Chemodiversity and Bioactivity of the Essential Oils of Juniperus and Implication for Taxonomy
Abstract
:1. Introduction
2. Results
2.1. Chemodiversity of Juniperus Essential Oils
2.1.1. Essential Oils Yields and Composition
2.1.2. Shared and Unique Components
2.1.3. α-Diversity of Juniperus Essential Oils
2.1.4. Chemometrics Analysis of Juniperus Essential Oils
2.2. Biological Activity of Juniperus Essential Oils
2.2.1. Antioxidant Activity
2.2.2. Antibacterial Activity
2.3. Correlation Analysis of Compounds and Bioactivity
2.3.1. Key Compounds Responsible for Antioxidant Activity
2.3.2. Key Compounds Responsible for Antibacterial Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material and the Extraction of EOs
4.2. GC-MS Analysis
4.3. Chemodiversity
4.4. Antioxidant Activity
4.4.1. DPPH
4.4.2. ABTS
4.5. Antibacterial Activity
4.5.1. Antimicrobial Strains
4.5.2. Disc Diffusion Method
4.5.3. Determination of the Minimum Inhibitory Concentration and Minimal Bactericidal Concentration
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radünz, M.; da Trindade, M.L.M.; Camargo, T.M.; Radünz, A.L.; Borges, C.D.; Gandra, E.A.; Helbig, E. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem. 2019, 276, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Juárez, Z.N.; Hernández, L.R.; Bach, H.; Sánchez-Arreola, E.; Bach, H. Antifungal activity of essential oils extracted from Agastache mexicana ssp. xolocotziana and Porophyllum linaria against post-harvest pathogens. Ind. Crops Prod. 2015, 74, 178–182. [Google Scholar] [CrossRef]
- Pesavento, G.; Calonico, C.; Bilia, A.R.; Barnabei, M.; Calesini, F.; Addona, R.; Mencarelli, L.; Carmagnini, L.; Di Martino, M.C.; Nostro, A.L. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control 2015, 54, 188–199. [Google Scholar] [CrossRef]
- Adams, R.P. The leaf essential oils and chemotaxonomy of Juniperus sect. Juniperus. Biochem. Syst. Ecol. 1998, 26, 637–645. [Google Scholar] [CrossRef]
- Adams, R.P.; Demeke, T. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 1993, 42, 553–571. [Google Scholar] [CrossRef]
- Tumen, I.; Süntar, I.; Keleş, H.; Küpeli Akkol, E. A therapeutic approach for wound healing by using essential oils of Cupressus and Juniperus species growing in Turkey. Evid.-Based Complement. Altern. Med. 2012, 2012, 728281. [Google Scholar] [CrossRef]
- Hojjati, F.; Sereshti, H.; Hojjati, M. Leaf essential oils and their application in systematics of Juniperus excelsa complex in Iran. Biochem. Syst. Ecol. 2019, 84, 29–34. [Google Scholar] [CrossRef]
- Orhan, N. Juniperus species: Features, profile and applications to diabetes. Bioact. Food Diet. Interv. Diabetes 2019, 30, 447–459. [Google Scholar] [CrossRef]
- Meriem, A.; Msaada, K.; Sebai, E.; Aidi Wannes, W.; Salah Abbassi, M.; Akkari, H. Antioxidant, anthelmintic and antibacterial activities of red juniper (Juniperus phoenicea L.) essential oil. J. Essent. Oil Res. 2022, 34, 163–172. [Google Scholar] [CrossRef]
- Abdel-Kader, M.S.; Soliman, G.A.; Alqarni, M.H.; Hamad, A.M.; Foudah, A.I.; Alqasoumi, S.I. Chemical composition and protective effect of Juniperus sabina L. essential oil against CCl4 induced hepatotoxicity. Saudi Pharm. J. 2019, 27, 945–951. [Google Scholar] [CrossRef]
- Cantrell, C.L.; Zheljazkov, V.D.; Osbrink, W.L.; Castro, A.; Maddox, V.; Craker, L.E.; Astatkie, T. Podophyllotoxin and essential oil profile of Juniperus and related species. Ind. Crops Prod. 2013, 43, 668–676. [Google Scholar] [CrossRef]
- Mehdizadeh, L.; Taheri, P.; Ghasemi Pirbalouti, A.; Moghaddam, M. Phytotoxicity and antifungal properties of the essential oil from the Juniperus polycarpos var. turcomanica (B. Fedsch.) RP Adams leaves. Physiol. Mol. Biol. Plants 2020, 26, 759–771. [Google Scholar] [CrossRef]
- Bouyahyaoui, A.; Bahri, F.; Romane, A.; Höferl, M.; Wanner, J.; Schmidt, E.; Jirovetz, L. Antimicrobial activity and chemical analysis of the essential oil of Algerian Juniperus phoenicea. Nat. Prod. Commun. 2016, 11, 519–522. [Google Scholar] [CrossRef]
- Semerdjieva, I.B.; Burducea, M.; Astatkie, T.; Zheljazkov, V.D.; Dincheva, I. Essential oil composition of Ruta graveolens L. Fruits and Hyssopus officinalis subsp. aristatus (Godr.) Nyman biomass as a function of hydrodistillation time. Molecules 2019, 24, 4047. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yanai, M.; Wu, G.X. Effects of the Tibetan plateau. In The Asian Monsoon; Springer: Berlin/Heidelberg, Germany, 2006; pp. 513–549. [Google Scholar] [CrossRef]
- Editorial Committee of FRPS. Flora Reipublicae Popularis Sinicae; Science Press: Bejjing, China, 1978; Volume 7, p. 376. [Google Scholar]
- Melito, S.; Petretto, G.L.; Podani, J.; Foddai, M.; Maldini, M.; Chessa, M.; Pintore, G. Altitude and climate influence Helichrysum italicum subsp. microphyllum essential oils composition. Ind. Crops Prod. 2016, 80, 242–250. [Google Scholar] [CrossRef]
- Fejér, J.; Gruľová, D.; Eliašová, A.; Kron, I.; De Feo, V. Influence of environmental factors on content and composition of essential oil from common juniper ripe berry cones (Juniperus communis L.). Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2018, 152, 1227–1235. [Google Scholar] [CrossRef]
- Msaada, K.; Taârit, M.B.; Hosni, K.; Salem, N.; Tammar, S.; Bettaieb, I.; Marzouk, B. Comparison of different extraction methods for the determination of essential oils and related compounds from coriander (Coriandrum sativum L.). Acta Chimica Slovenica 2012, 59, 1799–1806. [Google Scholar] [CrossRef]
- Kovacevic, N.N.; Marcetic, M.D.; Lakusic, D.V.; Lakusic, B.S. Composition of the essential oils of different parts of Seseli annuum L.(Apiaceae). J. Essent. Oil Bear. Plants 2016, 19, 671–677. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Zheljazkov, V.D.; Radoukova, T.; Radanović, D.; Marković, T.; Dincheva, I.; Stoyanova, A.; Astatkie, T.; Kačániová, M. Essential oil yield, composition, bioactivity and leaf morphology of Juniperus oxycedrus L. from Bulgaria and Serbia. Biochem. Syst. Ecol. 2019, 84, 55–63. [Google Scholar] [CrossRef]
- Moghaddam, M.; Ghasemi Pirbalouti, A.; Farhadi, N. Seasonal variation in Juniperus polycarpos var. turcomanica essential oil from northeast of Iran. J. Essent. Oil Res. 2018, 30, 225–231. [Google Scholar] [CrossRef]
- Hamideh, J.; Sara, S.; Abbas, D.; Ramazan Ali, K.N. Influence of different developmental stages on content and composition of the essential oil and antioxidant activity of Nepeta scrophularioides Rech. f. essential oil. J. Essent. Oil Bear. Plants 2016, 19, 693–698. [Google Scholar] [CrossRef]
- Sahin Yaglioglu, A.; Eser, F.; Yaglioglu, M.S.; Demirtas, I. The antiproliferative and antioxidant activities of the essential oils of Juniperus species from Turkey. Flavour Fragr. J. 2020, 35, 511–523. [Google Scholar] [CrossRef]
- Bakchiche, B.; Gherib, A.; Maatallah, M.; Miguel, M.G. Chemical composition of essential oils of Artemisia campestris and Juniperus phoenicea from Algeria. Int. J. Innov. Appl. Stud. 2014, 9, 1434. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Jeliazkova, E.A.; Schlegel, V. Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees. J. Oleo Sci. 2012, 61, 537–546. [Google Scholar] [CrossRef]
- Ivanova, D.I.; Tashev, A.N.; Nedialkov, P.T.; Ilieva, Y.E.; Atanassova, T.N.; Olech, M.; Nowak, R.; Angelov, G.; Tsvetanova, F.V.; Iliev, I.A.; et al. Antioxidant and antiproliferative activity of Juniperus L. species of Bulgarian and foreign origin and their anticancer metabolite identification. Bulg. Chem. Commun. 2018, 50, 144–150. [Google Scholar]
- Larkeche, O.; Zermane, A.; Meniai, A.H.; Crampon, C.; Badens, E. