Cytokine Dynamics in Autism: Analysis of BMAC Therapy Outcomes
Abstract
:1. Introduction
2. Results
2.1. Classification
2.2. Cytokine Levels
2.3. Cytokine Level Analyses
2.3.1. Good Clinical Response Post Autologous BMAC Administration Associated with a Decreased Average CSF Concentration of Inflammatory and Th1 Cytokines
2.3.2. Analysis of Cytokine Concentration Trends across Procedures
2.3.3. Direction of Cytokine Changes across Administration Intervals
3. Methodology
3.1. Patient Selection and Evaluation
3.1.1. Assessing Child Development and Sensory Features
3.1.2. Evaluating Functional Outcomes Post-Transplantation
3.1.3. Exclusion Criteria for the Study
3.2. Autologous BMAC Derivation Process
- Preliminary Testing: This phase is geared towards identifying active infections and any potential contraindications to anesthesia. Essential tests encompass comprehensive blood and urine analyses, chest radiographs, magnetic resonance imaging, and brain electroencephalography.
- Bone Marrow Aspiration and Processing: Each participant received three intrathecal administrations of autologous BMAC. The initial injection followed immediately post-BM aspiration and processing. Subsequent injections were scheduled 30 days apart. The entire cell therapy process was completed within a day. Aspirations were performed under the purview of certified anesthesiologists using general anesthesia. The procedural specifics entailed positioning patients prone, making a precise incision on their right anterior iliac crest, and aspirating bone marrow through the iliac crest using a specialized 22G harvest needle. To anticoagulate the bone marrow, we utilized the Acid Citrate Dextrose (ACD) formula A in a 7:1 ratio [31]. The Angel whole blood separation system (Arthrex, Naples, FL, USA) was instrumental in processing bone marrow. Through density gradient centrifugation, we successfully separated the BMAC, hematopoietic stem cells, and platelet-poor plasma. The extracted volume was tailored to the patient’s weight, typically 8 mL/kg. For those weighing below 10 kg, it was restricted to 4–5 mL/kg, with an overall cap of 160 mL. Subsequently, we quantified the BMAC, hematopoietic stem cells (CD34+), and platelet-poor plasma.
- BMAC Administration: We favored intrathecal (IT) autologous BMAC administration due to its less invasive nature in contrast to direct brain delivery, while still ensuring effective brain delivery. Throughout our study’s monitoring phase, we observed no severe adverse reactions post intrathecal autologous BMAC administration. Any mild adverse events typically subsided within a two-hour window, affirming the procedure’s safety.
3.3. Autologous BMAC Isolation
3.4. Cytokine Levels and Cell Viability Assessment
3.5. BMAC Transplantation Procedure
3.6. Evaluation after BMAC Therapy
3.7. Statistical Analysis
4. Discussion
Clinical Implications of Cytokine Dynamics in BMAC Therapy for ASD
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hodges, H.; Fealko, C.; Soares, N. Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr. 2020, 9, S55–S65. [Google Scholar] [CrossRef]
- Almandil, N.B.; Alkuroud, D.N.; AbdulAzeez, S.; AlSulaiman, A.; Elaissari, A.; Borgio, J.F. Environmental and Genetic Factors in Autism Spectrum Disorders: Special Emphasis on Data from Ara-bian Studies. Int. J. Environ. Res. Public Health 2019, 16, 658. [Google Scholar] [CrossRef] [PubMed]
- Wass, S.V.; Jones, E.J.; Gliga, T.; Smith, T.J.; Charman, T.; Johnson, M.H.; BASIS team. Shorter spontaneous fixation durations in infants with later emerging autism. Sci. Rep. 2015, 5, 8284. [Google Scholar] [CrossRef] [PubMed]
