Total Polyunsaturated Fatty Acid Level in Abdominal Adipose Tissue as an Independent Predictor of Recurrence-Free Survival in Women with Ovarian Cancer
Abstract
:1. Introduction
2. Results
2.1. Differences in Fatty Acid Profile between Patients with EOC or Borderline Tumor
2.2. Correlation of PUFA Content among Different Abdominal Adipose Tissues
2.3. Clinical Factors Associated with Recurrence-Free Survival with EOC
2.4. High Level of PUFAs in Abdominal Tissues Associated with Longer RFS
2.5. Polyunsaturated Fatty Acid Content Is an Independent Prognosis Factor for Recurrence-Free Survival
3. Discussion
4. Material and Methods
4.1. Study Population
4.2. Sample Details
4.3. Fatty Acid Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webb, P.M.; Jordan, S.J. Epidemiology of Epithelial Ovarian Cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 41, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of Ovarian Cancer: A Review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aebi, S.; Castiglione, M. Newly and Relapsed Epithelial Ovarian Carcinoma: ESMO Clinical Recommendations for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2009, 20, iv21–iv23. [Google Scholar] [CrossRef]
- Lawrenson, K.; Fonseca, M.A.S.; Liu, A.Y.; Segato Dezem, F.; Lee, J.M.; Lin, X.; Corona, R.I.; Abbasi, F.; Vavra, K.C.; Dinh, H.Q.; et al. A Study of High-Grade Serous Ovarian Cancer Origins Implicates the SOX18 Transcription Factor in Tumor Development. Cell Rep. 2019, 29, 3726–3735.e4. [Google Scholar] [CrossRef] [Green Version]
- Koshiyama, M.; Matsumura, N.; Konishi, I. Subtypes of Ovarian Cancer and Ovarian Cancer Screening. Diagnostics 2017, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Prat, J. Ovarian Carcinomas: Five Distinct Diseases with Different Origins, Genetic Alterations, and Clinicopathological Features. Virchows Arch. 2012, 460, 237–249. [Google Scholar] [CrossRef]
- Perren, T.J.; Swart, A.M.; Pfisterer, J.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; Kurzeder, C.; et al. A Phase 3 Trial of Bevacizumab in Ovarian Cancer. N. Engl. J. Med. 2011, 365, 2484–2496. [Google Scholar] [CrossRef] [Green Version]
- Lokadasan, R.; James, F.V.; Naranayan, G.; Prabhakaran, P.K. Targeted Agents in Epithelial Ovarian Cancer: Review on Emerging Therapies and Future Developments. Ecancermedicalscience 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.-G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
- Ezzati, M.; Abdullah, A.; Shariftabrizi, A.; Hou, J.; Kopf, M.; Stedman, J.K.; Samuelson, R.; Shahabi, S. Recent Advancements in Prognostic Factors of Epithelial Ovarian Carcinoma. Int. Sch. Res. Not. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aust, S.; Knogler, T.; Pils, D.; Obermayr, E.; Reinthaller, A.; Zahn, L.; Radlgruber, I.; Mayerhoefer, M.E.; Grimm, C.; Polterauer, S. Skeletal Muscle Depletion and Markers for Cancer Cachexia Are Strong Prognostic Factors in Epithelial Ovarian Cancer. PLoS ONE 2015, 10, e0140403. [Google Scholar] [CrossRef] [PubMed]
