L.; Su, F.; Yan, J.; Zhang, Y.; Zhang, S.-H. Hypoxia-Stimulated Cardiac Fibroblast Production of IL-6 Promotes Myocardial Fibrosis via the TGF-Β1 Signaling Pathway. Lab. Investig. 2016, 96, 839–852. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Wang, G.; Zheng, N.; Cheng, W.; Ouyang, K.; Lin, H.; Liao, Y.; Liu, J. HIMF (Hypoxia-Induced Mitogenic Factor)-IL (Interleukin)-6 Signaling Mediates Cardiomyocyte-Fibroblast Crosstalk to Promote Cardiac Hypertrophy and Fibrosis. Hypertension 2019, 73, 1058–1070. [Google Scholar] [CrossRef]
- Jorde, U.P. Suppression of the Renin–Angiotensin–Aldosterone System in Chronic Heart Failure: Choice of Agents and Clinical Impact. Cardiol. Rev. 2006, 14, 81–87. [Google Scholar] [CrossRef]
- Froogh, G.; Pinto, J.T.; Le, Y.; Kandhi, S.; Aleligne, Y.; Huang, A.; Sun, D. Chymase-Dependent Production of Angiotensin II: An Old Enzyme in Old Hearts. Am. J. Physiol.-Heart Circ. Physiol. 2017, 312, H223–H231. [Google Scholar] [CrossRef]
- Li, L.; Fan, D.; Wang, C.; Wang, J.-Y.; Cui, X.-B.; Wu, D.; Zhou, Y.; Wu, L.-L. Angiotensin II Increases Periostin Expression via Ras/P38 MAPK/CREB and ERK1/2/TGF-Β1 Pathways in Cardiac Fibroblasts. Cardiovasc. Res. 2011, 91, 80–89. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K. Tenascin-C in Cardiovascular Tissue Remodeling: From Development to Inflammation and Repair. Circ. J. 2012, 76, 2513–2520. [Google Scholar] [CrossRef] [PubMed]
- Podesser, B.K.; Kreibich, M.; Dzilic, E.; Santer, D.; Förster, L.; Trojanek, S.; Abraham, D.; Krššák, M.; Klein, K.U.; Tretter, E.V.; et al. Tenascin-C Promotes Chronic Pressure Overload-Induced Cardiac Dysfunction, Hypertrophy and Myocardial Fibrosis. J. Hypertens. 2018, 36, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Imanaka-Yoshida, K.; Tawara, I.; Yoshida, T. Tenascin-C in Cardiac Disease: A Sophisticated Controller of Inflammation, Repair, and Fibrosis. Am. J. Physiol. Cell Physiol. 2020, 319, C781–C796. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, H.; Yin, L.; Zhang, W.; Tang, Y.; Wang, X.; Huang, C. The Paired-related Homeobox Protein 1 Promotes Cardiac Fibrosis via the Twist1-Prrx1-tenascin-C Loop. Cell Biol. Int. 2022, 47, 167–177. [Google Scholar] [CrossRef]
- Sato, H.; Watanabe, A.; Tanaka, T.; Koitabashi, N.; Arai, M.; Kurabayashi, M.; Yokoyama, T. Regulation of the Human Tumor Necrosis Factor-α Promoter by Angiotensin II and Lipopolysaccharide in Cardiac Fibroblasts: Different Cis-Acting Promoter Sequences and Transcriptional Factors. J. Mol. Cell. Cardiol. 2003, 35, 1197–1205. [Google Scholar] [CrossRef]
- AlQudah, M.; Hale, T.M.; Czubryt, M.P. Targeting the Renin-Angiotensin-Aldosterone System in Fibrosis. Matrix Biol. 2020, 91–92, 92–108. [Google Scholar] [CrossRef]
- Sano, M.; Fukuda, K.; Sato, T.; Kawaguchi, H.; Suematsu, M.; Matsuda, S.; Koyasu, S.; Matsui, H.; Yamauchi-Takihara, K.; Harada, M.; et al. ERK and P38 MAPK, but Not NF-ΚB, Are Critically Involved in Reactive Oxygen Species–Mediated Induction of IL-6 by Angiotensin II in Cardiac Fibroblasts. Circ. Res. 2001, 89, 661–669. [Google Scholar] [CrossRef]
- Chen, J.; Mehta, J.L. Angiotensin II-Mediated Oxidative Stress and Procollagen-1 Expression in Cardiac Fibroblasts: Blockade by Pravastatin and Pioglitazone. Am. J. Physiol.-Heart Circ. Physiol. 2006, 291, H1738–H1745. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Guo, S.; Chu, S.; Gao, P.; Zhu, D.; Niu, W.; Jia, N. Apocynin Attenuates Oxidative Stress and Cardiac Fibrosis in Angiotensin II-Induced Cardiac Diastolic Dysfunction in Mice. Acta Pharmacol. Sin. 2013, 34, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; He, W.; Guo, L.; Zhang, Y.; Li, H.; Han, S.; Shen, D. The ACE2-Ang (1–7)-Mas Receptor Axis Attenuates Cardiac Remodeling and Fibrosis in Post-Myocardial Infarction. Mol. Med. Rep. 2017, 16, 1973–1981. [Google Scholar] [CrossRef] [Green Version]