- Bonsi, P.; De Jaco, A.; Fasano, L.; Gubellini, P. Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol. Dis. 2021, 162, 105564. [Google Scholar] [CrossRef]
- Nelson, A.D.; Bender, K.J. Dendritic Integration Dysfunction in Neurodevelopmental Disorders. Dev. Neurosci. 2021, 43, 201–221. [Google Scholar] [CrossRef]
- Hertz-Picciotto, I.; Schmidt, R.J.; Krakowiak, P. Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Res. 2018, 11, 554–586. [Google Scholar] [CrossRef]
- Robinson-Agramonte MD, L.A.; Noris García, E.; Fraga Guerra, J.; Vega Hurtado, Y.; Antonucci, N.; Semprún-Hernández, N.; Schultz, S.; Siniscalco, D. Immune Dysregulation in Autism Spectrum Disorder: What Do We Know About It? Int. J. Mol. Sci. 2022, 23, 3033. [Google Scholar] [CrossRef]
- Amaral, D.G. Examining the Causes of Autism. Cerebrum 2017, 2017, 1–12. [Google Scholar]
- Li, Q.; Han, Y.; Dy, A.B.C.; Hagerman, R.J. The Gut Microbiota and Autism Spectrum Disorders. Front. Cell. Neurosci. 2017, 11, 120. [Google Scholar] [CrossRef]
- Madore, C.; Leyrolle, Q.; Lacabanne, C.; Benmamar-Badel, A.; Joffre, C.; Nadjar, A.; Layé, S. Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plast. 2016, 2016, 3597209. [Google Scholar] [CrossRef]
- Fiorentino, M.; Sapone, A.; Senger, S.; Camhi, S.S.; Kadzielski, S.M.; Buie, T.M.; Kelly, D.L.; Cascella, N.; Fasano, A. Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism 2016, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Kordulewska, N.K.; Kostyra, E.; Piskorz-Ogórek, K.; Moszyńska, M.; Cieślińska, A.; Fiedorowicz, E.; Jarmołowska, B. Serum cytokine levels in children with spectrum autism disorder: Differences in pro- and an-ti-inflammatory balance. J. Neuroimmunol. 2019, 337, 577066. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, H.; Liu, S.; Luo, W.; Jiang, Y.; Gao, J. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front. Psychiatry 2021, 12, 670200. [Google Scholar] [CrossRef]
- Kutuk, M.O.; Tufan, E.; Gokcen, C.; Kilicaslan, F.; Karadag, M.; Mutluer, T.; Yektas, C.; Coban, N.; Kandemir, H.; Buber, A.; et al. Cytokine expression profiles in Autism spectrum disorder: A multi-center study from Turkey. Cytokine 2020, 133, 155152. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Breen, E.J.; Alvares, G.A.; Glozier, N.; Hickie, I.B.; Hunt, A.; Hui, J.; Beilby, J.; Ravine, D.; Wray, J.; et al. Cytokine levels and associations with symptom severity in male and female children with autism spectrum disorder. Mol. Autism 2017, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Glozier, N.; Dale, R.; Guastella, A.J. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder. Neurosci. Bull. 2017, 33, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Hantsoo, L.; Kornfield, S.; Anguera, M.C.; Epperson, C.N. Inflammation: A Proposed Intermediary Between Maternal Stress and Offspring Neuropsychiatric Risk. Biol. Psychiatry 2018, 85, 97–106. [Google Scholar] [CrossRef]
- Alameen, S.; Fadwa, K.H.; Shihab, K.A. Estimation of some biochemical and immunological parameters of autism spectrum disorder. Biochem. Cell Arch. 2020, 20, 1601–1604. [Google Scholar]
- Marks, K.; Coutinho, E.; Vincent, A. Maternal-autoantibody-related (MAR) autism: Identifying neuronal antigens and ap-proaching prospects for intervention. J. Clin. Med. 2020, 9, 2564. [Google Scholar] [CrossRef]
- Sun, J.M.; Kurtzberg, J. Cell therapy for diverse central nervous system disorders: Inherited metabolic diseases and autism. Pediatr. Res. 2017, 83, 364–371. [Google Scholar] [CrossRef]
- Nardone, S.; Elliott, E. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders. Front. Neurosci. 2016, 10, 329. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.; Ames, J.L.; Pearl, M.; Traglia, M.; Weiss, L.A.; Windham, G.C.; Kharrazi, M.; Yoshida, C.K.; Yolken, R.; Volk, H.E.; et al. A profile and review of findings from the Early Markers for Autism study: Unique contributions from a popula-tion-based case-control study in California. Mol. Autism 2021, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Goines, P.E.; Croen, L.A.; Braunschweig, D.; Yoshida, C.K.; Grether, J.; Hansen, R.; Kharrazi, M.; Ashwood, P.; Van de Water, J. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol. Autism 2011, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Egorova, O.; Myte, R.; Schneede, J.; Hägglöf, B.; Bölte, S.; Domellöf, E.; A’roch, B.I.; Elgh, F.; Ueland, P.M.; Silfverdal, S.-A. Maternal blood folate status during early pregnancy and occurrence of autism spectrum disorder in offspring: A study of 62 serum biomarkers. Mol. Autism 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.-C.; Lin, L.-S.; Long, S.; Ke, X.-Y.; Fukunaga, K.; Lu, Y.-M.; Han, F. Signalling pathways in autism spectrum disorder: Mechanisms and therapeutic implications. Signal Transduct. Target. Ther. 2022, 7, 229. [Google Scholar] [CrossRef]
- Deguine, J.; Barton, G.M. MyD88: A central player in innate immune signaling. F1000Prime Rep. 2014, 6, 97. [Google Scholar] [CrossRef]
- Maric, D.M.; Papic, V.; Radomir, M.; Stanojevic, I.; Sokolovac, I.; Milosavljevic, K.; Maric, D.L.; Abazovic, D. Autism treatment with stem cells: A case report. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8075–8080. [Google Scholar] [CrossRef]
- Price, J. Cell therapy approaches to autism: A review of clinical trial data. Mol. Autism 2020, 11, 37. [Google Scholar] [CrossRef]
- Bansal, H.; Verma, P.; Agrawal, A.; Leon, J.; Sundell, I.B.; Koka, P.S. A Short Study Report on Bone Marrow Aspirate Concentrate Cell Therapy in Ten South Asian Indian Patients with Autism. J. Stem Cells 2016, 11, 25–36. [Google Scholar]
- Kobinia, G.S.; Zaknun, J.J.; Pabinger, C.; Laky, B. Case Report: Autologous Bone Marrow Derived Intrathecal Stem Cell Transplant for Autistic Children—A Report of Four Cases and Literature Review. Front. Pediatr. 2021, 9, 620188. [Google Scholar] [CrossRef]
- Maric, D.M.; Radomir, M.; Milankov, Z.; Stanojevic, I.; Vojvodic, D.; Velikic, G.; Susnjevic, S.; Maric, D.L.; Abazovic, D. Encouraging effect of autologous bone marrow aspirate concentrate in rehabilitation of children with cerebral palsy. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2330–2342. [Google Scholar] [CrossRef]
- Siniscalco, D.; Sapone, A.; Cirillo, A.; Giordano, C.; Maione, S.; Antonucci, N. Autism Spectrum Disorders: Is Mesenchymal Stem Cell Personalized Therapy the Future? J. Biomed. Biotechnol. 2012, 2012, 480289. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Squires, J.; Bricker, D.; Twombly, E.; Potter, L. Ages and Stages Questionnaires: A Parent-Completed Child-Monitoring System, 3rd ed.; Paul, H., Ed.; Brookes: Baltimore, MD, USA, 2009. [Google Scholar]
- Perera, H.; Jeewandara, K.C.; Seneviratne, S.; Guruge, C. Culturally adapted pictorial screening tool for autism spectrum dis-order: A new approach. World J. Clin. Pediatr. 2017, 6, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, J.E. GARS 3: Gilliam Autism Rating Scale, 3rd ed.; Pro-ED: Austin, TX, USA, 2014. [Google Scholar]
- LAP-Learning Accomplishment Profile. Kaplan Early Learning Company 2017. Available online: https://www.kaplanco.com/lap (accessed on 1 January 2018).