- Skírnisdóttir, I.; Sorbe, B. Body Mass Index as a Prognostic Factor in Epithelial Ovarian Cancer and Correlation with Clinico-Pathological Factors. Acta Obstet. Et Gynecol. Scand. 2010, 89, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Schwedhelm, C.; Boeing, H.; Hoffmann, G.; Aleksandrova, K.; Schwingshackl, L. Effect of Diet on Mortality and Cancer Recurrence among Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies. Nutr. Rev. 2016, 74, 737–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, C.A.; Crane, T.E.; Wertheim, B.C.; Neuhouser, M.L.; Li, W.; Snetselaar, L.G.; Basen-Engquist, K.M.; Zhou, Y.; Irwin, M.L. Diet Quality and Survival After Ovarian Cancer: Results From the Women’s Health Initiative. JNCI J. Natl. Cancer Inst. 2014, 106, dju314. [Google Scholar] [CrossRef] [Green Version]
- Playdon, M.C.; Nagle, C.M.; Ibiebele, T.I.; Ferrucci, L.M.; Protani, M.M.; Carter, J.; Hyde, S.E.; Neesham, D.; Nicklin, J.L.; Mayne, S.T.; et al. Pre-Diagnosis Diet and Survival after a Diagnosis of Ovarian Cancer. Br. J. Cancer 2017, 116, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Shen, Y.; Feng, X.; Kong, Y.; Shao, Y.; Meng, J.; Zhang, X.; Yang, G. Deregulation of Lipid Metabolism: The Critical Factors in Ovarian Cancer. Front. Oncol. 2020, 10, 593017. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, S. Fatty Acid Metabolism in Ovarian Cancer: Therapeutic Implications. IJMS 2022, 23, 2170. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chiang, C.-Y.; Daifotis, H.A.; Nieman, K.M.; Fahrmann, J.F.; Lastra, R.R.; Romero, I.L.; Fiehn, O.; Lengyel, E. Adipocyte-Induced FABP4 Expression in Ovarian Cancer Cells Promotes Metastasis and Mediates Carboplatin Resistance. Cancer Res. 2020, 80, 1748–1761. [Google Scholar] [CrossRef] [Green Version]
- Gharpure, K.M.; Pradeep, S.; Sans, M.; Rupaimoole, R.; Ivan, C.; Wu, S.Y.; Bayraktar, E.; Nagaraja, A.S.; Mangala, L.S.; Zhang, X.; et al. FABP4 as a Key Determinant of Metastatic Potential of Ovarian Cancer. Nat. Commun. 2018, 9, 2923. [Google Scholar] [CrossRef]
- Chen, H.-M.; Chen, F.-P.; Yang, K.-C.; Yuan, S.-S. Association of Bone Metastasis With Early-Stage Breast Cancer in Women With and Without Precancer Osteoporosis According to Osteoporosis Therapy Status. JAMA Netw. Open 2019, 2, e190429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Luo, Q.; Halim, A.; Song, G. Targeting Lipid Metabolism of Cancer Cells: A Promising Therapeutic Strategy for Cancer. Cancer Lett. 2017, 401, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Bachmayr-Heyda, A.; Aust, S.; Auer, K.; Meier, S.M.; Schmetterer, K.G.; Dekan, S.; Gerner, C.; Pils, D. Integrative Systemic and Local Metabolomics with Impact on Survival in High-Grade Serous Ovarian Cancer. Clin. Cancer Res. 2017, 23, 2081–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.; Xu, X.; Shi, B.; Zeng, L.; Wang, L.; Wu, X.; Zhu, H. The Positive Predictive Value of Low-Density Lipoprotein for Recurrence-Free Survival in Ovarian Cancer. Int. J. Gynecol. Obs. 2018, 143, 232–238. [Google Scholar] [CrossRef]
