Nickel(II) and Palladium(II) Complexes with η5:κ1(N)-Coordinated Dicarbollide Ligands Containing Pendant Pyridine Group
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design of Dicarbollide Ligands with Pendant Pyridine Group: General Principles
2.2. Synthesis of nido-Carborane Derivatives with Pendant Pyridine Group
2.3. Synthesis of Nickela- and Platinacarboranes with Pendant Chelating Pyridine Group
3. Methods and Materials
3.1. Materials and Methods
3.2. Synthesis of Cs[9-(NC5H4-2′-S)-7,8-C2B9H11] (Cs[1])
3.3. Synthesis of 1-(NC5H4-2′-S)-1,2-C2B10H11 (2), [7-(NC5H5-2′-S)-7,8-C2B9H11] (H[3]) and Cs[7-(NC5H4-2′-S)-7,8-C2B9H11] (Cs[3])
3.4. Synthesis of 1-(NC5H4-2′-CH2S)-1,2-C2B10H11 (4)
3.5. Synthesis of Cs[7-(NC5H4-2′-CH2S)-7,8-C2B9H11] (Cs[5])
3.6. General Procedure for Synthesis of Metallacarboranes 6–11
3.7. Single Crystal X-ray Diffraction Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawthorne, M.F.; Young, D.C.; Garrett, P.M.; Owen, D.A.; Schwerin, S.G.; Tebbe, F.N.; Wegner, P.A. Preparation and characterization of the (3)-1,2- and (3)-1,7-dicarbadodecahydroundecaborate(-1) ions. J. Am. Chem. Soc. 1968, 90, 862–868. [Google Scholar] [CrossRef]
- Grimes, R.N. Chapter 7—Eleven-Vertex Carboranes. In Carboranes, 3rd ed.; Academic Press: London, UK, 2016; pp. 179–247. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Young, D.C.; Wegner, P.A. Carbametallic boron hydride derivatives. I. Apparent analogs of ferrocene and ferricinium ion. J. Am. Chem. Soc. 1965, 87, 1818–1819. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Pilling, R.L. Carbametallic boron hydride derivatives. III. The π-C5H5Fe(π-B9C2H11) system. J. Am. Chem. Soc. 1965, 87, 3987–3988. [Google Scholar] [CrossRef]
- Zalkin, A.; Templeton, D.H.; Hopkins, T.E. The crystal and molecular structure of C5H5FeB9C2H11. J. Am. Chem. Soc. 1965, 87, 3988–3990. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Young, D.C.; Andrews, T.D.; Howe, D.W.; Pilling, R.L.; Pitts, A.D.; Reintjes, M.; Warren, L.F.; Wegner, P.A. π-Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968, 90, 879–896. [Google Scholar] [CrossRef]
- Grimes, R.N. Chapter 13—Metallacarboranes of the Transition and Lanthanide Elements. In Carboranes, 3rd ed.; Academic Press: London, UK, 2016; pp. 711–903. [Google Scholar] [CrossRef]
- Kar, S.; Pradhan, A.N.; Ghosh, S. Polyhedral metallaboranes and metallacarboranes. In Comprehensive Organometallic Chemistry IV; Elsevier: Amsterdam, The Netherlands, 2022; Volume 9, pp. 263–369. [Google Scholar] [CrossRef]
- Jutzi, P.; Siemeling, U. Cyclopentadienyl compounds with nitrogen donors in the side-chain. J. Organomet. Chem. 1995, 500, 175–185. [Google Scholar] [CrossRef]
- Siemeling, U. Chelate complexes of cyclopentadienyl ligands bearing pendant O-donors. Chem. Rev. 2000, 100, 1495–1526. [Google Scholar] [CrossRef]
- Butenschön, H. Cyclopentadienylmetal complexes bearing pendant phosphorus, arsenic, and sulfur ligands. Chem. Rev. 2000, 100, 1527–1564. [Google Scholar] [CrossRef]
- Müller, C.; Vos, D.; Jutzi, P. Results and perspectives in the chemistry of side-chain-functionalized cyclopentadienyl compounds. J. Organomet. Chem. 2000, 600, 127–143. [Google Scholar] [CrossRef]