- Tomchek, S.D.; Dunn, W. Sensory Processing in Children With and Without Autism: A Comparative Study Using the Short Sensory Profile. Am. J. Occup. Ther. 2007, 61, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Chahla, J.; Mannava, S.; Cinque, M.E.; Geeslin, A.G.; Codina, D.; LaPrade, R.F. Bone Marrow Aspirate Concentrate Harvesting and Processing Technique. Arthrosc. Tech. 2017, 6, e441–e445. [Google Scholar] [CrossRef] [PubMed]
- Gumusoglu, S.B.; Hing, B.W.Q.; Chilukuri, A.S.S.; Dewitt, J.J.; Scroggins, S.M.; Stevens, H.E. Chronic maternal interleukin-17 and autism-related cortical gene expression, neurobiology, and behavior. Neuropsychopharmacology 2020, 45, 1008–1017. [Google Scholar] [CrossRef]
- Banks, W.A. The blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain Behav. Immunol. 2015, 44, 1–8. [Google Scholar] [CrossRef]
- Xie, J.; Huang, L.; Li, X.; Li, H.; Zhou, Y.; Zhu, H.; Pan, T.; Kendrick, K.M.; Xu, W. Immunological cytokine profiling identifies TNF-α as a key molecule dysregulated in autistic children. Oncotarget 2017, 8, 82390–82398. [Google Scholar] [CrossRef]
- Tsilioni, I.; Taliou, A.; Francis, K.; Theoharides, T.C. Children with autism spectrum disorders, who improved with a luteo-lin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl. Psychiat. 2015, 5, e647. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, J.; Han, L.; Rensing, N.; Wong, M. Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia 2016, 57, 1317–1325. [Google Scholar] [CrossRef]
- Han, Y.M.Y.; Cheung, W.K.Y.; Wong, C.K.; Sze, S.L.; Cheng, T.W.S.; Yeung, M.K.; Chan, A.S. Distinct Cytokine and Chemokine Profiles in Autism Spectrum Disorders. Front. Immunol. 2017, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.J.; Marler, S.; Altstein, L.L.; Lee, E.B.; Mazurek, M.O.; McLaughlin, A.; Macklin, E.A.; McDonnell, E.; Davis, D.J.; Belenchia, A.M.; et al. Associations between cytokines, endocrine stress response, and gastrointestinal symptoms in autism spec-trum disorder. Brain Behav. Immunol. 2016, 58, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Eftekharian, M.M.; Ghafouri-Fard, S.; Noroozi, R.; Omrani, M.D.; Arsang-Jang, S.; Ganji, M.; Gharzi, V.; Noroozi, H.; Komaki, A.; Mazdeh, M.; et al. Cytokine profile in autistic patients. Cytokine 2018, 108, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Pardo, C.A.; Farmer, C.A.; Thurm, A.; Shebl, F.M.; Ilieva, J.; Kalra, S.; Swedo, S. Serum and cerebrospinal fluid immune mediators in children with autistic disorder: A longitudinal study. Mol. Autism 2017, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Maric, D.M.; Velikic, G.; Maric, D.L.; Supic, G.; Vojvodic, D.; Petric, V.; Abazovic, D. Stem Cell Homing in Intrathecal Applications and Inspirations for Improvement Paths. Int. J. Mol. Sci. 2022, 23, 4290. [Google Scholar] [CrossRef] [PubMed]