- Yam, D.; Ben-Hur, H.; Dgani, R.; Fink, A.; Shani, A.; Berry, E.M. Subcutaneous, Omentum and Tumor Fatty Acid Composition, and Serum Insulin Status in Patients with Benign or Cancerous Ovarian or Endometrial Tumors. Do Tumors Preferentially Utilize Polyunsaturated Fatty Acids? Cancer Lett. 1997, 111, 179–185. [Google Scholar] [CrossRef]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty Acid Composition of Adipose Tissue and Blood in Humans and Its Use as a Biomarker of Dietary Intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef]
- Strawford, A.; Antelo, F.; Christiansen, M.; Hellerstein, M.K. Adipose Tissue Triglyceride Turnover, de Novo Lipogenesis, and Cell Proliferation in Humans Measured with 2H2O. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E577–E588. [Google Scholar] [CrossRef] [Green Version]
- Spalding, K.L.; Bernard, S.; Näslund, E.; Salehpour, M.; Possnert, G.; Appelsved, L.; Fu, K.Y.; Alkass, K.; Druid, H.; Thorell, A.; et al. Impact of Fat Mass and Distribution on Lipid Turnover in Human Adipose Tissue. Nat. Commun. 2017, 8, 15253. [Google Scholar] [CrossRef] [Green Version]
- Arner, P.; Bernard, S.; Salehpour, M.; Possnert, G.; Liebl, J.; Steier, P.; Buchholz, B.A.; Eriksson, M.; Arner, E.; Hauner, H.; et al. Dynamics of Human Adipose Lipid Turnover in Health and Metabolic Disease. Nature 2011, 478, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Garaulet, M.; Hernandez-Morante, J.J.; Lujan, J.; Tebar, F.J.; Zamora, S. Relationship between Fat Cell Size and Number and Fatty Acid Composition in Adipose Tissue from Different Fat Depots in Overweight/Obese Humans. Int. J. Obes. 2006, 30, 899–905. [Google Scholar] [CrossRef]
- Kotronen, A.; Seppänen-Laakso, T.; Westerbacka, J.; Kiviluoto, T.; Arola, J.; Ruskeepää, A.-L.; Yki-Järvinen, H.; Orešič, M. Comparison of Lipid and Fatty Acid Composition of the Liver, Subcutaneous and Intra-Abdominal Adipose Tissue, and Serum. Obesity 2010, 18, 937–944. [Google Scholar] [CrossRef]
- Garaulet, M.; Pérez-Llamas, F.; Pérez-Ayala, M.; Martínez, P.; de Medina, F.S.; Tebar, F.J.; Zamora, S. Site-Specific Differences in the Fatty Acid Composition of Abdominal Adipose Tissue in an Obese Population from a Mediterranean Area: Relation with Dietary Fatty Acids, Plasma Lipid Profile, Serum Insulin, and Central Obesity. Am. J. Clin. Nutr. 2001, 74, 585–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, A.; Meneses, M.E.; Pérez-Martínez, P.; Delgado-Lista, J.; Rangel-Zúñiga, O.A.; Marín, C.; Almadén, Y.; Yubero-Serrano, E.M.; González-Guardia, L.; Fuentes, F.; et al. Dietary Fat Modifies Lipid Metabolism in the Adipose Tissue of Metabolic Syndrome Patients. Genes Nutr. 2014, 9, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, M.M. Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Trivanović, D.; Vignjević Petrinović, S.; Okić Djordjević, I.; Kukolj, T.; Bugarski, D.; Jauković, A. Adipogenesis in Different Body Depots and Tumor Development. Front. Cell Dev. Biol. 2020, 8, 571648. [Google Scholar] [CrossRef] [PubMed]
