Synthesis and Characterization of a Biopolymer Pectin/Ethanolic Extract from Olive Mill Wastewater: In Vitro Safety and Efficacy Tests on Skin Wound Healing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Evaluation of ELAVF Extracts
2.2. HPLC-MS/MS Analysis of ELAVFS1
2.3. NMR of ELAVF
2.4. NMR and ESI-MS/MS Analysis of PELAVF1S
2.5. Cytotoxicity Evaluation by NRU
2.6. In Vitro Analysis of Pro-Sensitizing Potential (h-CLAT)
2.7. In Vitro Skin Irritation
2.8. Hemolytic Effects of Pectin and PELAVF1S on Peripheral Blood
2.9. Proliferative Effects of Pectin and PELAVF1S Extracts on BJ Fibroblast and HaCaT Cells
2.10. Effects of Pectin Extracts and PELAVF1S on Cell Motility
2.11. PELAVF1S Increases Lumican Expression in HaCat Cells
2.12. PELAVF1S Stimulates the Expression of Collagen1 in BJ Fibroblast Cells
3. Materials and Methods
3.1. Materials
3.2. Instruments
3.3. Samples Preparation
Extraction Procedure
3.4. Extracts Characterization
3.4.1. Colorimetric Assays
Total Phenolic Content Determination
Total Phenolic Acid Determination
Flavonoid Content Determination
Total Antioxidant Capacity
Scavenger Activity against DPPH Radical
Scavenger Activity against ABTS Radical
3.4.2. HPLC-MS/MS Analysis of ELAVF
3.4.3. NMR Analysis
3.5. Pectin Polymer Synthesis (PELAVF1S)
3.6. Pectin Polymer ESI-MS/MS Characterization (PELAVF1S)
3.7. Cell Lines and Culture Conditions
3.8. Neutral Red Uptake Assay (NRU)
3.9. Human Cell Line Activation Test (h-CLAT)
3.10. In Vitro Skin Irritation OECD 439
3.11. Hemolysis Assay
3.12. Cell Viability Assay
3.13. Wound-Healing Scratch Assay
3.14. Immunofluorescence
3.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Yoshida, Y.G.; Yan, S.; Xu, H.; Yang, J. Novel metal nanomaterials to promote angiogenesis in tissue regeneration. Eng. Regen. 2023, 4, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Mssillou, M.; Bakour, M.; Slighoua, H.; Laaroussi, H.; Saghrouchni, H.; Ez-Zahra Amrati, F.; Lyoussi, B.; Derwich, E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. J. Ethnopharm. 2022, 298, 115663. [Google Scholar] [CrossRef] [PubMed]
- Maryam, N.; Shahriar, O.; Sasan, Z. Evaluation of physicochemical properties, release kinetics, and in vitro/in vivo wound healing activity of the electrospun nanofibres loaded with the natural antioxidant oil from Pistacia atlantica. J. Drug Del. Sci.Technol. 2023, 84, 104512. [Google Scholar]
- Fernandes, A.; Rodrigues, P.M.; Pintado, M.; Tavaria, F.K. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine 2023, 115, 154824. [Google Scholar] [CrossRef] [PubMed]
- Governa, P.; Carullo, G.; Biagi, M.; Rago, V.; Aiello, F. Evaluation of the In Vitro Wound-Healing Activity of Calabrian Honeys. Antioxidants 2019, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Taskan, M.M.; Balci Yuce, H.; Karatas, O.; Gevrek, F.; Isiker Kara, G.; Celt, M.; Sirma Taskan, E. Hyaluronic acid with antioxidants improve wound healing in rats. Biotech Histochem. 2021, 96, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Na, X.; Yuanping, G.; Zheng, L.; Yu, C.; Menglong, L.; Jiezhi, J.; Rui, Z.; Gaoxing, L.; Jiangfeng, L.; Yunlong, Y. Immunoregulatory hydrogel decorated with Tannic acid/Ferric ion accelerates diabetic wound healing via regulating Macrophage polarization. Chem. Engin. J. 2023, 466, 143173. [Google Scholar]
- Carullo, G.; Governa, P.; Leo, A.; Gallelli, L.; Citraro, R.; Cione, E.; Caroleo, M.C.; Biagi, M.; Aiello, F.; Manetti, F. Quercetin-3-Oleate Contributes to Skin Wound Healing Targeting FFA1/GPR40. Chem. Select 2019, 4, 8429. [Google Scholar] [CrossRef]
- Esposito, T.; Pisanti, S.; Martinelli, R.; Celano, R.; Mencherini, T.; Re, T.; Aquino, R.P. Couroupita guianensis bark decoction: From Amazonian medicine to the UHPLC-HRMS chemical profile and its role in inflammation processes and re-epithelialization. J. Ethnopharm. 2023, 313, 116579. [Google Scholar] [CrossRef]
- Subbukutti, V.; Sailatha, E.; Gunasekaran, S.; Manibalan, S.; Uma Devi, K.J.; Bhuvaneshwari, K.; Suvedha, R. Evaluation of wound healing active principles in the transdermal patch formulated with crude bio wastes and plant extracts against GSK-3 beta—An in silico study. J. Biomol. Struct. Dyn. 2023, 3, 1–12. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Shalabya, K.; Mostafac, E.M.; Musac, A.; Moustafae, A.E.G.A.; Ibrahimb, M.F.; Alruwailia, N.K.; Zafara, A.; Elmowafy, M. Enhanced full-thickness wound healing via Sophora gibbosa extract delivery based on a chitosan/gelatin dressing incorporating microemulsion. Drug Develop. Ind. Pharm. 2021, 47, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Verifiedmarketresearch 2022: Global Olive Oil Market Size by Nature (Conventional, Organic), by Type (Virgin Olive Oil, Refined Olive Oil), by Distribution Channel (Supermarket/Hypermarket, Convenience Stores), by Application (Food and Beverage, Pharmaceuticals), by Geographic Scope and Forecast. Report ID: 16740. Available online: https://www.verifiedmarketresearch.com/product/olive-oil-market/ (accessed on 27 May 2023).
- Restuccia, D.; Prencipe, S.A.; Ruggeri, M.; Spizzirri, U.G. Sustainability Assessment of different Extra Virgin Olive Oil ExtractionMethods through a Life Cycle Thinking approach: Challenges and Opportunities in the Elaio-technical sector. Sustainability 2022, 14, 15674. [Google Scholar] [CrossRef]
- Benincasa, C.; La Torre, C.; Plastina, P.; Fazio, A.; Perri, E.; Caroleo, M.C.; Cione, E. Hydroxytyrosyl oleate: Improved extraction procedure from olive oil and by-products, and in vitro antioxidant and skin regenerative properties. Antioxidants 2019, 8, 233. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, C.; Pellegrino, M.; Romano, E.; Claps, S.; Fallara, C.; Perri, E. Qualitative and quantitative analysis of phenolic compounds in spray-dried olive mill wastewater. Front. Nutr. 2022, 8, 782693. [Google Scholar] [CrossRef] [PubMed]
- Carrara, M.; Kelly, M.T.; Roso, F.; Larroque, M.; Margout, D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. J. Agric. Food Chem. 2021, 69, 7268–7284. [Google Scholar] [CrossRef] [PubMed]
- Utami, N.D.; Nordin, A.; Katas, H.; Idrus, R.B.H.; Fauzi, M.B. Molecular Action of Hydroxytyrosol in Wound Healing: An In Vitro Evidence-Based Review. Biomolecules 2020, 10, 1397. [Google Scholar] [CrossRef]
- He, J.; Alister-Briggs, M.; Lyster, T.D.; Jones, G.P. Stability and antioxidant potential of purified olive mill wastewater extracts. Food Chem. 2012, 131, 1312–1321. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Caputo, P.; Oliviero Rossi, C.; Crupi, P.; Muraglia, M.; Rago, V.; Malivindi, R.; Clodoveo, M.L.; Restuccia, D.; Aiello, F. A Tara Gum/Olive Mill Wastewaters Phytochemicals Conjugate as a New Ingredient for the Formulation of an Antioxidant-Enriched Pudding. Foods 2022, 11, 158. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Galanakis, C.M. Recovery and Removal of Phenolic Compounds from Olive Mill Wastewater. J. Am. Oil Chem. Soc. 2013, 91, 1–18. [Google Scholar] [CrossRef]
- Luque de Castro, M.D.; Garcia-Ayuso, L.E. Soxhlet Extraction of Solid Materials: An Outdated Technique with a Promising Innovative Future. Anal. Chim. Acta 1998, 369, 1–10. [Google Scholar] [CrossRef]
- Dali, I.; Abdelwahab, A.T.; Aydi, A.; Fares, N.; Eladeb, A.; Hamzaoui, M.; Guetat, A. Valorization of Lyophilized Olive Mill Wastewater: Chemical and Biochemical Approaches. Sustainability. 2023, 15, 3360. [Google Scholar] [CrossRef]
- Trombino, S.; Malivindi, R.; Barbarossa, G.; Sole, R.; Curcio, F.; Cassano, R. Solid Lipid Nanoparticles Hydroquinone-Based for the Treatment of Melanoma: Efficacy and Safety Studies. Pharmaceutics 2023, 15, 1375. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, V.M.; Cherian, K.M. Red cell haemolysis test as an in vitro approach for the assessment of toxicity of karanja oil. Toxicol. In Vitro 2000, 14, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Scharffetter-Kochanek, K.; Klein, C.E.; Heinen, G.; Mauch, C.; Schaefer, T.; Adelmann-Grill, B.C.; Goerz, G.; Fusenig, N.E.; Krieg, T.M.; Plewig, G. Migration of a Human Keratinocyte Cell Line (HACAT) to Interstitial Collagen Type I Is Mediated by the α2β1-Integrin Receptor. J. Investig. Dermatol. 1992, 98, 3–11. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; Restuccia, D.; Spizzirri, U.G.; Crupi, P.; Ioele, G.; Gorelli, B.; Clodoveo, M.L.; Saponara, S.; Aiello, F. Wine Lees as Source of Antioxidant Molecules: Green Extraction Procedure and Biological Activity. Antioxidants 2023, 12, 622. [Google Scholar] [CrossRef] [PubMed]
- Spizzirri, U.G.; Abduvakhidov, A.; Caputo, P.; Crupi, P.; Muraglia, M.; Oliviero Rossi, C.; Clodoveo, M.L.; Aiello, F.; Restuccia, D. Kefir Enriched with Carob (Ceratonia siliqua L.) Leaves Extract as a New Ingredient during a Gluten-Free Bread-Making Process. Fermentation 2022, 8, 305. [Google Scholar] [CrossRef]
- Carullo, G.; Scarpelli, F.; Belsito, E.L.; Caputo, P.; Oliviero Rossi, C.; Mincione, A.; Leggio, A.; Crispini, A.; Restuccia, D.; Spizzirri, U.G.; et al. Formulation of New Baking (+)-Catechin Based Leavening Agents: Effects on Rheology, Sensory and Antioxidant Features during Muffin Preparation. Foods 2020, 9, 1569. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Carullo, G.; Aiello, F.; Paolino, D.; Restuccia, D. Valorization of olive oil pomace extracts for a functional pear beverage formulation. Int. J. Food Sci. Technol. 2021, 56, 5497–5505. [Google Scholar] [CrossRef]
- Restuccia, D.; Giorgi, G.; Spizzirri, U.G.; Sciubba, F.; Capuani, G.; Rago, V.; Carullo, G.; Aiello, F. Autochthonous white grape pomaces as bioactive source for functional jams. Int. J. Food Sci. Technol. 2019, 54, 1313–1320. [Google Scholar] [CrossRef]
- De Santis, S.; Liso, M.; Verna, G.; Curci, F.; Milani, G.; Faienza, M.F.; Franchini, C.; Moschetta, A.; Chieppa, M.; Clodoveo, M.L.; et al. Extra Virgin Olive Oil Extracts Modulate the Inflammatory Ability of Murine Dendritic Cells Based on Their Polyphenols Pattern: Correlation between Chemical Composition and Biological Function. Antioxidants 2021, 10, 1016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Huang, B.; Zheng, C.; Chen, Q.; Fei, P. Investigation of a Lipase-Catalyzed Reaction between Pectin and Salicylic Acid and Its Isomers and Evaluation of the Emulsifying Properties, Antioxidant Activities, and Antibacterial Activities of the Corresponding Products. J. Agric. Food Chem. 2021, 69, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switerland, 2009.