- Varagic, J.; Ahmad, S.; Nagata, S.; Ferrario, C.M. ACE2: Angiotensin II/Angiotensin-(1–7) Balance in Cardiac and Renal Injury. Curr. Hypertens. Rep. 2014, 16, 420. [Google Scholar] [CrossRef] [PubMed]
- Simões e Silva, A.C.; Teixeira, M.M. ACE Inhibition, ACE2 and Angiotensin-(1-7) Axis in Kidney and Cardiac Inflammation and Fibrosis. Pharmacol. Res. 2016, 107, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Feng, J. Cyclooxygenase Mediates Cardioprotection of Angiotensin-(1-7) against Ischemia/Reperfusion-Induced Injury through the Inhibition of Oxidative Stress. Mol. Med. Rep. 2011, 4, 1145–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, R.-L.; Lin, J.-W.; Kuo, W.-W.; Hsieh, D.J.-Y.; Yeh, Y.-L.; Shen, C.-Y.; Day, C.-H.; Ho, T.-J.; Viswanadha, V.P.; Huang, C.-Y. Angiotensin-(1-7) Attenuated Long-Term Hypoxia-Stimulated Cardiomyocyte Apoptosis by Inhibiting HIF-1 α Nuclear Translocation via Mas Receptor Regulation. Growth Factors 2016, 34, 11–18. [Google Scholar] [CrossRef]
- Travers, J.G.; Kamal, F.A.; Valiente-Alandi, I.; Nieman, M.L.; Sargent, M.A.; Lorenz, J.N.; Molkentin, J.D.; Blaxall, B.C. Pharmacological and Activated Fibroblast Targeting of Gβγ-GRK2 After Myocardial Ischemia Attenuates Heart Failure Progression. J. Am. Coll. Cardiol. 2017, 70, 958–971. [Google Scholar] [CrossRef]
- Bencivenga, L.; Liccardo, D.; Napolitano, C.; Visaggi, L.; Rengo, G.; Leosco, D. β-Adrenergic Receptor Signaling and Heart Failure. Heart Fail. Clin. 2019, 15, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H. Utility of Strain Imaging in Conjunction with Heart Failure Stage Classification for Heart Failure Patient Management. J. Echocardiogr. 2019, 17, 17–24. [Google Scholar] [CrossRef]
- Hassan, S.; Barrett, C.J.; Crossman, D.J. Imaging Tools for Assessment of Myocardial Fibrosis in Humans: The Need for Greater Detail. Biophys. Rev. 2020, 12, 969–987. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhang, L.; Tian, F.; Wang, B.; Xie, Y.; Sun, W.; Sun, Z.; Yang, Y.; Lv, Q.; et al. Assessment of Myocardial Fibrosis Using Two-Dimensional and Three-Dimensional Speckle Tracking Echocardiography in Dilated Cardiomyopathy With Advanced Heart Failure. J. Card. Fail. 2021, 27, 651–661. [Google Scholar] [CrossRef]
- Karamitsos, T.D.; Arvanitaki, A.; Karvounis, H.; Neubauer, S.; Ferreira, V.M. Myocardial Tissue Characterization and Fibrosis by Imaging. JACC Cardiovasc. Imaging 2020, 13, 1221–1234. [Google Scholar] [CrossRef]
- Iyer, N.R.; Le, T.-T.; Kui, M.S.L.; Tang, H.-C.; Chin, C.-T.; Phua, S.-K.; Bryant, J.A.; Pua, C.-J.; Ang, B.; Toh, D.-F.; et al. Markers of Focal and Diffuse Nonischemic Myocardial Fibrosis Are Associated With Adverse Cardiac Remodeling and Prognosis in Patients With Hypertension: The REMODEL Study. Hypertension 2022, 79, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Baues, M.; Dasgupta, A.; Ehling, J.; Prakash, J.; Boor, P.; Tacke, F.; Kiessling, F.; Lammers, T. Fibrosis Imaging: Current Concepts and Future Directions. Adv. Drug Deliv. Rev. 2017, 121, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Balogh, V.; MacAskill, M.G.; Hadoke, P.W.F.; Gray, G.A.; Tavares, A.A.S. Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-Invasive Imaging of Hypertensive Heart Failure. Front. Cardiovasc. Med. 2021, 8, 719031. [Google Scholar] [CrossRef] [PubMed]
- Visse, R.; Nagase, H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyon, A.; Garrigue, P.; Fernandez, S.; Hubert, F.; Balasse, L.; Brige, P.; Hache, G.; Nail, V.; Blot-Chabaud, M.; Dignat-George, F.; et al. Comparison of a New 68Ga-Radiolabelled PET Imaging Agent SCD146 and RGD Peptide for In Vivo Evaluation of Angiogenesis in Mouse Model of Myocardial Infarction. Cells 2021, 10, 2305. [Google Scholar] [CrossRef] [PubMed]
- Désogère, P.; Montesi, S.B.; Caravan, P. Molecular Probes for Imaging Fibrosis and Fibrogenesis. Chem. Eur. J. 2019, 25, 1128–1141. [Google Scholar] [CrossRef]
- González, A.; Richards, A.M.; de Boer, R.A.; Thum, T.; Arfsten, H.; Hülsmann, M.; Falcao-Pires, I.; Díez, J.; Foo, R.S.Y.; Chan, M.Y.; et al. Cardiac Remodelling—Part 1: From Cells and Tissues to Circulating Biomarkers. A Review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2022, 24, 927–943. [Google Scholar] [CrossRef]
- López, B.; González, A.; Ravassa, S.; Beaumont, J.; Moreno, M.U.; San José, G.; Querejeta, R.; Díez, J. Circulating Biomarkers of Myocardial Fibrosis. J. Am. Coll. Cardiol. 2015, 65, 2449–2456. [Google Scholar] [CrossRef] [Green Version]
- Querejeta, R.; López, B.; González, A.; Sánchez, E.; Larman, M.; Martínez Ubago, J.L.; Díez, J. Increased Collagen Type I Synthesis in Patients With Heart Failure of Hypertensive Origin: Relation to Myocardial Fibrosis. Circulation 2004, 110, 1263–1268. [Google Scholar] [CrossRef] [Green Version]
- Löfsjögård, J.; Kahan, T.; Díez, J.; López, B.; González, A.; Ravassa, S.; Mejhert, M.; Edner, M.; Persson, H. Usefulness of Collagen Carboxy-Terminal Propeptide and Telopeptide to Predict Disturbances of Long-Term Mortality in Patients ≥60 Years With Heart Failure and Reduced Ejection Fraction. Am. J. Cardiol. 2017, 119, 2042–2048. [Google Scholar] [CrossRef]
- Ravassa, S.; Trippel, T.; Bach, D.; Bachran, D.; González, A.; López, B.; Wachter, R.; Hasenfuss, G.; Delles, C.; Dominiczak, A.F.; et al. Biomarker-Based Phenotyping of Myocardial Fibrosis Identifies Patients with Heart Failure with Preserved Ejection Fraction Resistant to the Beneficial Effects of Spironolactone: Results from the Aldo-DHF Trial: Myocardial Fibrosis and Effect of Spironolactone in HFpEF. Eur. J. Heart Fail. 2018, 20, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Raafs, A.G.; Verdonschot, J.A.J.; Henkens, M.T.H.M.; Adriaans, B.P.; Wang, P.; Derks, K.; Abdul Hamid, M.A.; Knackstedt, C.; Empel, V.P.M.; Díez, J.; et al. The Combination of Carboxy-terminal Propeptide of Procollagen Type I Blood Levels and Late Gadolinium Enhancement at Cardiac Magnetic Resonance Provides Additional Prognostic Information in Idiopathic Dilated Cardiomyopathy—A Multilevel Assessment of Myocardial Fibrosis in Dilated Cardiomyopathy. Eur. J. Heart Fail. 2021, 23, 933–944. [Google Scholar] [CrossRef]
- Osokina, A.; Karetnikova, V.; Polikutina, O.; Ivanova, A.; Gruzdeva, O.; Dyleva, Y.; Kokov, A.; Brel, N.; Pecherina, T.; Barbarash, O. Prognostic Potential of Cardiac Structural and Functional Parameters and N-Terminal Propeptide of Type III Procollagen in Predicting Cardiac Fibrosis One Year after Myocardial Infarction with Preserved Left Ventricular Ejection Fraction. Aging 2021, 13, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Revnic, R.; Cojan-Minzat, B.O.; Zlibut, A.; Orzan, R.-I.; Agoston, R.; Muresan, I.D.; Horvat, D.; Cionca, C.; Chis, B.; Agoston-Coldea, L. The Role of Circulating Collagen Turnover Biomarkers and Late Gadolinium Enhancement in Patients with Non-Ischemic Dilated Cardiomyopathy. Diagnostics 2022, 12, 1435. [Google Scholar] [CrossRef] [PubMed]
- van der Slot-Verhoeven, A.J.; van Dura, E.A.; Attema, J.; Blauw, B.; DeGroot, J.; Huizinga, T.W.J.; Zuurmond, A.-M.; Bank, R.A. The Type of Collagen Cross-Link Determines the Reversibility of Experimental Skin Fibrosis. Biochim. Et Biophys. Acta (BBA)—Mol. Basis Dis. 2005, 1740, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Savvatis, K.; Kang, J.S.; Fan, P.; Zhong, H.; Schwartz, K.; Barry, V.; Mikels-Vigdal, A.; Karpinski, S.; Kornyeyev, D.; et al. Targeting LOXL2 for Cardiac Interstitial Fibrosis and Heart Failure Treatment. Nat. Commun. 2016, 7, 13710. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tang, K.; Tianbao, X.; Wang, J.; Yang, J.; Li, D. Increased Serum Lysyl Oxidase-like 2 Levels Correlate with the Degree of Left Atrial Fibrosis in Patients with Atrial Fibrillation. Biosci. Rep. 2017, 37, BSR20171332. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a Novel Biomarker for Disease Diagnosis and a Target for Therapy (Review). Int. J. Mol. Med. 2018, 41, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Gehlken, C.; Suthahar, N.; Meijers, W.C.; de Boer, R.A. Galectin-3 in Heart Failure. Heart Fail. Clin. 2018, 14, 75–92. [Google Scholar] [CrossRef]
- Szadkowska, I.; Wlazeł, R.N.; Migała, M.; Szadkowski, K.; Zielińska, M.; Paradowski, M.; Pawlicki, L. The Association between Galectin-3 and Clinical Parameters in Patients with Fi Rst Acute Myocardial Infarction Treated with Primary Percutaneous Coronary Angioplasty. Cardiol. J. 2013, 20, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Rubiś, P.; Holcman, K.; Dziewięcka, E.; Wiśniowska-Śmialek, S.; Karabinowska, A.; Szymonowicz, M.; Khachatryan, L.; Wypasek, E.; Garlitski, A.; Gackowski, A.; et al. Relationships between Circulating Galectin-3, Extracellular Matrix Fibrosis and Outcomes in Dilated Cardiomyopathy. Adv. Clin. Exp. Med. 2021, 30, 245–253. [Google Scholar] [CrossRef]
- Dudek, M.; Kałużna-Oleksy, M.; Migaj, J.; Straburzyńska-Migaj, E. Clinical Value of Soluble ST2 in Cardiology. Adv. Clin. Exp. Med. 2020, 29, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, C.; Romuk, E.; Nowalany-Kozielska, E.; Jacheć, W. Serum Galectin-3 and ST2 as Predictors of Unfavorable Outcome in Stable Dilated Cardiomyopathy Patients. Hell. J. Cardiol. 2017, 58, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Bayes-Genis, A.; Zhang, Y.; Ky, B. ST2 and Patient Prognosis in Chronic Heart Failure. Am. J. Cardiol. 2015, 115, 64B–69B. [Google Scholar] [CrossRef] [PubMed]
- Hartopo, A.B.; Sukmasari, I.; Puspitawati, I. The Utility of Point of Care Test for Soluble ST2 in Predicting Adverse Cardiac Events during Acute Care of ST-Segment Elevation Myocardial Infarction. Cardiol. Res. Pract. 2018, 2018, 3048941. [Google Scholar] [CrossRef]
- Schulte, C.; Barwari, T.; Joshi, A.; Theofilatos, K.; Zampetaki, A.; Barallobre-Barreiro, J.; Singh, B.; Sörensen, N.A.; Neumann, J.T.; Zeller, T.; et al. Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury. Circ. Res. 2019, 125, 328–340. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, J.; Tuazon, J.P.; Borlongan, C.V.; Yu, G. MicroRNA-133a and Myocardial Infarction. Cell Transpl. 2019, 28, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, F.; Zhang, Y.-L.; Yang, X.-C. Relationship between Circulating MiRNA-21, Atrial Fibrosis, and Atrial Fibrillation in Patients with Atrial Enlargement. Ann. Palliat. Med. 2021, 10, 12742–12749. [Google Scholar] [CrossRef]
- Kuwahara, F.; Kai, H.; Tokuda, K.; Kai, M.; Takeshita, A.; Egashira, K.; Imaizumi, T. Transforming Growth Factor-β Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats. Circulation 2002, 106, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Frantz, S.; Hu, K.; Adamek, A.; Wolf, J.; Sallam, A.; KG Maier, S.; Lonning, S.; Ling, H.; Ertl, G.; Bauersachs, J. Transforming Growth Factor Beta Inhibition Increases Mortality and Left Ventricular Dilatation after Myocardial Infarction. Basic Res. Cardiol. 2008, 103, 485–492. [Google Scholar] [CrossRef]
- Engebretsen, K.V.T.; Skårdal, K.; Bjørnstad, S.; Marstein, H.S.; Skrbic, B.; Sjaastad, I.; Christensen, G.; Bjørnstad, J.L.; Tønnessen, T. Attenuated Development of Cardiac Fibrosis in Left Ventricular Pressure Overload by SM16, an Orally Active Inhibitor of ALK5. J. Mol. Cell. Cardiol. 2014, 76, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Takemura, G.; Kosai, K.; Li, Y.; Takahashi, T.; Esaki, M.; Yuge, K.; Miyata, S.; Maruyama, R.; Mikami, A.; et al. Postinfarction Gene Therapy Against Transforming Growth Factor-β Signal Modulates Infarct Tissue Dynamics and Attenuates Left Ventricular Remodeling and Heart Failure. Circulation 2005, 111, 2430–2437. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.M.; Padilla, C.M.; McLaughlin, S.R.; Mathes, A.; Ziemek, J.; Goummih, S.; Nakerakanti, S.; York, M.; Farina, G.; Whitfield, M.L.; et al. Fresolimumab Treatment Decreases Biomarkers and Improves Clinical Symptoms in Systemic Sclerosis Patients. J. Clin. Investig. 2015, 125, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Isaka, Y. Targeting TGF-β Signaling in Kidney Fibrosis. Int. J. Mol. Sci. 2018, 19, 2532. [Google Scholar] [CrossRef] [Green Version]
- Mahdy, M.A.A.; Warita, K.; Hosaka, Y.Z. Neutralization of Transforming Growth Factor (TGF)-Β1 Activity Reduced Fibrosis and Enhanced Regeneration of Glycerol-Injured Rat Muscle. J. Vet. Med. Sci. 2020, 82, 168–171. [Google Scholar] [CrossRef] [Green Version]
- Mitra, M.S.; Lancaster, K.; Adedeji, A.O.; Palanisamy, G.S.; Dave, R.A.; Zhong, F.; Holdren, M.S.; Turley, S.J.; Liang, W.-C.; Wu, Y.; et al. A Potent Pan-TGFβ Neutralizing Monoclonal Antibody Elicits Cardiovascular Toxicity in Mice and Cynomolgus Monkeys. Toxicol. Sci. 2020, 175, 24–34. [Google Scholar] [CrossRef]
- Aimo, A.; Spitaleri, G.; Panichella, G.; Lupón, J.; Emdin, M.; Bayes-Genis, A. Pirfenidone as a Novel Cardiac Protective Treatment. Heart Fail Rev. 2022, 27, 525–532. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Chen, J.; Zhao, S.; Li, H. Pirfenidone Attenuates Cardiac Fibrosis in a Mouse Model of TAC-Induced Left Ventricular Remodeling by Suppressing NLRP3 Inflammasome Formation. Cardiology 2013, 126, 1–11. [Google Scholar] [CrossRef]
- Yamazaki, T.; Yamashita, N.; Izumi, Y.; Nakamura, Y.; Shiota, M.; Hanatani, A.; Shimada, K.; Muro, T.; Iwao, H.; Yoshiyama, M. The Antifibrotic Agent Pirfenidone Inhibits Angiotensin II-Induced Cardiac Hypertrophy in Mice. Hypertens. Res. 2012, 35, 34–40. [Google Scholar] [CrossRef]
- Yamagami, K.; Oka, T.; Wang, Q.; Ishizu, T.; Lee, J.-K.; Miwa, K.; Akazawa, H.; Naito, A.T.; Sakata, Y.; Komuro, I. Pirfenidone Exhibits Cardioprotective Effects by Regulating Myocardial Fibrosis and Vascular Permeability in Pressure-Overloaded Hearts. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H512–H522. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Han, R.; Kang, L.; Wang, J.; Gao, Y.; Li, Y.; He, J.; Tian, J. Pirfenidone Controls the Feedback Loop of the AT1R/P38 MAPK/Renin-Angiotensin System Axis by Regulating Liver X Receptor-α in Myocardial Infarction-Induced Cardiac Fibrosis. Sci. Rep. 2017, 7, 40523. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Ding, C.; Wilson, E.; Marcus, G.M.; Olgin, J.E. Pirfenidone Mitigates Left Ventricular Fibrosis and Dysfunction after Myocardial Infarction and Reduces Arrhythmias. Heart Rhythm 2010, 7, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Altarejo Marin, T.; Machado Bertassoli, B.; Alves de Siqueira de Carvalho, A.; Feder, D. The Use of Aliskiren as an Antifibrotic Drug in Experimental Models: A Systematic Review. Drug Dev. Res. 2020, 81, 114–126. [Google Scholar] [CrossRef]
- Zhi, H.; Luptak, I.; Alreja, G.; Shi, J.; Guan, J.; Metes-Kosik, N.; Joseph, J. Effects of Direct Renin Inhibition on Myocardial Fibrosis and Cardiac Fibroblast Function. PLoS ONE 2013, 8, e81612. [Google Scholar] [CrossRef] [PubMed]
- Pantzaris, N.-D.; Karanikolas, E.; Tsiotsios, K.; Velissaris, D. Renin Inhibition with Aliskiren: A Decade of Clinical Experience. J. Clin. Med. 2017, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho Frimm, C.; Sun, Y.; Weber, K.T. Angiotensin II Receptor Blockade and Myocardial Fibrosis of the Infarcted Rat Heart. J. Lab. Clin. Med. 1997, 129, 439–446. [Google Scholar] [CrossRef]
- Castiglioni, L.; Colazzo, F.; Fontana, L.; Colombo, G.I.; Piacentini, L.; Bono, E.; Milano, G.; Paleari, S.; Palermo, A.; Guerrini, U.; et al. Evaluation of Left Ventricle Function by Regional Fractional Area Change (RFAC) in a Mouse Model of Myocardial Infarction Secondary to Valsartan Treatment. PLoS ONE 2015, 10, e0135778. [Google Scholar] [CrossRef]
- Kawano, H.; Toda, G.; Nakamizo, R.; Koide, Y.; Seto, S.; Yano, K. Valsartan Decreases Type I Collagen Synthesis in Patients With Hypertrophic Cardiomyopathy. Circ. J. 2005, 69, 1244–1248. [Google Scholar] [CrossRef] [Green Version]
- Ju, H. Effect of AT1 Receptor Blockade on Cardiac Collagen Remodeling after Myocardial Infarction. Cardiovasc. Res. 1997, 35, 223–232. [Google Scholar] [CrossRef]
- Brilla, C.G.; Matsubara, L.; Weber, K.T. Advanced Hypertensive Heart Disease in Spontaneously Hypertensive Rats: Lisinopril-Mediated Regression of Myocardial Fibrosis. Hypertension 1996, 28, 269–275. [Google Scholar] [CrossRef]
- Ham, O.; Jin, W.; Lei, L.; Huang, H.H.; Tsuji, K.; Huang, M.; Roh, J.; Rosenzweig, A.; Lu, H.A.J. Pathological Cardiac Remodeling Occurs Early in CKD Mice from Unilateral Urinary Obstruction, and Is Attenuated by Enalapril. Sci. Rep. 2018, 8, 16087. [Google Scholar] [CrossRef] [PubMed]
- Dixon, I.M.; Ju, H.; Jassal, D.S.; Peterson, D.J. Effect of Ramipril and Losartan on Collagen Expression in Right and Left Heart after Myocardial Infarction. Mol. Cell Biochem. 1996, 165, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Fogari, R.; Mugellini, A.; Destro, M.; Corradi, L.; Lazzari, P.; Zoppi, A.; Preti, P.; Derosa, G. Losartan and Amlodipine on Myocardial Structure and Function: A Prospective, Randomized, Clinical Trial: Losartan and Diabetic Hypertensive Cardiomyopathy. Diabet. Med. 2012, 29, 24–31. [Google Scholar] [CrossRef] [PubMed]
- fengShibasaki, Y.; Nishiue, T.; Masaki, H.; Tamura, K.; Matsumoto, N.; Mori, Y.; Nishikawa, M.; Matsubara, H.; Iwasaka, T. Impact of the Angiotensin II Receptor Antagonist, Losartan, on Myocardial Fibrosis in Patients with End-Stage Renal Disease: Assessment by Ultrasonic Integrated Backscatter and Biochemical Markers. Hypertens. Res. 2005, 28, 787–795. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, M.; Chen, A.; Baggish, A.L.; Anwaruddin, S.; Krauser, D.G.; Tung, R.; Januzzi, J.L. The Effects of Ejection Fraction on N-Terminal ProBNP and BNP Levels in Patients With Acute CHF: Analysis From the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J. Card. Fail. 2005, 11, S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, A.; Horwich, T.B.; Fonarow, G.C. Comparison of Usefulness of Each of Five Predictors of Mortality and Urgent Transplantation in Patients With Advanced Heart Failure. Am. J. Cardiol. 2010, 106, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Kostis, J. Omapatrilat and Enalapril in Patients with Hypertension: The Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) Trial. Am. J. Hypertens. 2004, 17, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.J. Neprilysin Inhibitors and Bradykinin. Front. Med. 2018, 5, 257. [Google Scholar] [CrossRef] [Green Version]