- Belligoli, A.; Compagnin, C.; Sanna, M.; Favaretto, F.; Fabris, R.; Busetto, L.; Foletto, M.; Dal Prà, C.; Serra, R.; Prevedello, L.; et al. Characterization of Subcutaneous and Omental Adipose Tissue in Patients with Obesity and with Different Degrees of Glucose Impairment. Sci. Rep. 2019, 9, 11333. [Google Scholar] [CrossRef] [Green Version]
- May, T.; Comeau, R.; Sun, P.; Kotsopoulos, J.; Narod, S.A.; Rosen, B.; Ghatage, P. A Comparison of Survival Outcomes in Advanced Serous Ovarian Cancer Patients Treated With Primary Debulking Surgery Versus Neoadjuvant Chemotherapy. Int. J. Gynecol. Cancer 2017, 27, 668–674. [Google Scholar] [CrossRef]
- Foong, K.W.; Bolton, H. Obesity and Ovarian Cancer Risk: A Systematic Review. Post Reprod Health 2017, 23, 183–198. [Google Scholar] [CrossRef]
- Pavelka, J.C.; Brown, R.S.; Karlan, B.Y.; Cass, I.; Leuchter, R.S.; Lagasse, L.D.; Li, A.J. Effect of Obesity on Survival in Epithelial Ovarian Cancer. Cancer 2006, 107, 1520–1524. [Google Scholar] [CrossRef]
- Münstedt, K.; Wagner, M.; Kullmer, U.; Hackethal, A.; Franke, F.E. Influence of Body Mass Index on Prognosis in Gynecological Malignancies. Cancer Causes Control 2008, 19, 909–916. [Google Scholar] [CrossRef]
- Suh, D.H.; Kim, H.S.; Chung, H.H.; Kim, J.W.; Park, N.H.; Song, Y.S.; Kang, S.-B. Body Mass Index and Survival in Patients with Epithelial Ovarian Cancer: BMI and Survival in Epithelial Ovarian Cancer. J. Obstet. Gynaecol. Res. 2012, 38, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.V.; Paul, J.; Hay, A.; Vasey, P.A.; Kaye, S.B.; Glasspool, R.M. Does Body Mass Index Affect Progression-Free or Overall Survival in Patients with Ovarian Cancer? Results from SCOTROC I Trial. Ann. Oncol. 2008, 19, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yang, Y.; Chen, T.; Chen, J.; Chen, Y.; Wu, M.; Jan, Y.; Chang, C.; Lee, J. Muscle Loss during Primary Debulking Surgery and Chemotherapy Predicts Poor Survival in Advanced-stage Ovarian Cancer. J. Cachexia Sarcopenia Muscle 2020, 11, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Prado, C.M.; Cushen, S.J.; Orsso, C.E.; Ryan, A.M. Sarcopenia and Cachexia in the Era of Obesity: Clinical and Nutritional Impact. Proc. Nutr. Soc. 2016, 75, 188–198. [Google Scholar] [CrossRef]
- Yim, G.W.; Eoh, K.J.; Kim, S.W.; Nam, E.J.; Kim, Y.T. Malnutrition Identified by the Nutritional Risk Index and Poor Prognosis in Advanced Epithelial Ovarian Carcinoma. Nutr. Cancer 2016, 68, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Lis, C.G.; Vashi, P.G.; Lammersfeld, C.A. Impact of Improved Nutritional Status on Survival in Ovarian Cancer. Support. Care Cancer 2010, 18, 373–381. [Google Scholar] [CrossRef]