- Losardo, A.; McCullough, K.C.; Lakey, E.R. Neuroplasticity and young children with autism: A tutorial. Anat. Physiol. 2016, 6, 2. [Google Scholar] [CrossRef]
- Sharifzadeh, N.; Ghasemi, A.; Afshari, J.T.; Moharari, F.; Soltanifar, A.; Talaei, A.; Pouryousof, H.R.; Nahidi, M.; Bordbar, M.R.F.; Ziaee, M. Intrathecal autologous bone marrow stem cell therapy in children with autism: A randomized controlled trial. Asia-Pac. Psychiatry 2020, 13, e12445. [Google Scholar] [CrossRef]
- Sharma, A.; Gokulchandran, N.; Sane, H.; Nagrajan, A.; Paranjape, A.; Kulkarni, P.; Shetty, A.; Mishra, P.; Kali, M.; Biju, H.; et al. Autologous Bone Marrow Mononuclear Cell Therapy for Autism: An Open Label Proof of Concept Study. Stem Cells Int. 2013, 2013, 623875. [Google Scholar] [CrossRef]
- Lv, Y.T.; Zhang, Y.; Liu, M.; Qiuwaxi, J.N.T.; Ashwood, P.; Cho, S.C.; Huan, Y.; Ge, R.-C.; Chen, X.-W.; Wang, Z.-J.; et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesen-chymal stem cells in autism. J. Transl. Med. 2013, 11, 196. [Google Scholar] [CrossRef]
- Bradstreet, J.J.; Sych, N.; Antonucci, N.; Klunnik, M.; Ivankova, O.; Matyashchuk, I.; Demchuk, M.; Siniscalco, D. Efficacy of Fetal Stem Cell Transplantation in Autism Spectrum Disorders: An Open-Labeled Pilot Study. Cell Transplant. 2014, 23, 105–112. [Google Scholar] [CrossRef]
- Chez, M.; Lepage, C.; Parise, C.; Dang-Chu, A.; Hankins, A.; Carroll, M. Safety and Observations from a Placebo-Controlled, Crossover Study to Assess Use of Autologous Umbilical Cord Blood Stem Cells to Improve Symptoms in Children with Autism. STEM CELLS Transl. Med. 2018, 7, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Gokulchandran, N.; Kulkarni, P.P.; Sane, H.M.; Sharma, R.; Jose, A.; Badhe, P.B. Cell transplantation as a novel therapeutic strategy for autism spectrum disorders: A clinical study. Am. J. Stem Cells 2020, 9, 89–100. [Google Scholar] [PubMed]
- Sharma, A.; Gokulchandran, N.; Sane, H.; Kulkarni, P.; Kannan, K.; Shaikh, Z.; Biju, H.; Paranjape, A.; Dsa, M.; Badhe, P. Autologous Bone Marrow Mononuclear Cell Administration in a Large Cohort Of 1011 Autism Spectrum Disorder Patients: A Clinical Study. Preprints 2023, 2023071498, version 1. [Google Scholar] [CrossRef]
Demographic Characteristics and Score | Demographic Group and Levels | No. of Patients (N = 80) |
---|---|---|
Gender | male | 63 |
female | 17 | |
Age | 24–36 months | 6 |
37 months–16 years | 72 | |
17 years | 2 | |
GARS-3 score | Level 1 | 10 |
Level 2 | 68 | |
Level 3 | 2 |
1st Procedure | 2nd Procedure | 3rd Procedure | |||||||
---|---|---|---|---|---|---|---|---|---|
Group | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
GM-CSF | 293 ± 557 | 383 ± 729 | 511 ± 1082 | 344 ± 629 | 408 ± 675 | 108 ± 192 | 199 ± 416 | 193 ± 416 | 418 ± 1069 |
TNFα | 35 ± 26 | 36 ± 31 | 36 ± 26 | 49 ± 24 a | 54 ± 37 b | 27 ± 18 a,b | 41 ± 23 | 39 ± 34 | 33 ± 31 |
IL1β | 23 ± 26 | 23 ± 19 | 17 ± 17 | 37 ± 28 c | 35 ± 34 | 17 ± 21 c | 28 ± 22 | 24 ± 19 | 17 ± 21 |
IL2 | 44 ± 42 | 54 ± 46 | 44 ± 29 | 71 ± 41 d | 92 ± 63 e | 41 ± 36 d,e | 53 ± 37 | 49 ± 33 | 47 ± 48 |
IFNγ | 54 ± 66 | 62 ± 61 | 51 ± 44 | 88 ± 69 f | 98 ± 93 g | 38 ± 31 f,g | 76 ± 70 | 71 ± 57 | 66 ± 83 |
IL12 | 26 ± 26 | 24 ± 20 | 24 ± 20 | 34 ± 19 h | 34 ± 26 | 20 ± 18 h | 29 ± 21 | 36 ± 23 | 27 ± 24 |
IL4 | 522 ± 561 | 515 ± 672 | 422 ± 543 | 514 ± 568 | 512 ± 648 | 275 ± 279 | 386 ± 532 | 259 ± 512 | 389 ± 678 |
IL5 | 54 ± 85 | 63 ± 77 | 74 ± 120 | 83 ± 78 | 115 ± 141 | 48 ± 65 | 81 ± 84 | 118 ± 127 | 91 ± 141 |
IL6 | 103 ± 143 | 143 ± 145 | 101 ± 114 | 158 ± 168 | 228 ± 264 | 95 ± 104 | 128 ± 120 | 191 ± 176 | 122 ± 144 |
IL10 | 28 ± 30 | 28 ± 26 | 34 ± 28 | 37 ± 26 | 43 ± 32 | 25 ± 25 | 36 ± 30 | 37 ± 19 | 35 ± 33 |
IL13 | 81 ± 119 | 78 ± 86 | 72 ± 69 | 145 ± 135 i | 123 ± 127 | 59 ± 72 i | 99 ± 117 | 107 ± 106 | 89 ± 141 |
IL17 | 88 ± 107 | 86 ± 79 | 84 ± 81 | 143 ± 103 j | 170 ± 188 | 71 ± 80 j | 99 ± 90 | 96 ± 66 | 103 ± 132 |
IL9 | 14 ± 20 | 23 ± 21 | 14 ± 18 | 26 ± 27 | 34 ± 34 | 16 ± 20 | 19 ± 19 | 27 ± 24 | 22 ± 28 |
IL21 | 15 ± 25 | 19 ± 23 | 10 ± 21 | 29 ± 35 | 40 ± 40 k | 15 ± 23 k | 22 ± 26 | 29 ± 27 | 25 ± 35 |
IL22 | 4 ± 6 | 7 ± 7 | 3 ± 6 | 7 ± 7 | 9 ± 8 | 4 ± 6 | 7 ± 7 | 7 ± 8 | 7 ± 8 |
IL27 | 10 ± 10 l,m | 15 ± 6 l | 15 ± 5 m | 14 ± 8 | 16 ± 11 | 14 ± 7 | 13 ± 6 | 12 ± 8 | 11 ± 8 |
Cytokine | p | Sig | Procedure | Group | vs | Group |
---|---|---|---|---|---|---|
TNFα | p = 0.0082 | ** a | 2nd | 1 | > | 3 |
IL1β | p = 0.0443 | * c | 2nd | 1 | > | 3 |
IL2 | p = 0.0400 | * d | 2nd | 1 | > | 3 |
IFNγ | p = 0.0238 | * f | 2nd | 1 | > | 3 |
IL12 | p = 0.0373 | * h | 2nd | 1 | > | 3 |
IL13 | p = 0.0440 | * i | 2nd | 1 | > | 3 |
IL17 | p = 0.0456 | * j | 2nd | 1 | > | 3 |
TNFα | p = 0.0405 | * b | 2nd | 2 | > | 3 |
IL2 | p = 0.0306 | * e | 2nd | 2 | > | 3 |
IFNγ | p = 0.0460 | * g | 2nd | 2 | > | 3 |
IL21 | p = 0.0483 | * k | 2nd | 2 | > | 3 |
IL27 | p = 0.0209 | * l | 1st | 2 | > | 1 |
IL27 | p = 0.0494 | * m | 1st | 3 | > | 1 |
Cytokine | Group | 2nd/1st | 3rd/2nd | 3rd/1st |
---|---|---|---|---|
GM CSF | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
TNFα | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL1β | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL2 | 1 | ▲ p = 0.0345 * | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IFNγ | 1 | ▲p = 0.0170 * | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL12 | 1 | ▲ p = 0.0263 * | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL4 | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL5 | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL6 | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL10 | 1 | ▲ p = 0.0485 * | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL13 | 1 | ▲ p = 0.0459 * | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL9 | 1 | ▲ p = 0.0485 * | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL17 | 1 | ▲ p = 0.0495 * | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL21 | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL22 | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 | |
