2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma
Abstract
:1. Introduction
2. Results
2.1. Thiazoloflavonoids Inhibit Human Full-Length Tau Aggregation into Filaments
2.2. Kinetics and Mechanism of Thiazoloflavonoids Binding to Tau Protein
2.3. Biological Activity of Compounds with Ring B Substitution
2.4. Biological Activity of Derivatives with a Fluorinated Substituent on Ring B
2.5. The Biological Activity of Compounds 2 and 9 Depends on Tau Expression
2.6. Biological Activity of Compounds Involves No Change of Division and Death of Cells
2.7. Compounds Affect Moderately Autophagy Independently from Tau Expression
2.8. Compounds 2 and 9 Impair Mitochondria Network in Tau-Expressing Cells
2.9. Compounds 2 and 9 Induce Migratory Defect Due to Remodeling of Microtubule Network in Tau-Expressing Cells
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.2. Biology
4.2.1. Cell Culture and Transfection Protocol
4.2.2. Cell Viability Assay
4.2.3. Tau and Tubulin Purification
4.2.4. Turbidimetry for In Vitro Tubulin Polymerization
4.2.5. Tau Oligomerization Inhibition Assay
4.2.6. Fluorescence Quenching and Binding Parameters
4.2.7. Cell Cycle and Mitosis Index
4.2.8. Measurement of Autophagy by Spectrofluorometry
4.2.9. Immunofluorescence of Mitochondria and Microtubules
4.2.10. Analysis of Mitochondria and Microtubule Networks in Cells
4.2.11. Western Blotting
4.2.12. In Vitro 2D Cell Motility Assays and Analysis
4.2.13. Molecular Modeling
4.2.14. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchison, T.; Kirschner, M. Dynamic Instability of Microtubule Growth. Nature 1984, 312, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Franchetti, P.; Cappellacci, L.; Grifantini, M.; Barzi, A.; Nocentini, G.; Yang, H.; O’Connor, A.; Jayaram, H.N.; Carrell, C.; Goldstein, B.M. Furanfurin and Thiophenfurin: Two Novel Tiazofurin Analogs. Synthesis, Structure, Antitumor Activity, and Interactions with Inosine Monophosphate Dehydrogenase. J. Med. Chem. 1995, 38, 3829–3837. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, Y.; Ruiz, C.H.; Koenig, M.; Cameron, M.D. Characterization of Dasatinib and Its Structural Analogs as CYP3A4 Mechanism-Based Inactivators and the Proposed Bioactivation Pathways. Drug Metab. Dispos. 2009, 37, 1242–1250. [Google Scholar] [CrossRef]
- Hu-Lieskovan, S.; Mok, S.; Homet Moreno, B.; Tsoi, J.; Robert, L.; Goedert, L.; Pinheiro, E.M.; Koya, R.C.; Graeber, T.G.; Comin-Anduix, B.; et al. Improved Antitumor Activity of Immunotherapy with BRAF and MEK Inhibitors in BRAFV600E Melanoma. Sci. Transl. Med. 2015, 7, 279ra41. [Google Scholar] [CrossRef]
- Williams, A.B.; Jacobs, R.S. A Marine Natural Product, Patellamide D, Reverses Multidrug Resistance in a Human Leukemic Cell Line. Cancer Lett. 1993, 71, 97–102. [Google Scholar] [CrossRef]
- Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-Containing Compounds as Therapeutic Targets for Cancer Therapy. Eur. J. Med. Chem. 2020, 188, 112016. [Google Scholar] [CrossRef] [PubMed]
- Khrapunovich-Baine, M.; Menon, V.; Yang, C.-P.H.; Northcote, P.T.; Miller, J.H.; Angeletti, R.H.; Fiser, A.; Horwitz, S.B.; Xiao, H. Hallmarks of Molecular Action of Microtubule Stabilizing Agents. J. Biol. Chem. 2011, 286, 11765–11778. [Google Scholar] [CrossRef]