- Krut’ko, D.P. Zirconium and titanium complexes with side-chain functionalized cyclopentadienyl ligands. Russ. Chem. Bull. 2009, 58, 1745–1771. [Google Scholar] [CrossRef]
- Son, K.; Waymouth, R.M. Stereospecific styrene polymerization and ethylene–styrene copolymerization with titanocenes containing a pendant amine donor. J. Polym. Sci. A 2010, 48, 1579–1585. [Google Scholar] [CrossRef]
- Batuecas, M.; Esteruelas, M.A.; García-Yebra, C.; Oñate, E. Redox isomerization of allylic alcohols catalyzed by osmium and ruthenium complexes containing a cyclopentadienyl ligand with a pendant amine or phosphoramidite group: X-ray structure of an η3-1-hydroxyallyl-metal-hydride intermediate. Organometallics 2010, 29, 2166–2175. [Google Scholar] [CrossRef]
- Varga, V.; Večeřa, M.; Gyepes, R.; Pinkas, J.; Horáček, M.; Merna, J.; Lamač, M. Effects of the linking of cyclopentadienyl and ketimide ligands in titanium half-sandwich olefin polymerization catalysts. ChemCatChem 2017, 9, 3160–3172. [Google Scholar] [CrossRef]
- Dunlop, D.; Večeřa, M.; Gyepes, R.; Kubát, P.; Lang, K.; Horáček, M.; Pinkas, J.; Šimková, L.; Liška, A.; Lamač, M. Luminescent cationic Group 4 metallocene complexes stabilized by pendant N-donor groups. Inorg. Chem. 2021, 60, 7315–7328. [Google Scholar] [CrossRef]
- Urbán, B.; Dunlop, D.; Gyepes, R.; Kubát, P.; Lang, K.; Horáček, M.; Pinkas, J.; Šimková, L.; Lamač, M. Luminescent zirconocene complexes with pendant phosphine chalcogenide donor groups. Organometallics 2023, 42, 1373–1385. [Google Scholar] [CrossRef]
- Krut’ko, D.P.; Kirsanov, R.S.; Belov, S.A.; Borzov, M.V.; Churakov, A.V. Complexes of titanium and zirconium based on [C5Me4CH2-(2-C5H4N)] ligand. J. Organomet. Chem. 2007, 692, 1465–1471. [Google Scholar] [CrossRef]
- Ackroyd, N.C.; Katzenellenbogen, J.A. Pyridyl-cyclopentadiene Re(CO)2+ complexes as a compact core system for SPECT ligand development. Organometallics 2010, 29, 3669–3671. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Wang, B.; Xu, S.; Song, H. Reactions of pyridyl side-chain-functionalized cyclopentadienes with metal carbonyl: Intramolecular C-H activation of pyridine. Organometallics 2006, 25, 307–310. [Google Scholar] [CrossRef]
- Lin, J.; Ma, Z.-H.; Li, F.; Zhao, M.-X.; Liu, X.-H.; Zheng, X.-Z. Reactions of pyridyl side chain functionalized cyclopentadiene with ruthenium carbonyl. Trans. Met. Chem. 2009, 34, 855–859. [Google Scholar] [CrossRef]
- Ma, Z.-H.; Han, Y.-X.; Wang, H.; Han, Z.-G.; Zheng, X.-Z.; Lin, J. Synthesis and crystal structures of three metal carbonyl complexes based on pyridyl side chain functionalized tetramethylcyclopentadienyl ligand. Chin. J. Struct. Chem. 2015, 34, 931–937. [Google Scholar]
- Zhang, S.; Liu, K.; Zhu, B. Reactions of pyridine-2-ethyl/methyl cyclopentadienes with metal carbonyls. J. Coord. Chem. 2018, 71, 16–18. [Google Scholar] [CrossRef]
- Blais, M.S.; Chien, J.C.W.; Rausch, M.D. Pendent aminoalkyl-substituted monocyclopentadienyltitanium compounds and their polymerization behavior. Organometallics 1998, 17, 3775–3783. [Google Scholar] [CrossRef]