IL27 | 1 | >0.05 | >0.05 | >0.05 |
2 | >0.05 | >0.05 | >0.05 | |
3 | >0.05 | >0.05 | >0.05 |
1st Administration | 2nd Administration | 3rd Administration | |||||||
---|---|---|---|---|---|---|---|---|---|
Cytokine | Gr1/Gr2 | Gr1/Gr3 | Gr2/Gr3 | Gr1/Gr2 | Gr1/Gr3 | Gr2/Gr3 | Gr1/Gr2 | Gr1/Gr3 | Gr2/Gr3 |
GM-CSF | ** | ||||||||
TNFα | * | ||||||||
IL1β | ** | ||||||||
IL2 | ** | * | |||||||
IFNγ | ** | ||||||||
IL12 | * | ||||||||
IL4 | |||||||||
IL5 | |||||||||
IL6 | |||||||||
IL10 | * | * | |||||||
IL13 | * | ||||||||
IL17 | * | ||||||||
IL9 | |||||||||
IL21 | * | ||||||||
IL22 | |||||||||
IL27 |
Group 1. | Group 2. | Group 3. | |||||||
---|---|---|---|---|---|---|---|---|---|
Cytokine | 1st/2nd | 1st/3rd | 2nd/3rd | 1st/2nd | 1st/3rd | 2nd/3rd | 1st/2nd | 1st/3rd | 2nd/3rd |
GM-CSF | * | ||||||||
TNFα | |||||||||
IL1β | |||||||||
IL2 | ** | ||||||||
IFNγ | ** | ||||||||
IL12 | |||||||||
IL4 | |||||||||
IL5 | |||||||||
IL6 | |||||||||
IL10 | |||||||||
IL13 | |||||||||
IL17 | * | ||||||||
IL9 | |||||||||
IL21 | |||||||||
IL22 | |||||||||
IL27 | * |
2nd/1st Administration | Group 1 | Group 2 | Group 3 |
---|---|---|---|
GM CSF | ▲ *** | ns | ns |
TNFα | ▲ ** | ns | ns |
IL1β | ns | ns | = ** |
IL2 | ns | ns | ns |
IFNγ | ▲ * | ns | ▼ *** |
IL12 | ns | ns | ns |
IL4 | ▼ *** | ns | ns |
IL5 | ▲ ** | ns | ns |
IL6 | ▼ * | ns | ▼ ** |
IL10 | ▲ ** | ns | ns |
IL13 | ▲ ** | ns | ▼ * |
IL9 | ▲ * | ns | ▲ ** |
IL17 | ns | ns | ▼ * |
IL21 | ▲ * | ns | ▲ * |
IL22 | ▲ * | ns | ▲ ** |
IL27 | ns | ns | ns |
3rd/2nd administration | Group 1 | Group 2 | Group 3 |
GM CSF | ▼ **** | ▼ **** | ns |
TNFα | ns | ns | ns |
IL1β | ▲ ** | ns | = * |
IL2 | ns | ns | ns |
IFNγ | ▼ * | ns | ▲ * |
IL12 | ns | ▼ * | ▼ * |
IL4 | ▼ *** | ▼ *** | ns |
IL5 | ▼ ** | ▲ *** | ns |
IL6 | ▼ ** | ns | ns |
IL10 | ▼ * | ▼ * | ns |
IL13 | ns | ns | ns |
IL9 | ▼ ** | ns | ▲ * |
IL17 | ▼ * | ns | ▲ * |
IL21 | ▼ * | ns | ▲ * |
IL22 | = * | ns | ▲ ** |
IL27 | ns | ns | ns |
3rd/1stadministration | Group 1 | Group 2 | Group 3 |
GM CSF | ▼ **** | ns | ns |
TNFα | ns | ns | ns |
IL1β | ns | ns | = * |
IL2 | ns | ns | ▲ * |
IFNγ | ns | ns | ▲ * |
IL12 | ns | ns | ns |
IL4 | ▼ *** | ns | ns |
IL5 | ▲ ** | ns | ns |
IL6 | ns | ns | ▲ ** |
IL10 | ▲ * | ns | ns |
IL13 | ns | ▼ * | ns |
IL9 | ns | ns | ▲ * |
IL17 | ▲ ** | ns | ▲ ** |
IL21 | ▲ * | ns | ns |
IL22 | ▲ * | ns | ▲ ** |
IL27 | ns | ns | ns |
Cytokine | Inflammatory Classification | Other Roles |
---|---|---|
GM-CSF | Pro-inflammatory | Hematopoietic growth, Immune regulation |
TNFα | Pro/anti-inflammatory | Immune regulation, Neuroprotection |
IL1β | Pro-inflammatory | Fever induction, Tissue repair |