- Kaiser, S.; John Muller, J.; Eduardo Froehlich, P.; Cristina Baggio Gnoatto, S.; Maria Bergold, A. From Bacteria to Antineoplastic: Epothilones A Successful History. Anti-Cancer Agents Med. Chem.-Anti-Cancer Agents 2013, 13, 1057–1068. [Google Scholar] [CrossRef]
- Lara-Velazquez, M.; Al-Kharboosh, R.; Jeanneret, S.; Vazquez-Ramos, C.; Mahato, D.; Tavanaiepour, D.; Rahmathulla, G.; Quinones-Hinojosa, A. Advances in Brain Tumor Surgery for Glioblastoma in Adults. Brain Sci. 2017, 7, 166. [Google Scholar] [CrossRef]
- De Vleeschouwer, S. Glioblastoma; Codon Publications: Brisbane, Australia, 2017; ISBN 978-0-9944381-2-6. [Google Scholar]
- Figarella-Branger, D.; Chappe, C.; Padovani, L.; Mercurio, S.; Colin, C.; Forest, F.; Bouvier, C. Glial and glioneuronal tumors in adults and children: Main genetic alterations and towards a histomolecular classification. Bull. Cancer 2013, 100, 715–726. [Google Scholar] [CrossRef]
- Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A Protein Factor Essential for Microtubule Assembly. Proc. Natl. Acad. Sci. USA 1975, 72, 1858–1862. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, D.W.; Hwo, S.Y.; Kirschner, M.W. Physical and Chemical Properties of Purified Tau Factor and the Role of Tau in Microtubule Assembly. J. Mol. Biol. 1977, 116, 227–247. [Google Scholar] [CrossRef] [PubMed]
- Drubin, D.G.; Kirschner, M.W. Tau Protein Function in Living Cells. J. Cell Biol. 1986, 103, 2739–2746. [Google Scholar] [CrossRef]
- Goedert, M.; Jakes, R. Expression of Separate Isoforms of Human Tau Protein: Correlation with the Tau Pattern in Brain and Effects on Tubulin Polymerization. EMBO J. 1990, 9, 4225–4230. [Google Scholar] [CrossRef] [PubMed]
- Fuster-Matanzo, A.; de Barreda, E.G.; Dawson, H.N.; Vitek, M.P.; Avila, J.; Hernández, F. Function of Tau Protein in Adult Newborn Neurons. FEBS Lett. 2009, 583, 3063–3068. [Google Scholar] [CrossRef] [PubMed]
- Lebouvier, T.; Pasquier, F.; Buée, L. Update on Tauopathies. Curr. Opin. Neurol. 2017, 30, 589–598. [Google Scholar] [CrossRef]
- Couchie, D.; Fages, C.; Bridoux, A.M.; Rolland, B.; Tardy, M.; Nunez, J. Microtubule-Associated Proteins and in Vitro Astrocyte Differentiation. J. Cell Biol. 1985, 101, 2095–2103. [Google Scholar] [CrossRef]
- Miyazono, M.; Iwaki, T.; Kitamoto, T.; Shin, R.-W.; Fukui, M.; Tateishi, J. Widespread Distribution of Tau in the Astrocytic Elements of Glial Tumors. Acta Neuropathol. 1993, 86, 236–241. [Google Scholar] [CrossRef]
- Breuzard, G.; Pagano, A.; Bastonero, S.; Malesinski, S.; Parat, F.; Barbier, P.; Peyrot, V.; Kovacic, H. Tau Regulates the Microtubule-Dependent Migration of Glioblastoma Cells via the Rho-ROCK Signaling Pathway. J. Cell Sci. 2019, 132, jcs222851. [Google Scholar] [CrossRef]
- Pagano, A.; Breuzard, G.; Parat, F.; Tchoghandjian, A.; Figarella-Branger, D.; De Bessa, T.C.; Garrouste, F.; Douence, A.; Barbier, P.; Kovacic, H. Tau Regulates Glioblastoma Progression, 3D Cell Organization, Growth and Migration via the PI3K-AKT Axis. Cancers 2021, 13, 5818. [Google Scholar] [CrossRef]