- Coult, R.; Fox, M.A.; Gill, W.R.; Herbertson, P.L.; MacBride, J.A.H.; Wade, K. C-arylation and C-heteroarylation of icosahedral carboranes via their copper(I) derivatives. J. Organomet. Chem. 1993, 462, 19–29. [Google Scholar] [CrossRef]
- Alekseyeva, E.S.; Batsanov, A.S.; Boyd, L.A.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; MacBride, J.A.H.; Mackinnon, A.; Wade, K. Intra- and inter-molecular carboranyl C–H⋯N hydrogen bonds in pyridyl-containing ortho-carboranes. Dalton Trans. 2003, 475–482. [Google Scholar] [CrossRef]
- Wang, X.; Jin, G.-X. Preparation, structure, and olefin polymerization behavior of a picolyl-functionalized carborane nickel(II) complex. Organometallics 2004, 23, 6319–6322. [Google Scholar] [CrossRef]
- Wang, X.; Jin, G.-X. Preparation, structure, and ethylene polymerization behavior of half-sandwich picolyl-functionalized carborane iridium, ruthenium, and rhodium complexes. Chem. Eur. J. 2005, 11, 5758–5764. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-Y.; Wan, H.; Zhang, J.; Wang, Z.; Li, Y.; Du, Y.; Li, C.; Liu, Z.-T.; Liu, Z.-W.; Lu, J. Palladium-catalyzed direct cross-coupling of carboranyllithium with (hetero)aryl halides. Chem. Eur. J. 2016, 22, 17542–17546. [Google Scholar] [CrossRef]
- Islam, M.J.; Smith, M.D.; Peryshkov, D.V. Sterically encumbered dianionic dicarboranyl pincer ligand (C5H3N)(C2B10H11)2 and its CNC nickel(II) complex. J. Organomet. Chem. 2018, 867, 208–213. [Google Scholar] [CrossRef]
- Anderson, K.P.; Mills, H.A.; Mao, C.; Kirlikovali, K.O.; Axtell, J.C.; Rheingold, A.L.; Spokoyny, A.M. Improved synthesis of icosahedral carboranes containing exopolyhedral B-C and C-C bonds. Tetrahedron 2019, 75, 187–191. [Google Scholar] [CrossRef]
- Terrasson, V.; Planas, J.G.; Prim, D.; Viñas, C.; Teixidor, F.; Light, M.E.; Hursthouse, M.B. Cooperative effect of carborane and pyridine in the reaction of carboranyl alcohols with thionyl chloride: Halogenation versus oxidation. J. Org. Chem. 2008, 73, 9140–9143. [Google Scholar] [CrossRef]
- Terrasson, V.; Planas, J.G.; Viñas, C.; Teixidor, F.; Prim, D.; Light, M.E.; Hursthouse, M.B. closo-o-Carboranylmethylamine-pyridine associations: Synthesis, characterization, and first complexation studies. Organometallics 2010, 29, 4130–4134. [Google Scholar] [CrossRef]
- Di Salvo, F.; Camargo, B.; García, Y.; Teixidor, F.; Viñas, C.; Planas, J.G.; Light, M.E.; Hursthouse, M.B. Supramolecular architectures in o-carboranylalcohols bearing N-aromatic rings: Syntheses, crystal structures and melting points correlation. CrystEngComm 2011, 13, 5788–5806. [Google Scholar] [CrossRef]
- Peng, B.; Nie, Y.; Miao, J.; Zhang, Z.; Xu, M.; Sun, G. Synthesis, structures and photophysical properties of (o-carboranyl)-(pyridyl)methanols. J. Mol. Struct. 2012, 1007, 214–219. [Google Scholar] [CrossRef]
- Di Salvo, F.; Paterakis, C.; Tsang, M.Y.; García, Y.; Viñas, C.; Teixidor, F.; Planas, J.G.; Light, M.E.; Hursthouse, M.B.; Choquesillo-Lazarte, D. Synthesis and crystallographic studies of disubstituted carboranyl alcohol derivatives: Prevailing chiral recognition? Cryst. Growth Des. 2013, 13, 1473–1484. [Google Scholar] [CrossRef]