- Bolton-Smith, C.; Woodward, M.; Tavendale, R. Evidence for Age-Related Differences in the Fatty Acid Composition of Human Adipose Tissue, Independent of Diet. Eur. J. Clin. Nutr. 1997, 51, 619–624. [Google Scholar] [CrossRef] [Green Version]
- Ouldamer, L.; Jourdan, M.-L.; Pinault, M.; Arbion, F.; Goupille, C. Accumulation of Arachidonic Acid, Precursor of Pro-Inflammatory Eicosanoids, in Adipose Tissue of Obese Women: Association with Breast Cancer Aggressiveness Indicators. Biomedicines 2022, 10, 995. [Google Scholar] [CrossRef]
- Gercel-Taylor, C.; Doering, D.L.; Kraemer, F.B.; Taylor, D.D. Aberrations in Normal Systemic Lipid Metabolism in Ovarian Cancer Patients. Gynecol. Oncol. 1996, 60, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Summers, L.K.; Barnes, S.C.; Fielding, B.A.; Beysen, C.; Ilic, V.; Humphreys, S.M.; Frayn, K.N. Uptake of Individual Fatty Acids into Adipose Tissue in Relation to Their Presence in the Diet. Am. J. Clin. Nutr. 2000, 71, 1470–1477. [Google Scholar] [CrossRef]
- Raclot, T.; Langin, D.; Lafontan, M.; Groscolas, R. Selective Release of Human Adipocyte Fatty Acids According to Molecular Structure. Biochem. J. 1997, 324 Pt 3, 911–915. [Google Scholar] [CrossRef] [Green Version]
- Mika, A.; Kobiela, J.; Czumaj, A.; Chmielewski, M.; Stepnowski, P.; Sledzinski, T. Hyper-Elongation in Colorectal Cancer Tissue—Cerotic Acid Is a Potential Novel Serum Metabolic Marker of Colorectal Malignancies. Cell. Physiol. Biochem. 2017, 41, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Mika, A.; Kobiela, J.; Pakiet, A.; Czumaj, A.; Sokołowska, E.; Makarewicz, W.; Chmielewski, M.; Stepnowski, P.; Marino-Gammazza, A.; Sledzinski, T. Preferential Uptake of Polyunsaturated Fatty Acids by Colorectal Cancer Cells. Sci. Rep. 2020, 10, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouldamer, L.; Goupille, C.; Vildé, A.; Arbion, F.; Body, G.; Chevalier, S.; Cottier, J.P.; Bougnoux, P. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer. PLoS ONE 2016, 11, e0147148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
Ovarian Cancer n = 46 | Borderline Tumors n = 6 | p | |||
---|---|---|---|---|---|
Median or n (%) | [IQR] | Median or n (%) | [IQR] | ||
Age (years) | 69.0 | [61.0–74.3] | 64.0 | [50.3–71.3] | 0.34 |
Weight (kg) | 65.5 | [59.0–73.5] | 65.0 | [59.0–93.5] | 0.76 |
BMI (kg/m2) | 26.6 | [23.3–29.8] | 25.8 | [22.3–38.1] | 0.81 |
- Underweight | 2 (4.3%) | 0 (0%) | 0.60 | ||
- Normal weight | 13 (28.7%) | 3 (50.0%) | |||
- Overweight | 18 (39.1%) | 1 (16.7%) | |||
- Obese | 13 (28.3%) | 2 (33.3%) | |||
No. of children | 2 | [2–3] | 2 | [1.5–3.5] | 0.92 |
Menopause | 42 (91.3%) | 5 (83.3%) | 0.47 | ||
Hormonal treatment | 11 (23.9%) | 0 (0%) | 0.32 | ||
HBP | 16 (34.8%) | 3 (50.0%) | 0.65 | ||
Diabetes | 4 (8.7%) | 2 (33.3%) | 0.13 | ||
Dyslipidaemia | 9 (19.6%) | 3 (50.0%) | 0.12 | ||
Histology | |||||
- Serous carcinoma | 38 (82.6%) | ||||
- Endometroid | 2 (4.3%) | ||||