IL2 | Pro-inflammatory | T-cell growth, Immune tolerance |
IFNγ | Pro-inflammatory | Antiviral response, Tissue repair |
IL12 | Pro-inflammatory | T-cell differentiation, Immune regulation |
IL4 | Anti/Pro-inflammatory | B-cell activation |
IL5 | Anti/Pro-inflammatory | Eosinophil activation |
IL6 | Pro/anti-inflammatory | Immune regulation |
IL10 | Anti/Pro-inflammatory | Immune regulation |
IL13 | Anti/Pro-inflammatory | Tissue repair, Pro-inflammatory |
IL17 | Pro-inflammatory | Neutrophil recruitment, Immune regulation |
IL9 | Pro-inflammatory | Allergic responses, Immune regulation |
IL21 | Pro-inflammatory | B-cell differentiation, Immune regulation |
IL22 | Pro-inflammatory | Epithelial cell repair, Immune regulation |
IL27 | Anti/Pro-inflammatory | Immune regulation |
Authors | Type | Administration Route | # of Patients | Improvement | Safety |
---|---|---|---|---|---|
Sharma et al., 2013 [52] | Autologous BM-MNC GM CSF ind, CD34 isolated | Intratechal | 32p | 29 (91%) | YES |
Lv et al., 2013 [53] | Cord blood MNCUmb blood-derived MSC | IntravenousIntratechal | 23p + 14c | No Diff p/c20–60% before/after score | YES |
Bradstreet et al., 2014 [54] | Fetal SC | IntravenousSubcutaneous | 45p | 35 (78%) | YES |
Chez et al., 2018 [55] | Autologous umbilicalCord blood | Intravenous | 29p | 5–24% bef/aft score | YES |
Sharifzadeh et al., 2020 [51] | Autologous BM-MNC | Intratechal | 14p + 18c | No Diff p/c | YES |
Sharma et al., 2020 [56] | Autologous BM-MNC | Intratechal | 254p | 50–82% | YES |
Sharma et al., 2023 [57] | Autologous BM-MNC | Intratechal | 1011p | 53–87% | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maric, D.M.; Vojvodic, D.; Maric, D.L.; Velikic, G.; Radomir, M.; Sokolovac, I.; Stefik, D.; Ivkovic, N.; Susnjevic, S.; Puletic, M.; et al. Cytokine Dynamics in Autism: Analysis of BMAC Therapy Outcomes. Int. J. Mol. Sci. 2023, 24, 15080. https://doi.org/10.3390/ijms242015080
Maric DM, Vojvodic D, Maric DL, Velikic G, Radomir M, Sokolovac I, Stefik D, Ivkovic N, Susnjevic S, Puletic M, et al. Cytokine Dynamics in Autism: Analysis of BMAC Therapy Outcomes. International Journal of Molecular Sciences. 2023; 24(20):15080. https://doi.org/10.3390/ijms242015080
Chicago/Turabian StyleMaric, Dusan M., Danilo Vojvodic, Dusica L. Maric, Gordana Velikic, Mihajlo Radomir, Ivana Sokolovac, Debora Stefik, Nemanja Ivkovic, Sonja Susnjevic, Miljan Puletic, and et al. 2023. "Cytokine Dynamics in Autism: Analysis of BMAC Therapy Outcomes" International Journal of Molecular Sciences 24, no. 20: 15080. https://doi.org/10.3390/ijms242015080
APA StyleMaric, D. M., Vojvodic, D., Maric, D. L., Velikic, G., Radomir, M., Sokolovac, I., Stefik, D., Ivkovic, N., Susnjevic, S., Puletic, M., Dulic, O., & Abazovic, D. (2023). Cytokine Dynamics in Autism: Analysis of BMAC Therapy Outcomes. International Journal of Molecular Sciences, 24(20), 15080. https://doi.org/10.3390/ijms242015080