- Tsang, M.Y.; Viñas, C.; Teixidor, F.; Planas, J.G.; Conde, N.; SanMartin, R.; Herrero, M.T.; Domínguez, E.; Lledós, A.; Vidossich, P.; et al. Synthesis, structure, and catalytic applications for ortho- and meta-carboranyl based NBN pincer-Pd complexes. Inorg. Chem. 2014, 53, 9284–9295. [Google Scholar] [CrossRef]
- Teixidor, F.; Laromaine, A.; Kivekäs, R.; Sillanpää, R.; Viñas, C.; Vespalec, R.; Horakova, H. Synthesis, reactivity and complexation studies of N,S exo-heterodisubstituted o-carborane ligands. Carborane as a platform to produce the uncommon bidentate chelating (pyridine)N-C-C-C-S(H) motif. Dalton Trans. 2008, 345–354. [Google Scholar] [CrossRef]
- Di Salvo, F.; Teixidor, F.; Viñas, C.; Planas, J.G.; Light, M.E.; Hursthouse, M.B.; Aliaga-Alcalde, N. Metallosupramolecular chemistry of novel chiral closo-o-carboranylalcohol pyridine and quinoline ligands: Syntheses, characterization, and properties of cobalt complexes. Cryst. Growth Des. 2012, 12, 5720–5736. [Google Scholar] [CrossRef]
- Di Salvo, F.; Teixidor, F.; Viñas, C.; Planas, J.G. A distinct tetradentate N2O2-type ligand: (o-Carboranyl)bis(2-hydroxymethyl)pyridine. Z. Anorg. Allg. Chem. 2013, 639, 1194–1198. [Google Scholar] [CrossRef]
- Bae, H.J.; Kim, H.; Lee, K.M.; Kim, T.; Eo, M.; Lee, Y.S.; Do, Y.; Lee, M.H. Heteroleptic tris-cyclometalated iridium(III) complexes supported by an o-carboranyl-pyridine ligand. Dalton Trans. 2013, 42, 8549–8552. [Google Scholar] [CrossRef]
- Di Salvo, F.; Tsang, M.Y.; Teixidor, F.; Viñas, C.; Planas, J.G.; Crassous, J.; Vanthuyne, N.; Aliaga-Alcalde, N.; Ruiz, E.; Coquerel, G.; et al. A racemic and enantiopure unsymmetric diiron(III) complex with a chiral o-carborane-based pyridylalcohol ligand: Combined chiroptical, magnetic, and nonlinear optical properties. Chem. Eur. J. 2014, 20, 1081–1090. [Google Scholar] [CrossRef]
- Tsang, M.Y.; Teixidor, F.; Viñas, C.; Choquesillo-Lazarte, D.; Aliaga-Alcalde, N.; Planas, J.G. Synthesis, structures and properties of ironIII complexes with (o-carboranyl)bis-(2-hydroxymethyl)pyridine: Racemic versus meso. Inorg. Chim. Acta 2016, 448, 97–103. [Google Scholar] [CrossRef]
- Tsang, M.Y.; Rodríguez-Hermida, S.; Stylianou, K.C.; Tan, F.; Negi, D.; Teixidor, F.; Viñas, C.; Choquesillo-Lazarte, D.; Verdugo-Escamilla, C.; Guerrero, M.; et al. Carborane bis-pyridylalcohols as linkers for coordination polymers: Synthesis, crystal structures, and guest-framework dependent mechanical properties. Cryst. Growth Des. 2017, 17, 846–857. [Google Scholar] [CrossRef]
- Tsang, M.Y.; Viñas, C.; Teixidor, F.; Choquesillo-Lazarte, D.; Planas, J.G. Crystalline inclusion compounds of a palladacyclic tetraol host featuring o-carborane units. Eur. J. Inorg. Chem. 2017, 2017, 4589–4598. [Google Scholar] [CrossRef]
- Guo, S.-T.; Cui, P.-F.; Gao, Y.; Jin, G.-X. Regioselective B-H/C-H activation and metal–metal bond formation induced by half-sandwich metals complexes at hydroxy-substituted o-carboranes. Dalton Trans. 2018, 47, 13641–13646. [Google Scholar] [CrossRef]
- Islam, M.J.; Park, K.C.; Manley, O.M.; Smith, M.D.; Makris, T.M.; Peryshkov, D.V. Room-temperature aerobic C-CN bond activation in nickel(II) cyanomethyl dicarboranyl complex. Organometallics 2023, 42, 1997–2004. [Google Scholar] [CrossRef]