- Hedna, R.; Kovacic, H.; Pagano, A.; Peyrot, V.; Robin, M.; Devred, F.; Breuzard, G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers 2022, 14, 5386. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and Medicinal Perspective of Fused-Thiazoles as Anticancer Agents. Anti-Cancer Agents Med. Chem.-Anti-Cancer Agents 2021, 21, 1379–1402. [Google Scholar] [CrossRef] [PubMed]
- Gandini, A.; Bartolini, M.; Tedesco, D.; Martinez-Gonzalez, L.; Roca, C.; Campillo, N.E.; Zaldivar-Diez, J.; Perez, C.; Zuccheri, G.; Miti, A.; et al. Tau-Centric Multitarget Approach for Alzheimer’s Disease: Development of First-in-Class Dual Glycogen Synthase Kinase 3β and Tau-Aggregation Inhibitors. J. Med. Chem. 2018, 61, 7640–7656. [Google Scholar] [CrossRef]
- Gandini, A.; Gonçalves, A.E.; Strocchi, S.; Albertini, C.; Janočková, J.; Tramarin, A.; Grifoni, D.; Poeta, E.; Soukup, O.; Muñoz-Torrero, D.; et al. Discovery of Dual Aβ/Tau Inhibitors and Evaluation of Their Therapeutic Effect on a Drosophila Model of Alzheimer’s Disease. ACS Chem. Neurosci. 2022, 13, 3314–3329. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Mishra, S.; Torgal, S.S.; Shengule, S. Neuroprotective Effect of Epalrestat Mediated through Oxidative Stress Markers, Cytokines and TAU Protein Levels in Diabetic Rats. Life Sci. 2018, 207, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Li, X.; Hayashi, S.; Bertron, J.L.; Schwarz, D.M.C.; Tang, B.C.; Gestwicki, J.E. Inhibitors of Heat Shock Protein 70 (Hsp70) with Enhanced Metabolic Stability Reduce Tau Levels. Bioorg. Med. Chem. Lett. 2021, 41, 128025. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Tian, W.; Cui, X.; Tu, P.; Li, J.; Shi, S.; Liu, X. Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics 2022, 11, 1380. [Google Scholar] [CrossRef]
- Marena, G.D.; Dos Ramos, M.A.S.; Carvalho, G.C.; Paris, J.A., Jr.; Resende, F.A.; Corrêa, I.; Ono, G.Y.B.; Sousa Araujo, V.H.; de Camargo, B.A.F.; Bauab, T.M.; et al. Natural Product-Based Nanomedicine Applied to Fungal Infection Treatment: A Review of the Last 4 Years. Phytother. Res. 2022, 36, 2710–2745. [Google Scholar] [CrossRef]
- Matsumura, Y.; Kitabatake, M.; Kayano, S.; Ito, T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants 2023, 12, 880. [Google Scholar] [CrossRef]
- Selvaraj, S.; Krishnan, U.M. Vanadium–Flavonoid Complexes: A Promising Class of Molecules for Therapeutic Applications. J. Med. Chem. 2021, 64, 12435–12452. [Google Scholar] [CrossRef]
- Yu, K.C.; Kwan, P.; Cheung, S.K.K.; Ho, A.; Baum, L. Effects of Resveratrol and Morin on Insoluble Tau in Tau Transgenic Mice. Transl. Neurosci. 2018, 9, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Wang, J.; Chen, C.; Ding, B.; Fu, X.; Chen, W.; Wang, C.; Xu, R. Eupatilin Inhibits Glioma Proliferation, Migration, and Invasion by Arresting Cell Cycle at G1/S Phase and Disrupting the Cytoskeletal Structure. Cancer Manag. Res. 2019, 11, 4781–4796. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, S.K.; Uversky, V.N.; Chinnathambi, S. Baicalein Inhibits Heparin-Induced Tau Aggregation by Initializing Non-Toxic Tau Oligomer Formation. Cell Commun. Signal. 