- Carullo, G.; Spizzirri, U.G.; Malivindi, R.; Rago, V.; Motta, M.F.; Lofaro, D.; Restuccia, D.; Aiello, F. Development of Quercetin-DHA Ester-Based Pectin Conjugates as New Functional Supplement: Effects on Cell Viability and Migration. Nutraceuticals 2022, 2, 278–288. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Ashikaga, T.; Miyazawa, M.; Kosaka, N.; Ito, Y.; Yoneyama, K.; Sono, S.; Itagaki, H.; Toyoda, H.; Suzuki, H. The relationship between CD86/CD54 expression and THP-1 cell viability in an in vitro skin sensitization test--human cell line activation test (h-CLAT). Cell Biol. Toxicol. 2000, 25, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Brindisi, M.; Bouzidi, C.; Frattaruolo, L.; Loizzo, M.R.; Tundis, R.; Dugay, A.; Deguin, B.; Cappello, A.R.; Cappello, M.S. Chemical Profile, Antioxidant, Anti-Inflammatory, and Anti-Cancer Effects of Italian Salvia rosmarinus Spenn. Methanol Leaves Extracts. Antioxidants 2020, 9, 826. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Choi, J.; Lee, H.; Park, J.; Yoon, B.-I.; Jin, S.M.; Park, K. Skin corrosion and irritation test of nanoparticles using reconstructed three-dimensional human skin model, EpiDermTM. Toxicol. Res. 2016, 32, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Ruffo, M.R.; Parisi1, O.I.; Dattilo, M.; Patitucci, F.; Malivindi, R.; Pezzi, V.; Tzanov, T.; Puoci, F. Synthesis and evaluation of wound healing properties of hydro-diab hydrogel loaded with green-synthetized AGNPS: In vitro and in ex vivo studies. Drug Deliv. Transl. Res. 2022, 12, 1881–1894. [Google Scholar] [CrossRef]
- Karamanou, K.; Perrot, G.; Maquart, F.X.; Brézillon, S. Lumican as a multivalent effector in wound healing. Adv. Drug Deliv. Rev. 2018, 129, 344–351. [Google Scholar] [CrossRef]
Sample | Solvent | Volume (mL) | Condition | Yield | |||
---|---|---|---|---|---|---|---|
Code | Mass (g) | T (°C) | t (h) | (g) | (%) | ||
ELAVF1S | 1.0 | Ethanol | 100 | 60 | 5 | 0.2560 | 25.60 |
ELAVF1M | 0.5 | 40 | r. t. | 96 | 0.0830 | 8.30 | |
ELAVF2S | 1.0 | Acetone | 100 | 60 | 5 | 0.0510 | 5.10 |
ELAVF2M | 0.5 | 40 | r. t. | 96 | 0.0007 | 0.07 | |
ELAVF3S | 1.0 | Dichloromethane | 100 | 60 | 5 | 0.0290 | 2.90 |
ELAVF3M | 0.5 | 40 | r. t. | 96 | 0.0120 | 1.20 | |
ELAVF4S | 1.0 | n-hexane | 100 | 60 | 5 | 0.0100 | 1.10 |
ELAVF4M | 0.5 | 40 | r. t. | 96 | 0.0090 | 0.90 | |
ELAVF5S | 1.0 | Ethanol/water 90/10 (v/v) | 100 | 60 | 5 | 0.5210 | 52.10 |
ELAVF5M | 0.5 | 40 | r. t. | 96 | 0.0090 | 0.90 |
Sample | TPC (mg CT/g) | PAC (mg CT/g) | FL (mg CT/g) | TAC (mg CT/g) | IC50 (mg mL−1) | |
---|---|---|---|---|---|---|
Code | DPPH Radical | ABTS Radical | ||||
LAVF | 75.50 ± 2.71 | 50.82 ± 1.24 | 34.08 ± 1.15 | 1.105 ± 0.051 | 0.095 ± 0.003 | 0.0185 ± 0.0007 |
ELAVF1S | 94.16 ± 3.52 a | 65.92 ± 1.94 a | 62.22 ± 2.1 a | 1.023 ± 0.023 a | 0.152 ± 0.005 a | 0.0371 ± 0.0012 a |
ELAVF1M | 60.00 ± 2.21 b | 40.21 ± 1.25 b | 40.21 ± 1.25 b | 0.651 ± 0.022 b | 0.245 ± 0.010 b | 0.0574 ± 0.0021 b |
ELAVF2S | 28.98 ± 0.97 c | 20.75 ± 0.73 c | 18.62 ± 0.73 c | 0.309 ± 0.009 c | 0.485 ± 0.021 c | 0.1202 ± 0.0043 c |
ELAVF2M | 24.18 ± 0.88 d | 15.90 ± 0.45 d | 15.51 ± 0.45 d | 0.262 ± 0.008 d | 0.599 ± 0.022 d | 0.1458 ± 0.051 d |
ELAVF3S | 1.03 ± 0.03 h | 0.72 ± 0.02 h | 0.68 ± 0.02 h | 0.019 ± 0.001 g | 3.935 ± 0.174 h | 2.048 ± 0.0845 i |
ELAVF3M | 2.59 ± 0.11 f | 1.63 ± 0.05 f | 1.54 ± 0.05 f | 0.034 ± 0.001 f | 1.725 ± 0.074 f | 1.389 ± 0.0428 g |
ELAVF4S | 1.39 ± 0.05 g | 0.98 ± 0.03 g | 0.98 ± 0.03 g | 0.018 ± 0.001 g,h | 2.052 ± 0.095 g | 1.789 ± 0.0528 h |
ELAVF4M | 0.66 ± 0.02 i | 0.39 ± 0.01 i | 0.31 ± 0.01 i | 0.017 ± 0.001 h | 4.351 ± 0.141 i | 3.4862 ± 0.1415 j |
ELAVF5S | 22.93 ± 0.79 d | 15.97 ± 0.40 d | 15.10 ± 0.40 d | 0.257 ± 0.007 d | 0.620 ± 0.017 d | 0.2581 ± 0.0098 e |
ELAVF5M | 9.66 ± 0.22 e | 5.76 ± 0.23 e | 5.79 ± 0.23 e | 0.108 ± 0.003 e | 1.028 ± 0.025 e | 0.733 ± 0.0254 f |
Compound | RT (min) | [M–H]− (m/z) | MS/MS Fragments | Q1 (m/z) | Q3 (m/z) | Frag (V) | CE (V) | ELAVF1S (mg mL−1) |
---|---|---|---|---|---|---|---|---|
Verbascoside residue | 1.475 | 477.1 | 458.9 (100); 160.8 (21); 151.1 (20); 113.2 (17) | 477 | 459 | 100 | 15 | 1.62 ± 0.15 |
3,4-dihydroxyphenylglycol | 1.515 | 169.2 | 150.8 (27); 123.0 (100) | 169 | 123 | 100 | 15 | 0.47 ± 0.04 |
Quinic acid | 1.773 | 191.0 | 109.0 (7); 92.8 (68); 85.0 (100); 59.1 (23) | 191 | 85 | 100 | 30 | 4.1 ± 0.4 |
Hydroxytyrosol glucoside isomer 1 | 2.245 | 315.2 | 153.0 (100); 123.0 (11) | 315 | 153 | 80 | 15 | 21.2 ± 1.9 |
Hydroxytyrosol glucoside isomer 2 | 2.470 | 315.2 | 153.0 (100); 123.0 (11) | 315 | 153 | 80 | 15 | 12.1 ± 1.1 |
Hydroxytyrosol | 2.957 | 153.1 | 123.0 (100) | 153 | 123 | 100 | 15 | 7.1 ± 0.6 |
Decarboxymethyl-elenolic acid derivative | 3.542 | 185.0 | 111.1 (100); 94.9 (51); 69.1 (17); 59.0 (24) | 185 | 111 | 100 | 15 | 1.43 ± 0.13 |
Hydroxylated product of dialdehydic form of decarboxymethyl elenolic acid | 4.428 | 199.3 | 111.0 (100); 95.1 (23); 85.1 (22); 69.0 (28); 59.1 (72) | 199 | 111 | 100 | 15 | 3.8 ± 0.3 |
Caffeic acid | 7.996 | 179.1 | 134.9 (100) | 179 | 135 | 100 | 15 | 6.4 ± 0.6 |
Decarboxymethyl-elenolic acid (HyEDA) | 8.075 | 183.0 | 139.0 (100); 108.9 (83); 94.9 (25) | 183 | 139 | 100 | 15 | 0.42 ± 0.04 |