- Clear cell | 1 (2.2%) | ||||
- Mucinous | 1 (2.2%) | ||||
- Mixed | 3 (6.5%) | ||||
- Other | 1 (2.2%) | ||||
FIGO stage | |||||
- I | 5 (10.9%) | ||||
- II | 1 (2.2%) | ||||
- III | 26 (56.5%) | ||||
- IV | 10 (21.7%) | ||||
- Unknown | 4 (8.7%) | ||||
Chemotherapy | 44 (95.7%) |
Ovarian Cancer n = 46 | Borderline Tumor n = 6 | p | |||
---|---|---|---|---|---|
Fatty Acids a | Median | IQR | Median | IQR | |
SFAs | |||||
14:0 | 2.97 | 2.57–3.23 | 3.03 | 2.56–3.19 | 0.94 |
16:0 | 20.62 | 19.56–21.91 | 19.9 | 18.17–21.84 | 0.37 |
18:0 | 3.57 | 3.06–4.90 | 4.32 | 2.21–5.26 | 0.83 |
LC Sat | 0.17 | 0.14–0.28 | 0.17 | 0.13–0.38 | 0.96 |
Total SFAs | 28.32 | 26.79–29.61 | 28.04 | 23.19–32.14 | 0.79 |
MUFAs | |||||
14:1 | 0.36 | 0.27–0.46 | 0.30 | 0.29–0.43 | 0.75 |
16:1 | 4.59 | 3.56–5.51 | 4.12 | 3.44–5.04 | 0.64 |
18:1n-9c | 46.67 | 45.37–48.94 | 46.98 | 44.14–49.21 | 0.79 |
18:1n-7c | 2.02 | 1.82–2.23 | 2.14 | 1.89–2.36 | 0.40 |
LC mono | 0.86 | 0.72–1.00 | 0.83 | 0.78–1.09 | 0.70 |
Total MUFAs | 55.33 | 52.85–57.12 | 53.94 | 51.33–58.28 | 0.64 |
PUFAs | |||||
18:2n-6c | 9.73 | 8.90–11.62 | 10.76 | 9.70–12.60 | 0.27 |
18:3n-6 | 0.06 | 0.04–0.07 | 0.05 | 0.05–0.08 | 0.99 |
20:4n-6 | 0.42 | 0.32–0.57 | 0.44 | 0.21–0.55 | 0.58 |
LC n-6 | 1.30 | 0.93–1.55 | 1.04 | 0.80–1.57 | 0.47 |
Total PUFAn-6 | 10.97 | 10.08–12.98 | 11.74 | 10.61–14.53 | 0.37 |
18:3n-3 | 0.61 | 0.50–0.77 | 0.73 | 0.58–0.97 | 0.21 |
20:5n-3 | 0.08 | 0.06–0.10 | 0.06 | 0.04–0.13 | 0.53 |
22:5n-3 | 0.35 | 0.27–0.47 | 0.32 | 0.22–0.42 | 0.38 |
22:6n-3 | 0.24 | 0.17–0.33 | 0.20 | 0.14–0.32 | 0.44 |
LC n-3 | 0.73 | 0.60–0.92 | 0.66 | 0.51–0.81 | 0.46 |
Total PUFAn-3 | 1.41 | 1.10–1.61 | 1.45 | 1.16–1.88 | 0.62 |
Ratio PUFAn-6/n-3 | 8.27 | 7.25–9.86 | 9.15 | 5.99–12.03 | 0.79 |
PUFA n-6 + n-3 | 12.56 | 11.27–14.47 | 13.08 | 12.15–15.86 | 0.25 |
SSAT | DSAT | VAT | OAT | |||||
---|---|---|---|---|---|---|---|---|
Fatty Acids a | Median | IQR | Median | IQR | Median | IQR | Median | IQR |
14:0 | 2.97 | 2.51–3.19 | 3.11 | 2.59–3.32 ** | 3.06 | 2.68–3.41 * | 3.14 | 2.68–3.50 **** |
16:0 | 20.45 | 19.15–21.95 | 20.37 | 19.10–21.77 | 20.64 | 18.66–21.58 | 20.63 | 18.79–21.39 |
18:0 | 3.57 | 3.06–4.70 | ↗ 4.00 | 3.57–4.70 * | ↗ 4.10 | 3.48–4.90 *** | ↗ 3.94 | 3.50–5.16 **** |
LC-SFAs | 0.18 | 0.14–0.28 | ↗ 0.28 | 0.21–0.36 ** | ↗ 0.30 | 0.23–0.37 **** | ↗ 0.36 | 0.25–0.43 **** |
Total SFAs | 28.03 | 26.38–29.47 | 28.84 | 25.91–30.11 | 28.91 | 26.54–30.25 | 28.86 | 27.17–30.07 |
14:1 | 0.35 | 0.26–0.46 | ↘ 0.30 | 0.23–0.41 *** | 0.34 | 0.24–0.45 | 0.39 | 0.26–0.46 |
16:1 | 4.61 | 3.56–5.53 | 4.57 | 3.35–5.76 | 4.29 | 3.47–5.57 | 4.70 | 3.97–5.74 |
18:1n-9c | 46.71 | 45.72–48.78 | 46.62 | 45.43–48.65 | 46.46 | 45.30–48.19 | 46.33 | 45.48–47.80 |
18:1n-7c | 2.08 | 1.87–2.30 | 2.07 | 1.91–2.35 | 2.02 | 1.81–2.13 * | 1.93 | 1.77–2.17 ** |
LC-MUFAs | 0.87 | 0.75–1.07 | ↗ 0.96 | 0.84–1.11 ** | 0.86 | 0.76–1.10 | 0.95 | 0.88–1.06 *** |