2021, 19, 16. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnakumar, V.G.; Morya, V.; Gupta, S.; Datta, B. Nanobiocatalyst Facilitated Aglycosidic Quercetin as a Potent Inhibitor of Tau Protein Aggregation. Int. J. Biol. Macromol. 2019, 138, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.; Combs, B.; Abdelmesih, B.; Morfini, G.; Brady, S.T.; Kanaan, N.M. Analysis of Isoform-Specific Tau Aggregates Suggests a Common Toxic Mechanism Involving Similar Pathological Conformations and Axonal Transport Inhibition. Neurobiol. Aging 2016, 47, 113–126. [Google Scholar] [CrossRef]
- Kanaan, N.M.; Hamel, C.; Grabinski, T.; Combs, B. Liquid-Liquid Phase Separation Induces Pathogenic Tau Conformations in Vitro. Nat. Commun. 2020, 11, 2809. [Google Scholar] [CrossRef]
- Mutai, P.; Breuzard, G.; Pagano, A.; Allegro, D.; Peyrot, V.; Chibale, K. Synthesis and Biological Evaluation of 4 Arylcoumarin Analogues as Tubulin-Targeting Antitumor Agents. Bioorg. Med. Chem. 2017, 25, 1652–1665. [Google Scholar] [CrossRef]
- Gao, L.-X.; Chen, W.-Q.; Liu, Y.; Jiang, F.-L. Fluorescent Labeling of Human Serum Albumin by Thiol-Cyanimide Addition and Its Application in the Fluorescence Quenching Method for Nanoparticle–Protein Interactions. Anal. Chem. 2022, 94, 3111–3119. [Google Scholar] [CrossRef]
- Siddiqui, S.; Ameen, F.; Jahan, I.; Nayeem, S.M.; Tabish, M. A Comprehensive Spectroscopic and Computational Investigation on the Binding of the Anti-Asthmatic Drug Triamcinolone with Serum Albumin. New J. Chem. 2019, 43, 4137–4151. [Google Scholar] [CrossRef]
- Weyl, D.A.; Murfin, D. Fluorescence of Photo-Degraded Tyrosine Solutions. Nature 1966, 212, 921–922. [Google Scholar] [CrossRef]
- Paranthaman, S.; Uthaiah, C.A.; Osmani, R.A.M.; Hani, U.; Ghazwani, M.; Alamri, A.H.; Fatease, A.A.; Madhunapantula, S.V.; Gowda, D.V. Anti-Proliferative Potential of Quercetin Loaded Polymeric Mixed Micelles on Rat C6 and Human U87MG Glioma Cells. Pharmaceutics 2022, 14, 1643. [Google Scholar] [CrossRef] [PubMed]
- Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-Loaded Nanoparticles Enhance Cytotoxicity and Antioxidant Activity on C6 Glioma Cells. Pharm. Dev. Technol. 2020, 25, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.A.S.; Kalinina, E.V.; Tatarskiy, V.V.; Volodina, Y.L.; Petrova, A.S.; Novichkova, M.D.; Zhdanov, D.D.; Shtil, A.A. Suppression of the Antioxidant System and PI3K/Akt/MTOR Signaling Pathway in Cisplatin-Resistant Cancer Cells by Quercetin. Bull. Exp. Biol. Med. 2022, 173, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; et al. Anticancer and Apoptosis-inducing Effects of Quercetin in Vitro and in Vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef]
- Sang, D.; Li, R.; Lan, Q. Quercetin Sensitizes Human Glioblastoma Cells to Temozolomide in Vitro via Inhibition of Hsp27. Acta Pharmacol. Sin. 2014, 35, 832–838. [Google Scholar] [CrossRef]
- Abolibda, T.Z.; Fathalla, M.; Farag, B.; Zaki, M.E.A.; Gomha, S.M. Synthesis and Molecular Docking of Some Novel 3-Thiazolyl-Coumarins as Inhibitors of VEGFR-2 Kinase. Molecules 2023, 28, 689. [Google Scholar] [CrossRef]