- Claggett, B.; Packer, M.; McMurray, J.J.V.; Swedberg, K.; Rouleau, J.; Zile, M.R.; Jhund, P.; Lefkowitz, M.; Shi, V.; Solomon, S.D. Estimating the Long-Term Treatment Benefits of Sacubitril–Valsartan. N. Engl. J. Med. 2015, 373, 2289–2290. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Dual Angiotensin Receptor and Neprilysin Inhibition as an Alternative to Angiotensin-converting Enzyme Inhibition in Patients with Chronic Systolic Heart Failure: Rationale for and Design of the Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial (PARADIGM-HF). Eur. J. Heart Fail. 2013, 15, 1062–1073. [Google Scholar] [CrossRef] [Green Version]
- Jhund, P.S.; McMurray, J.J.V. The Neprilysin Pathway in Heart Failure: A Review and Guide on the Use of Sacubitril/Valsartan. Heart 2016, 102, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.D.; Vaduganathan, M.; Claggett, B.L.; Packer, M.; Zile, M.; Swedberg, K.; Rouleau, J.; Pfeffer, M.A.; Desai, A.; Lund, L.H.; et al. Sacubitril/Valsartan Across the Spectrum of Ejection Fraction in Heart Failure. Circulation 2020, 141, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Claggett, B.; Prasad, N.; Li, G.; Volquez, M.; Jering, K.; Cikes, M.; Kovacs, A.; Mullens, W.; Nicolau, J.C.; et al. Impact of Sacubitril/Valsartan Compared With Ramipril on Cardiac Structure and Function After Acute Myocardial Infarction: The PARADISE-MI Echocardiographic Substudy. Circulation 2022, 146, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, N.H.; Jalil, J.; Zainalabidin, S.; Saleh, M.S.M.; Asmadi, A.Y.; Kamisah, Y. Molecular Mechanisms of Sacubitril/Valsartan in Cardiac Remodeling. Front. Pharmacol. 2022, 13, 892460. [Google Scholar] [CrossRef] [PubMed]
- Zile, M.R.; O’Meara, E.; Claggett, B.; Prescott, M.F.; Solomon, S.D.; Swedberg, K.; Packer, M.; McMurray, J.J.V.; Shi, V.; Lefkowitz, M.; et al. Effects of Sacubitril/Valsartan on Biomarkers of Extracellular Matrix Regulation in Patients With HFrEF. J. Am. Coll. Cardiol. 2019, 73, 795–806. [Google Scholar] [CrossRef]
- Solomon, S.D.; Zile, M.; Pieske, B.; Voors, A.; Shah, A.; Kraigher-Krainer, E.; Shi, V.; Bransford, T.; Takeuchi, M.; Gong, J.; et al. The Angiotensin Receptor Neprilysin Inhibitor LCZ696 in Heart Failure with Preserved Ejection Fraction: A Phase 2 Double-Blind Randomised Controlled Trial. Lancet 2012, 380, 1387–1395. [Google Scholar] [CrossRef]
- Wu, M.; Guo, Y.; Wu, Y.; Xu, K.; Lin, L. Protective Effects of Sacubitril/Valsartan on Cardiac Fibrosis and Function in Rats With Experimental Myocardial Infarction Involves Inhibition of Collagen Synthesis by Myocardial Fibroblasts Through Downregulating TGF-Β1/Smads Pathway. Front. Pharmacol. 2021, 12, 696472. [Google Scholar] [CrossRef]
- Kompa, A.R.; Lu, J.; Weller, T.J.; Kelly, D.J.; Krum, H.; von Lueder, T.G.; Wang, B.H. Angiotensin Receptor Neprilysin Inhibition Provides Superior Cardioprotection Compared to Angiotensin Converting Enzyme Inhibition after Experimental Myocardial Infarction. Int. J. Cardiol. 2018, 258, 192–198. [Google Scholar] [CrossRef]
- Burke, R.M.; Lighthouse, J.K.; Mickelsen, D.M.; Small, E.M. Sacubitril/Valsartan Decreases Cardiac Fibrosis in Left Ventricle Pressure Overload by Restoring PKG Signaling in Cardiac Fibroblasts. Circ. Heart Fail. 2019, 12, e005565. [Google Scholar] [CrossRef]
- Ge, Q.; Zhao, L.; Liu, C.; Ren, X.; Yu, Y.; Pan, C.; Hu, Z. LCZ696, an Angiotensin Receptor-Neprilysin Inhibitor, Improves Cardiac Hypertrophy and Fibrosis and Cardiac Lymphatic Remodeling in Transverse Aortic Constriction Model Mice. BioMed. Res. Int. 2020, 2020, 7256862. [Google Scholar] [CrossRef] [PubMed]