Total MUFAs | 55.36 | 52.94–57.12 | 55.20 | 52.70–57.46 | 55.45 | 52.67–56.64 | 55.49 | 53.05–56.46 |
18:2n-6c | 9.74 | 8.90–11.90 | 9.79 | 8.73–12.00 | 10.06 | 8.77–12.14 | 10.02 | 8.73–11.81 |
18:3n-6 | 0.05 | 0.04–0.07 | 0.05 | 0.04–0.07 | 0.05 | 0.04–0.07 | 0.06 | 0.05–0.08 |
20:4n-6 | 0.43 | 0.33–0.57 | ↘ 0.37 | 0.26–0.44 ** | ↘ 0.33 | 0.28–0.41 *** | ↘ 0.36 | 0.27–0.50 *** |
LC-PUFAn-6 | 1.32 | 1.01–1.55 | ↘ 1.18 | 0.90–1.43 | ↘ 1.12 | 0.93–1.32 *** | ↘ 1.08 | 0.80–1.28 *** |
Total PUFAn-6 | 11.39 | 10.08–13.00 | 11.26 | 9.77–13.14 | 11.14 | 9.90–13.05 | 11.27 | 9.94–12.67 ** |
18:3n-3 | 0.64 | 0.52–0.79 | 0.59 | 0.46–0.72 *** | 0.58 | 0.47–0.78 | 0.60 | 0.50–0.76 |
20:5n-3 | 0.07 | 0.06–0.09 | ↘ 0.06 | 0.05–0.07 *** | ↘ 0.06 | 0.05–0.08 * | ↘ 0.06 | 0.05–0.09 |
22:5n-3 | 0.35 | 0.27–0.47 | ↘ 0.30 | 0.24–0.41 ** | 0.35 | 0.27–0.43 | ↘ 0.29 | 0.23–0.40 **** |
22:6n-3 | 0.23 | 0.17–0.31 | ↘ 0.18 | 0.13–0.27 *** | 0.25 | 0.20–0.30 | 0.22 | 0.15–0.33 |
LC-PUFAn-3 | 0.71 | 0.61–0.89 | ↘ 0.59 | 0.49–0.87 *** | 0.72 | 0.58–0.85 | ↘ 0.61 | 0.49–0.81 *** |
Total PUFAn-3 | 1.41 | 1.11–1.55 | ↘ 1.23 | 1.02–1.39 **** | 1.31 | 1.10–1.55 | 1.29 | 1.09–1.44 *** |
PUFA n-6+n-3 | 12.90 | 11.24–14.57 | 12.51 | 10.77–14.31 ** | 12.64 | 11.0–14.92 * | 12.62 | 11.07–13.92 **** |
Ratio n-6/n-3 | 8.22 | 5.30–15.40 | ↗ 9.31 | 5.68–17.53 **** | 8.79 | 4.83–15.08 | 8.90 | 4.43–17.65 *** |
SSAT versus | ||||||
---|---|---|---|---|---|---|
DSAT | VAT | OAT | ||||
Fatty Acids | r2 | p | r2 | p | r2 | p |
14:0 | 0.93 | **** | 0.86 | **** | 0.84 | **** |
16:0 | 0.87 | **** | 0.79 | **** | 0.60 | *** |
18:0 | 0.84 | **** | 0.80 | **** | 0.73 | **** |
LC Sat | 0.74 | **** | 0.67 | **** | 0.54 | *** |
Total SFAs | 0.78 | **** | 0.68 | **** | 0.50 | ** |
14:1 | 0.90 | **** | 0.89 | **** | 0.77 | **** |
16:1 | 0.82 | **** | 0.75 | **** | 0.72 | **** |
18:1n-9c | 0.90 | **** | 0.88 | **** | 0.78 | **** |
18:1n-7c | 0.79 | **** | 0.63 | **** | 0.54 | *** |
LC mono | 0.81 | **** | 0.76 | **** | 0.57 | *** |
Total MUFAs | 0.85 | **** | 0.78 | **** | 0.64 | **** |
18:2n-6c | 0.98 | **** | 0.98 | **** | 0.92 | **** |
18:3n-6 | 0.82 | **** | 0.76 | **** | 0.69 | **** |
20:4n-6 | 0.88 | **** | 0.52 | ** | 0.42 | * |
LC n-6 | 0.87 | **** | 0.73 | **** | 0.60 | *** |
Total PUFAn-6 | 0.96 | **** | 0.96 | **** | 0.92 | **** |
18:3n-3 | 0.91 | **** | 0.91 | **** | 0.87 | **** |
20:5n-3 | 0.82 | **** | 0.77 | **** | 0.56 | *** |
22:5n-3 | 0.90 | **** | 0.77 | **** | 0.72 | **** |
22:6n-3 | 0.91 | **** | 0.82 | **** | 0.80 | **** |
LC n-3 | 0.92 | **** | 0.74 | **** | 0.76 | **** |
Total PUFAn-3 | 0.91 | **** | 0.89 | **** | 0.82 | **** |
PUFA n-6+n-3 | 0.96 | **** | 0.96 | **** | 0.90 | **** |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
HR [IC 95%] | p-Value | HR [IC 95%] | p-Value | |
Age | 0.93 [0.90–0.97] | 0.005 | - | |
Menopause | 0.27 [0.07–0.98] | 0.04 | 0.12 [0.003–4.28] | 0.24 |
BMI | 0.92 [0.82–1.04] | 0.19 | - | |
FIGO Stage | ||||
Early stages (I–II) | Reference | |||