- Ye, Y.; Huang, Z.; Zhang, M.; Li, J.; Zhang, Y.; Lou, C. Synergistic Therapeutic Potential of Alpelisib in Cancers (Excluding Breast Cancer): Preclinical and Clinical Evidences. Biomed. Pharmacother. 2023, 159, 114183. [Google Scholar] [CrossRef]
- Ivasechko, I.; Lozynskyi, A.; Senkiv, J.; Roszczenko, P.; Kozak, Y.; Finiuk, N.; Klyuchivska, O.; Kashchak, N.; Manko, N.; Maslyak, Z.; et al. Molecular Design, Synthesis and Anticancer Activity of New Thiopyrano [2,3-d]Thiazoles Based on 5-Hydroxy-1,4-Naphthoquinone (Juglone). Eur. J. Med. Chem. 2023, 252, 115304. [Google Scholar] [CrossRef]
- Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. Methods Mol. Biol. 2008, 445, 77–88. [Google Scholar] [CrossRef]
- Gibellini, L.; Bianchini, E.; De Biasi, S.; Nasi, M.; Cossarizza, A.; Pinti, M. Natural Compounds Modulating Mitochondrial Functions. Evid.-Based Complement. Altern. Med. ECAM 2015, 2015, 527209. [Google Scholar] [CrossRef]
- Kicinska, A.; Jarmuszkiewicz, W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020, 25, 3060. [Google Scholar] [CrossRef]
- Ostlund, R.E.; Leung, J.T.; Hajek, S.V. Biochemical Determination of Tubulin-Microtubule Equilibrium in Cultured Cells. Anal. Biochem. 1979, 96, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Panda, D.; Samuel, J.C.; Massie, M.; Feinstein, S.C.; Wilson, L. Differential Regulation of Microtubule Dynamics by Three- and Four-Repeat Tau: Implications for the Onset of Neurodegenerative Disease. Proc. Natl. Acad. Sci. USA 2003, 100, 9548–9553. [Google Scholar] [CrossRef] [PubMed]
- Von Bergen, M.; Friedhoff, P.; Biernat, J.; Heberle, J.; Mandelkow, E.M.; Mandelkow, E. Assembly of Tau Protein into Alzheimer Paired Helical Filaments Depends on a Local Sequence Motif ((306)VQIVYK(311)) Forming Beta Structure. Proc. Natl. Acad. Sci. USA 2000, 97, 5129–5134. [Google Scholar] [CrossRef] [PubMed]
- Von Bergen, M.; Barghorn, S.; Li, L.; Marx, A.; Biernat, J.; Mandelkow, E.M.; Mandelkow, E. Mutations of Tau Protein in Frontotemporal Dementia Promote Aggregation of Paired Helical Filaments by Enhancing Local Beta-Structure. J. Biol. Chem. 2001, 276, 48165–48174. [Google Scholar] [CrossRef]
- Li, W.; Lee, V.M.-Y. Characterization of Two VQIXXK Motifs for Tau Fibrillization in Vitro. Biochemistry 2006, 45, 15692–15701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Falcon, B.; Murzin, A.G.; Fan, J.; Crowther, R.A.; Goedert, M.; Scheres, S.H. Heparin-Induced Tau Filaments Are Polymorphic and Differ from Those in Alzheimer’s and Pick’s Diseases. eLife 2019, 8, e43584. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Castillo, E.; Álvarez-Ginarte, Y.M.; Valdés-Tresanco, M.E.; Montero-Cabrera, L.A.; Moreno, E.; Valiente, P.A. Understanding the Disrupting Mechanism of the Tau Aggregation Motif “306VQIVYK311” by Phenylthiazolyl-Hydrazides Inhibitors. J. Mol. Recognit. 2020, 33, e2848. [Google Scholar] [CrossRef]
- Viswanathan, G.K.; Shwartz, D.; Losev, Y.; Arad, E.; Shemesh, C.; Pichinuk, E.; Engel, H.; Raveh, A.; Jelinek, R.; Cooper, I.; et al. Purpurin Modulates Tau-Derived VQIVYK Fibrillization and Ameliorates Alzheimer’s Disease-like Symptoms in Animal Model. Cell. Mol. Life Sci. 2020, 77, 2795–2813. [Google Scholar] [CrossRef] [PubMed]
- Haj, E.; Losev, Y.; Guru KrishnaKumar, V.; Pichinuk, E.; Engel, H.; Raveh, A.; Gazit, E.; Segal, D. Integrating in Vitro and in Silico Approaches to Evaluate the “Dual Functionality” of Palmatine Chloride in Inhibiting and Disassembling Tau-Derived VQIVYK Peptide Fibrils. Biochim. Biophys. Acta BBA - Gen. Subj. 2018, 1862, 1565–1575. [Google Scholar] [CrossRef]
- Annadurai, N.; Malina, L.; Salmona, M.; Diomede, L.; Bastone, A.; Cagnotto, A.; Romeo, M.; Šrejber, M.; Berka, K.; Otyepka, M.; et al. Antitumour Drugs Targeting Tau R3 VQIVYK and Cys322 Prevent Seeding of Endogenous Tau Aggregates by Exogenous Seeds. FEBS J. 2022, 289, 1929–1949. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting Autophagy in Cancer. Nat. Rev. Cancer 2017, 17, 528–542. [Google Scholar] [CrossRef] [PubMed]
- Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a Molecular Target for Cancer Treatment. Eur. J. Pharm. Sci. 2019, 134, 116–137. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.M.; Lazarou, M.; Wang, C.; Kane, L.A.; Narendra, D.P.; Youle, R.J. Mitochondrial Membrane Potential Regulates PINK1 Import and Proteolytic Destabilization by PARL. J. Cell Biol. 2010, 191, 933–942. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.-C.; Wang, Z.; Luo, Y.; Zhang, X.; Liu, X.-P.; Feng, Q.; Wang, Q.; Yue, Z.; Chen, Z.; et al. Tau Accumulation Impairs Mitophagy via Increasing Mitochondrial Membrane Potential and Reducing Mitochondrial Parkin. Oncotarget 2016, 7, 17356–17368. [Google Scholar] [CrossRef]
- Cummins, N.; Tweedie, A.; Zuryn, S.; Bertran-Gonzalez, J.; Götz, J. Disease-Associated Tau Impairs Mitophagy by Inhibiting Parkin Translocation to Mitochondria. EMBO J. 2019, 38, e99360. [Google Scholar] [CrossRef]
- Nabti, I.; Reddy, B.J.N.; Rezgui, R.; Wang, W.; Gross, S.P.; Shubeita, G.T. The Ubiquitous Microtubule-Associated Protein 4 (MAP4) Controls Organelle Distribution by Regulating the Activity of the Kinesin Motor. Proc. Natl. Acad. Sci. USA 2022, 119, e2206677119. [Google Scholar] [CrossRef]
- Nishida, K.; Matsumura, K.; Tamura, M.; Nakamichi, T.; Shimamori, K.; Kuragano, M.; Kabir, A.M.R.; Kakugo, A.; Kotani, S.; Nishishita, N.; et al. Effects of Three Microtubule-Associated Proteins (MAP2, MAP4, and Tau) on Microtubules’ Physical Properties and Neurite Morphology. Sci. Rep. 2023, 13, 8870. [Google Scholar] [CrossRef]
- Doki, C.; Nishida, K.; Saito, S.; Shiga, M.; Ogara, H.; Kuramoto, A.; Kuragano, M.; Nozumi, M.; Igarashi, M.; Nakagawa, H.; et al. Microtubule Elongation along Actin Filaments Induced by Microtubule-Associated Protein 4 Contributes to the Formation of Cellular Protrusions. J. Biochem. 2020, 168, 295–303. [Google Scholar] [CrossRef]
- Tardivel, M.; Bégard, S.; Bousset, L.; Dujardin, S.; Coens, A.; Melki, R.; Buée, L.; Colin, M. Tunneling Nanotube (TNT)-Mediated Neuron-to Neuron Transfer of Pathological Tau Protein Assemblies. Acta Neuropathol. Commun. 2016, 4, 117. [Google Scholar] [CrossRef]