- Viñas, C.; Laromaine, A.; Teixidor, F.; Horakova, H.; Langauf, A.; Vespalec, R.; Mata, I.; Molins, E. Synthesis and investigation of the boron cluster anion [7-(2′-pyridyl)-7,8-nido-dicarbaundecaborate] and its protonated form. Dalton Trans. 2007, 3369–3377. [Google Scholar] [CrossRef]
- Lee, J.-D.; Lee, Y.-J.; Son, K.-C.; Han, W.-S.; Cheong, M.; Ko, J.; Kang, S.O. Synthesis, characterization, and reactivity of new types of constrained geometry group 4 metal complexes derived from picolyl-substituted dicarbollide ligand systems. J. Organomet. Chem. 2007, 692, 5403–5413. [Google Scholar] [CrossRef]
- Frank, R.; Grell, T.; Hiller, M.; Hey-Hawkins, E. Electrophilic substitution of the nido-dicarbaborate anion 7,8-nido-C2B9H12− with sulfenyl chlorides. Dalton Trans. 2012, 41, 6155–6161. [Google Scholar] [CrossRef]
- Park, J.-S.; Kim, D.-H.; Kim, S.-J.; Ko, J.; Kim, S.H.; Cho, S.; Lee, C.-H.; Kang, S.O. Preparation and reactions of a half-sandwich dicarbollyl nickel(II) complex containing a dimethylamino pendent group. Organometallics 2001, 20, 4483–4491. [Google Scholar] [CrossRef]
- Lee, J.-D.; Lee, Y.-J.; Son, K.-C.; Cheong, M.; Ko, J.; Kang, S.O. New types of constrained geometry group 4 metal complexes derived from the aminomethyldicarbollyl ligand system: Synthesis and structural characterization of mono-dicarbollylamino and bis-dicarbollylamino group 4 metal complexes. Organometallics 2007, 26, 3374–3384. [Google Scholar] [CrossRef]
- Lee, J.-D.; Kim, S.-K.; Kim, T.J.; Han, W.-S.; Lee, Y.-J.; Yoo, D.-H.; Cheong, M.; Ko, J.; Kang, S.O. Dicarbollylamine ligand as a tunable template for σ,σ- and π,σ-bonding modes: Syntheses, structures, and theoretical studies of η5:η1-coordinated constrained-geometry group 13 metal complexes. J. Am. Chem. Soc. 2008, 130, 9904–9917. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.O.; Lee, J.-D. New types of charge-compensated metallacarboranes: Synthesis, characterization, and structural studies of [(η5-RC2B9H9CH2NMe2)Cr(μ-Cl)Cl]2 (R = H, Me). J. Organomet. Chem. 2015, 798, 121–124. [Google Scholar] [CrossRef]
- Liu, D.; Qiu, Z.; Xie, Z. Synthesis, structure, and alkyne insertion of a mixed-sandwich zirconacarborane alkyl. Inorg. Chem. Front. 2015, 2, 467–472. [Google Scholar] [CrossRef]
- Liu, D.; Qiu, Z.; Xie, Z. Synthesis, structure, and reactivity of mixed-sandwich zirconacarborane methyl complex (η5-C5Me5)[η1:η5-(Me2NCH2CH2)C2B9H10]ZrMe. J. Organomet. Chem. 2016, 822, 144–153. [Google Scholar] [CrossRef]
- Axtell, J.C.; Kirlikovali, K.O.; Djurovich, P.I.; Jung, D.; Nguyen, V.T.; Munekiyo, B.; Royappa, A.T.; Rheingold, A.L.; Spokoyny, A.M. Blue phosphorescent zwitterionic iridium(III) complexes featuring weakly coordinating nido-carborane-based ligands. J. Am. Chem. Soc. 2016, 138, 15758–15765. [Google Scholar] [CrossRef]
- Mingos, D.M.P.; Forsyth, M.I.; Welch, A.J. X-Ray crystallographic and theoretical studies on ‘slipped’ metallacarboranes. J. Chem. Soc., Chem. Commun. 1977, 605–607. [Google Scholar] [CrossRef]
- Mingos, D.M.P. Molecular-orbital studies on carbametallaboranes. Part 1. Icosahedral carbaplatinaborane polyhedral. J. Chem. Soc. Dalton Trans. 1977, 602–610. [Google Scholar] [CrossRef]