- Pfau, D.; Thorn, S.L.; Zhang, J.; Mikush, N.; Renaud, J.M.; Klein, R.; deKemp, R.A.; Wu, X.; Hu, X.; Sinusas, A.J.; et al. Angiotensin Receptor Neprilysin Inhibitor Attenuates Myocardial Remodeling and Improves Infarct Perfusion in Experimental Heart Failure. Sci. Rep. 2019, 9, 5791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutagy, N.E.; Feher, A.; Pfau, D.; Liu, Z.; Guerrera, N.M.; Freeburg, L.A.; Womack, S.J.; Hoenes, A.C.; Zeiss, C.; Young, L.H.; et al. Dual Angiotensin Receptor-Neprilysin Inhibition With Sacubitril/Valsartan Attenuates Systolic Dysfunction in Experimental Doxorubicin-Induced Cardiotoxicity. JACC CardioOncol. 2020, 2, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, J.; Fu, Y.; Ji, H.; Fang, Z.; Zhou, W.; Fan, H.; Zhang, Y.; Liao, Y.; Yang, T.; et al. Sacubitril/Valsartan Reduces Fibrosis and Alleviates High-Salt Diet-Induced HFpEF in Rats. Front. Pharmacol. 2021, 11, 600953. [Google Scholar] [CrossRef]
- Khamis, T.; Alsemeh, A.E.; Abdullah, D.M. Sacubitril/Valsartan (LCZ696) Ameliorates Hyperthyroid-Induced Cardiac Hypertrophy in Male Rats through Modulation of MiR-377, Let-7 b, Autophagy, and Fibrotic Signaling Pathways. Sci. Rep. 2022, 12, 14654. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, X.; Zhang, C.; Zhang, C.; Bu, P. Lcz696 Alleviates Myocardial Fibrosis After Myocardial Infarction Through the SFRP-1/Wnt/β-Catenin Signaling Pathway. Front. Pharmacol. 2021, 12, 724147. [Google Scholar] [CrossRef]
- Gravez, B.; Tarjus, A.; Jaisser, F. Mineralocorticoid Receptor and Cardiac Arrhythmia. Clin. Exp. Pharmacol. Physiol. 2013, 40, 910–915. [Google Scholar] [CrossRef]
- Ibarrola, J.; Garaikoetxea, M.; Garcia-Peña, A.; Matilla, L.; Jover, E.; Bonnard, B.; Cuesta, M.; Fernández-Celis, A.; Jaisser, F.; López-Andrés, N. Beneficial Effects of Mineralocorticoid Receptor Antagonism on Myocardial Fibrosis in an Experimental Model of the Myxomatous Degeneration of the Mitral Valve. Int. J. Mol. Sci. 2020, 21, 5372. [Google Scholar] [CrossRef]
- McDiarmid, A.K.; Swoboda, P.P.; Erhayiem, B.; Bounford, K.A.; Bijsterveld, P.; Tyndall, K.; Fent, G.J.; Garg, P.; Dobson, L.E.; Musa, T.A.; et al. Myocardial Effects of Aldosterone Antagonism in Heart Failure With Preserved Ejection Fraction. J. Am. Heart Assoc. 2020, 9, e011521. [Google Scholar] [CrossRef]
- Nishioka, T.; Suzuki, M.; Onishi, K.; Takakura, N.; Inada, H.; Yoshida, T.; Hiroe, M.; Imanaka-Yoshida, K. Eplerenone Attenuates Myocardial Fibrosis in the Angiotensin II-Induced Hypertensive Mouse: Involvement of Tenascin-C Induced by Aldosterone-Mediated Inflammation. J. Cardiovasc. Pharmacol. 2007, 49, 261–268. [Google Scholar] [CrossRef]
- Arrighetti, N.; Corbo, C.; Evangelopoulos, M.; Pastò, A.; Zuco, V.; Tasciotti, E. Exosome-like Nanovectors for Drug Delivery in Cancer. Curr. Med. Chem. 2019, 26, 6132–6148. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertaud, A.; Joshkon, A.; Heim, X.; Bachelier, R.; Bardin, N.; Leroyer, A.S.; Blot-Chabaud, M. Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis. Int. J. Mol. Sci. 2023, 24, 1756. https://doi.org/10.3390/ijms24021756
Bertaud A, Joshkon A, Heim X, Bachelier R, Bardin N, Leroyer AS, Blot-Chabaud M. Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis. International Journal of Molecular Sciences. 2023; 24(2):1756. https://doi.org/10.3390/ijms24021756
Chicago/Turabian StyleBertaud, Alexandrine, Ahmad Joshkon, Xavier Heim, Richard Bachelier, Nathalie Bardin, Aurélie S. Leroyer, and Marcel Blot-Chabaud. 2023. "Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis" International Journal of Molecular Sciences 24, no. 2: 1756. https://doi.org/10.3390/ijms24021756
APA StyleBertaud, A., Joshkon, A., Heim, X., Bachelier, R., Bardin, N., Leroyer, A. S., & Blot-Chabaud, M. (2023). Signaling Pathways and Potential Therapeutic Strategies in Cardiac Fibrosis. International Journal of Molecular Sciences, 24(2), 1756. https://doi.org/10.3390/ijms24021756