- Needs, H.I.; Wilkinson, K.A.; Henley, J.M.; Collinson, I. Aggregation-Prone Tau Impairs Mitochondrial Import, Which Affects Organelle Morphology and Neuronal Complexity. J. Cell Sci. 2023, 136, jcs260993. [Google Scholar] [CrossRef]
- Breuzard, G.; Hubert, P.; Nouar, R.; Bessa, T.D.; Devred, F.; Barbier, P.; Sturgis, J.N.; Peyrot, V. Molecular Mechanisms of Tau Binding to Microtubules and Its Role in Microtubule Dynamics in Live Cells. J. Cell Sci. 2013, 126, 2810–2819. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C.; Talalay, P. Quantitative Analysis of Dose-Effect Relationships: The Combined Effects of Multiple Drugs or Enzyme Inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef] [PubMed]
- De Bessa, T.; Breuzard, G.; Allegro, D.; Devred, F.; Peyrot, V.; Barbier, P. Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells. In Tau Protein: Methods and Protocols; Smet-Nocca, C., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; pp. 61–85. ISBN 978-1-4939-6598-4. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer US: Boston, MA, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Watson, J.; Chambers, S.; Smith, P. A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry 1987, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Zelcer, N.; Allen, J.D.; Yao, D.; Boyd, G.; Maliepaard, M.; Friedberg, T.H.; Smyth, J.F.; Jodrell, D.I. Glucuronidation as a Mechanism of Intrinsic Drug Resistance in Colon Cancer Cells: Contribution of Drug Transport Proteins. Biochem. Pharmacol. 2004, 67, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Schobert, R.; Effenberger-Neidnicht, K.; Biersack, B. Stable Combretastatin A-4 Analogues with Sub-Nanomolar Efficacy against Chemoresistant HT-29 Cells. Int. J. Clin. Pharmacol. Ther. 2011, 49, 71–72. [Google Scholar]
- Agrawal, N.N.; Soni, P.A. Reaction of 2′-Hydroxy-5′-Acetamido Chalcones with Dimethyl Sulfoxide-Iodine, Pyridine-Mercuric (II) Acetate and Triethanolamine; CSIR: New Delhi, India, 2005. [Google Scholar]
- Raval, A.A.; Shah, N.M. Chalcones and Related Compounds Derived from 2-Hydroxy-5-Acetaminoacetophenone II. Flavones and Flavonols. J. Org. Chem. 1957, 22, 304–306. [Google Scholar] [CrossRef]
- Yap, S.; Loft, K.J.; Woodman, O.L.; Williams, S.J. Discovery of Water-Soluble Antioxidant Flavonols without Vasorelaxant Activity. ChemMedChem 2008, 3, 1572–1579. [Google Scholar] [CrossRef]
- Tang, J.-H.; Shi, D.-X.; Zhang, L.-J.; Zhang, Q.; Li, J.-R. Facile and One-Pot Synthesis of 1,2-Dihydroquinazolin-4(3H)-Ones via Tandem Intramolecular Pinner/Dimroth Rearrangement. Synth. Commun. 2010, 40, 632–641. [Google Scholar] [CrossRef]
QCT | 1 | 2–15 | 16–17 | |||
---|---|---|---|---|---|---|
Compounds | R1 | R2 | Log P (a) | Inhibition of Aggregation IC50 (b,c) (µM) | Equilibrium Binding Constants to Tau (a,c) | |
KD (×10−6 M) | fA | |||||
QCT | - | - | 1.68 | 17.3 ± 0.6 | 2.4 ± 0.6 | 0.12 ± 0.04 |
1 | - | - | 4.17 | 92.0 ± 9.6 | 7.0 ± 2.3 | 0.39 ± 0.08 |
2 | H | 5.46 | 31.7 ± 7.3 | 4.7 ± 1.8 | 0.14 ± 0.10 | |
3 | H | 5.05 | >100 | nd | nd | |
4 | H | 4.28 | 9.7 ± 0.2 | 2.4 ± 0.8 | 0.12 ± 0.01 | |
5 | H | 1.62 | >100 | 6.4 ± 1.5 | 0.38 ± 0.01 | |
6 | H | 3.85 | 9.0 ± 0.5 | nd | nd | |
7 | H | 3.87 | 17.0 ± 2.9 | 5.9 ± 1.6 | 0.21 ± 0.02 | |