Oleuropein aglycone derivative | 8.124 | 377.2 | 197.0 (100); 153 (44) | 377 | 197 | 80 | 15 | 5.6 ± 0.5 |
p-Coumaric acid | 10.798 | 163.1 | 119.0 (100) | 163 | 119 | 100 | 15 | 5.9 ± 0.3 |
Score | Reactivity | Condition of All Cultures |
---|---|---|
0 | None | No alterations |
1 | Slight | Presence of some altered cells under the sample |
2 | Mild | Alteration present in a limited area under the sample |
3 | Moderate | Alteration present in extending area under the sample up to 1.0 cm |
4 | Severe | Area extending more than 1.0 cm outside the sample |
Sample | Biological Reactivity |
---|---|
Control | 0 |
Pectin 25 µg/mL | 0 |
Pectin 100 µg/mL | 0 |
PELAVF1S 25 µg/mL | 0 |
PELAVF1S 100 µg/mL | 0 |
Control + (SDS 10%) | 4 |
Samples | CD54 * | CD86 * |
---|---|---|
Pectin 25 µg/mL | 60.19 | 71.15 |
Pectin 100 µg/mL | 62.71 | 83.28 |
PELAVF1S 25 µg/mL | 61.29 | 78.95 |
PELAVF1S 100 µg/mL | 65.14 | 82.49 |
Control | 57.03 | 64.37 |
Control + (NISO4) | 223.05 | 198.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, F.; Malivindi, R.; Motta, M.F.; Crupi, P.; Nicoletti, R.; Benincasa, C.; Clodoveo, M.L.; Rago, V.; Spizzirri, U.G.; Restuccia, D. Synthesis and Characterization of a Biopolymer Pectin/Ethanolic Extract from Olive Mill Wastewater: In Vitro Safety and Efficacy Tests on Skin Wound Healing. Int. J. Mol. Sci. 2023, 24, 15075. https://doi.org/10.3390/ijms242015075
Aiello F, Malivindi R, Motta MF, Crupi P, Nicoletti R, Benincasa C, Clodoveo ML, Rago V, Spizzirri UG, Restuccia D. Synthesis and Characterization of a Biopolymer Pectin/Ethanolic Extract from Olive Mill Wastewater: In Vitro Safety and Efficacy Tests on Skin Wound Healing. International Journal of Molecular Sciences. 2023; 24(20):15075. https://doi.org/10.3390/ijms242015075
Chicago/Turabian StyleAiello, Francesca, Rocco Malivindi, Marisa Francesca Motta, Pasquale Crupi, Rosa Nicoletti, Cinzia Benincasa, Maria Lisa Clodoveo, Vittoria Rago, Umile Gianfranco Spizzirri, and Donatella Restuccia. 2023. "Synthesis and Characterization of a Biopolymer Pectin/Ethanolic Extract from Olive Mill Wastewater: In Vitro Safety and Efficacy Tests on Skin Wound Healing" International Journal of Molecular Sciences 24, no. 20: 15075. https://doi.org/10.3390/ijms242015075
APA StyleAiello, F., Malivindi, R., Motta, M. F., Crupi, P., Nicoletti, R., Benincasa, C., Clodoveo, M. L., Rago, V., Spizzirri, U. G., & Restuccia, D. (2023). Synthesis and Characterization of a Biopolymer Pectin/Ethanolic Extract from Olive Mill Wastewater: In Vitro Safety and Efficacy Tests on Skin Wound Healing. International Journal of Molecular Sciences, 24(20), 15075. https://doi.org/10.3390/ijms242015075