Advanced stages (III–VI) | 7.1 [1.52–33.3] | 0.01 | 2.35 [0.92–5.98] | 0.05 |
Residue after surgery | - | |||
No residue | Reference | |||
Microscopic residue | 0.83 [0.09–7.3] | 0.86 | 6.5 [0.07–6.32] | 0.71 |
No surgery | 4.04 [0.77–21.1] | 0.09 | 17.9 [1.5–240] | 0.03 |
Serum albumin | 1.04 [0.91–1.19] | 0.57 | ||
Myristic acid >med | 2.07 [0.64–6.62] | 0.22 | - | |
Palmitic acid > med | 1.96 [0.66–5.80] | 0.23 | - | |
Stearic acid > med | 0.97 [0.35–2.68] | 0.95 | ||
Total SFA > med | 2.56 [0.84–7.79] | 0.10 | ||
Myristoleic acid > med | 3.61 [1.09–11.9] | 0.04 | ||
Palmitoleic acid > med | 1.17 [0.41–3.34] | 0.76 | ||
Oleic acid (OA) > med | 0.81 [0.29–2.25] | 0.69 | ||
Vaccenic acid > med | 2.87 [0.86–9.49] | 0.08 | ||
Total MUFA > med | 0.82 [0.29–2.34] | 0.71 | ||
Linoleic acid (LA) >med | 0.28 [0.08–0.97] | 0.04 | ||
Gamma Linolenic acid > med | 0.97 [0.35–2.68] | 0.95 | ||
Arachidonic acid > med | 0.62 [0.21–1.83] | 0.39 | ||
Total LC n-6 > med | 0.59 [0.20–1.73] | 0.33 | ||
Total PUFAn-6 > med | 0.11 [0.03–0.52] | 0.005 | ||
Alpha Linolenic acid > med | 0.58 [0.21–1.65] | 0.31 | ||
Eicosapentaenoic acid > med | 0.44 [0.16–1.25] | 0.12 | ||
Docosapentaenoic acid > med | 0.53 [0.19–1.51] | 0.24 | ||
Docosahexaenoic acid > med | 0.60 [0.21–1.66] | 0.32 | ||
Total LC n-3 > med | 0.91 [0.33–2.55] | 0.86 | ||
Total PUFAn-3 > med | 0.31 [0.11–0.93] | 0.03 | ||
Total PUFA > med | 0.11 [0.02–0.52] | 0.005 | 0.01 [0.0001–0.76] | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salaun, H.; Poisson, M.; Dolly, A.; Arbion, F.; Servais, S.; Dumas, J.F.; Goupille, C.; Ouldamer, L. Total Polyunsaturated Fatty Acid Level in Abdominal Adipose Tissue as an Independent Predictor of Recurrence-Free Survival in Women with Ovarian Cancer. Int. J. Mol. Sci. 2023, 24, 1768. https://doi.org/10.3390/ijms24021768
Salaun H, Poisson M, Dolly A, Arbion F, Servais S, Dumas JF, Goupille C, Ouldamer L. Total Polyunsaturated Fatty Acid Level in Abdominal Adipose Tissue as an Independent Predictor of Recurrence-Free Survival in Women with Ovarian Cancer. International Journal of Molecular Sciences. 2023; 24(2):1768. https://doi.org/10.3390/ijms24021768
Chicago/Turabian StyleSalaun, Helene, Mathilde Poisson, Adeline Dolly, Flavie Arbion, Stéphane Servais, Jean François Dumas, Caroline Goupille, and Lobna Ouldamer. 2023. "Total Polyunsaturated Fatty Acid Level in Abdominal Adipose Tissue as an Independent Predictor of Recurrence-Free Survival in Women with Ovarian Cancer" International Journal of Molecular Sciences 24, no. 2: 1768. https://doi.org/10.3390/ijms24021768
APA StyleSalaun, H., Poisson, M., Dolly, A., Arbion, F., Servais, S., Dumas, J. F., Goupille, C., & Ouldamer, L. (2023). Total Polyunsaturated Fatty Acid Level in Abdominal Adipose Tissue as an Independent Predictor of Recurrence-Free Survival in Women with Ovarian Cancer. International Journal of Molecular Sciences, 24(2), 1768. https://doi.org/10.3390/ijms24021768