8 | H | 3.89 | 15.0 ± 1.2 | nd | nd | |
9 | OH | 3.55 | 22.2 ± 4.0 | 5.5 ± 3.1 | 0.18 ± 0.04 | |
10 | OH | 3.58 | 9.9 ± 1.1 | 6.3 ± 1.2 | 0.20 0 ± 0.04 | |
11 | OH | 3.60 | >100 | 5.2 ± 1.8 | 0.16 ± 0.01 | |
12 | OH | 3.44 | 12.4 ± 1.2 | 4.7 ± 1.3 | 0.19 ± 0.05 | |
13 | OCH3 | 3.83 | 9.0 ± 0.6 | 5.4 ± 2.5 | 0.21 ± 0.02 | |
14 | OCH3 | 3.85 | 11.7 ± 2.0 | 4.2 ± 0.3 | 0.21 ± 0.04 | |
15 | OCH3 | 3.88 | 6.5 ± 0.1 | 4.1 ± 1.0 | 0.23 ± 0.03 | |
16 | - | 4.82 | 10.8 ± 2.2 | 5.0 ± 2.5 | 0.20 ± 0.03 | |
17 | - | 4.85 | >100 | 3.5 ± 1.0 | 0.14 ± 0.05 |
Compounds | IC50 (a) (µM) | |||||
---|---|---|---|---|---|---|
U87 | U251 | U138 | T98G | SK-N-SH | Caco-2 | |
QCT | >100 | >100 | >100 | >100 | nd | >100 |
1 | 22.4 ± 5.2 | 6.7 ± 2.2 | 6.4 ± 1.3 | 4.2 ± 0.7 | nd | 33.2 ± 13.3 |
2 | 1.9 ± 0.7 | 1.7 ± 0.5 | 2.3 ±1.0 | 2.8 ± 2.4 | 1.2 ± 0.3 | >100 |
3 | >100 | >100 | >100 | >100 | >100 | >100 |
4 | >100 | >100 | >100 | >100 | >100 | >100 |
5 | >100 | >100 | >100 | >100 | >100 | >100 |
6 | 2.6 ± 1.3 | 1.3 ±0.4 | 1.0 ± 0.4 | 2.9 ± 0.7 | nd | nd |
7 | >100 | >100 | >100 | >100 | nd | nd |
8 | >100 | 3.6 ± 1.1 | 10.2 ± 5.0 | >100 | nd | nd |
9 | 2.4 ± 1.7 | 1.7 ± 0.5 | 2.3 ± 1.0 | 2.8 ± 2.4 | 1.2 ± 0.2 | >100 |
10 | 2.6 ± 1.5 | 1.0 ± 0.4 | 0.9 ± 0.4 | 1.5 ± 0.7 | nd | nd |
11 | 5.1 ± 1.8 | 1.9 ± 0.2 | 5.0 ± 1.1 | 3.5 ± 1.0 | nd | nd |
12 | 4.1 ± 3.4 | nd | nd | 1.7 ± 0.9 | nd | nd |
13 | 7.9 ± 3.4 | 1.7 ± 0.1 | 1.5 ± 0.3 | 9.2 ± 1.2 | nd | nd |
14 | 1.1 ± 0.2 | 1.3 ± 0.5 | 1.4 ±0.2 | 2.7 ± 0.5 | nd | nd |
15 | 8.8 ± 3.3 | 1.9 ± 0.2 | 4.1 ± 1.6 | 11.3 ± 4.1 | nd | nd |
16 | >100 | >100 | >100 | >100 | nd | nd |
17 | 5.1 ± 0.8 | >100 | >100 | >100 | >100 | >100 |
Compounds | IC50 (a) (µM) | |
---|---|---|
U87 shCTRL | U87 shTau | |
2 | 1.4 ± 0.5 | 4.7 ± 0.3 |
3 | >100 | >100 |
4 | >100 | >100 |
5 | >100 | >100 |
9 | 1.6 ± 0.5 | >100 |
10 | 1.2 ± 0.4 | 1.4 ± 0.6 |
11 | 0.3 ± 0.2 | 0.4 ± 0.4 |
12 | 0.6 ± 0.1 | 0.5 ± 0.3 |
16 | >100 | >100 |
17 | >100 | >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hedna, R.; DiMaio, A.; Robin, M.; Allegro, D.; Tatoni, M.; Peyrot, V.; Barbier, P.; Kovacic, H.; Breuzard, G. 2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma. Int. J. Mol. Sci. 2023, 24, 15050. https://doi.org/10.3390/ijms242015050
Hedna R, DiMaio A, Robin M, Allegro D, Tatoni M, Peyrot V, Barbier P, Kovacic H, Breuzard G. 2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma. International Journal of Molecular Sciences. 2023; 24(20):15050. https://doi.org/10.3390/ijms242015050
Chicago/Turabian StyleHedna, Rayane, Attilio DiMaio, Maxime Robin, Diane Allegro, Mario Tatoni, Vincent Peyrot, Pascale Barbier, Hervé Kovacic, and Gilles Breuzard. 2023. "2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma" International Journal of Molecular Sciences 24, no. 20: 15050. https://doi.org/10.3390/ijms242015050
APA StyleHedna, R., DiMaio, A., Robin, M., Allegro, D., Tatoni, M., Peyrot, V., Barbier, P., Kovacic, H., & Breuzard, G. (2023). 2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma. International Journal of Molecular Sciences, 24(20), 15050. https://doi.org/10.3390/ijms242015050