- Mingos, D.M.P.; Forsyth, M.I.; Welch, A.J. Molecular and crystal structure of 3,3-bis(triethylphosphine)-1,2-dicarba- 3-platinadodecaborane(11), and molecular-orbital analysis of the ‘slip’ distortion in carbametallaboranes. J. Chem. Soc. Dalton Trans. 1978, 1363–1374. [Google Scholar] [CrossRef]
- Kennedy, R.D.; Kennedy, J.D. The contrarotational fluxionality of [3,3-(PMe2Ph)2-closo-3,1,2-PtC2B9H11] and related species. Dalton Trans. 2015, 44, 9620–9629. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Chemistry of nickel and iron bis(dicarbollides). A review. J. Organomet. Chem. 2000, 614–615, 27–36. [Google Scholar] [CrossRef]
- Nan, R.; Li, Y.; Zhu, Z.; Qi, F.; Xiao, X.-Q. Nickelacarborane-supported bis-N-heterocyclic carbenes. J. Am. Chem. Soc. 2023, 145, 15538–15546. [Google Scholar] [CrossRef] [PubMed]
- Semyonov, D.K.; Slushko, G.K.; Stogniy, M.Y.; Anufriev, S.A.; Godovikov, I.A.; Suponitsky, K.Y.; Bregadze, V.I.; Sivaev, I.B. Interligand interactions in half-sandwich nickelacarboranes with phosphine ligands: Away from skeletal rearrangements. Organometallics 2023, 42, 2522–2530. [Google Scholar] [CrossRef]
- Semyonov, D.K.; Stogniy, M.Y.; Suponitsky, K.Y.; Sivaev, I.B. Half-sandwich nickelacarboranes derived from [7-(MeO(CH2)2S)-7,8-C2B9H11]-. Inorganics 2023, 11, 127. [Google Scholar] [CrossRef]
- Mandal, D.; Man, W.Y.; Rosair, G.M.; Welch, A.J. Steric versus electronic factors in metallacarborane isomerisation: Nickelacarboranes with 3,1,2-, 4,1,2- and 2,1,8-NiC2B9 architectures and pendant carborane groups, derived from 1,1′-bis(o-carborane). Dalton Trans. 2016, 45, 15013–15025. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Rosair, G.M. Exploration of bis(nickelation) of 1,1′-bis(o-carborane). Crystals 2021, 11, 16. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Markov, V.Y.; Sivaev, I.B. Synthesis and crystal structures of nickel(II) and palladium(II) complexes with o-carboranyl amidine ligands. Dalton Trans. 2021, 50, 4967–4975. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. Coordination ability of 10-EtC(NHPr)=HN- 7,8-C2B9H11 in the reactions with nickel(II) phosphine complexes. Crystals 2021, 11, 306. [Google Scholar] [CrossRef]
- Hao, E.; Friso, E.; Miotto, G.; Jori, G.; Soncin, M.; Fabris, C.; Sibrian-Vazquez, M.; Vicente, M.G.H. Synthesis and biological investigations of tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC). Org. Biomol. Chem. 2008, 6, 3732–3740. [Google Scholar] [CrossRef]
- Gibbs, J.H.; Wang, H.; Bhupathiraju, N.V.S.D.K.; Fronczek, F.R.; Smith, K.M.; Vicente, M.G.H. Synthesis and properties of a series of carboranyl-BODIPYs. J. Organomet. Chem. 2015, 798, 209–213. [Google Scholar] [CrossRef]
- Kellert, M.; Lönnecke, P.; Riedl, B.; Koebberling, J.; Hey-Hawkins, E. Enlargement of a modular system—Synthesis and characterization of an s-triazine-based carboxylic acid ester bearing a galactopyranosyl moiety and an enormous boron load. Molecules 2019, 24, 3288. [Google Scholar] [CrossRef]
- Alpatova, V.A.; Rys, E.G.; Kononova, E.G.; Khakina, E.A.; Markova, A.A.; Shibaeva, A.V.; Kuzmin, V.A.; Ol’shevskaya, V.A. Multicomponent molecular systems based on porphyrins, 1,3,5-triazine and carboranes: Synthesis and characterization. Molecules 2022, 27, 6200. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Sivaev, I.B.; Petrovskii, P.V.; Bregadze, V.I. Synthesis of monosubstituted functional derivatives of carboranes from 1-mercapto-ortho-carborane: 1-HOOC(CH2)nS-1,2-C2B10H11 and [7-HOOC(CH2)nS-7,8-C2B9H11]− (n = 1-4). Dalton Trans. 2010, 39, 1817–1822. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Zakharova, M.V.; Sivaev, I.B.; Godovikov, I.A.; Chizov, A.O.; Bregadze, V.I. Synthesis of new carborane-based amino acids. Polyhedron 2013, 55, 117–120. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Sivaev, I.B.; Godovikov, I.A.; Starikova, Z.A.; Bregadze, V.I.; Qi, S. Synthesis of new ω-amino- and ω-azidoalkyl carboranes. New J. Chem. 2013, 37, 3865–3868. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Druzina, A.A.; Sivaev, I.B.; Bregadze, V.I. Synthesis of novel carboranyl azides and “click” reactions thereof. J. Organomet. Chem. 2019, 904, 121007. [Google Scholar] [CrossRef]
- Druzina, A.A.; Stogniy, M.Y. Synthesis of cholesterol derivatives based on closo- and nido-carboranes. Russ. Chem. Bull. 2021, 70, 527–532. [Google Scholar] [CrossRef]
- Standley, E.A.; Smith, S.J.; Müller, P.; Jamison, T.F. A broadly applicable strategy for entry into homogeneous nickel(0) catalysts from air-stable nickel(II) complexes. Organometallics 2014, 33, 2012–2018. [Google Scholar] [CrossRef]
- Itatani, H.; Bailar, J.C. Homogenous catalysis in the reactions of olefinic substances. V. Hydrogenation of soybean oil methyl ester with triphenylphosphine and triphenylarsine palladium catalysts. J. Am. Oil Chem. Soc. 1967, 44, 147–151. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed.; Butterworth-Heinemann: Burlington, UK, 2009. [Google Scholar]
- APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semyonov, D.K.; Stogniy, M.Y.; Anufriev, S.A.; Timofeev, S.V.; Suponitsky, K.Y.; Sivaev, I.B. Nickel(II) and Palladium(II) Complexes with η5:κ1(N)-Coordinated Dicarbollide Ligands Containing Pendant Pyridine Group. Int. J. Mol. Sci. 2023, 24, 15069. https://doi.org/10.3390/ijms242015069
Semyonov DK, Stogniy MY, Anufriev SA, Timofeev SV, Suponitsky KY, Sivaev IB. Nickel(II) and Palladium(II) Complexes with η5:κ1(N)-Coordinated Dicarbollide Ligands Containing Pendant Pyridine Group. International Journal of Molecular Sciences. 2023; 24(20):15069. https://doi.org/10.3390/ijms242015069
Chicago/Turabian StyleSemyonov, Dmitriy K., Marina Yu. Stogniy, Sergey A. Anufriev, Sergey V. Timofeev, Kyrill Yu. Suponitsky, and Igor B. Sivaev. 2023. "Nickel(II) and Palladium(II) Complexes with η5:κ1(N)-Coordinated Dicarbollide Ligands Containing Pendant Pyridine Group" International Journal of Molecular Sciences 24, no. 20: 15069. https://doi.org/10.3390/ijms242015069
APA StyleSemyonov, D. K., Stogniy, M. Y., Anufriev, S. A., Timofeev, S. V., Suponitsky, K. Y., & Sivaev, I. B. (2023). Nickel(II) and Palladium(II) Complexes with η5:κ1(N)-Coordinated Dicarbollide Ligands Containing Pendant Pyridine Group. International Journal of Molecular Sciences, 24(20), 15069. https://doi.org/10.3390/ijms242015069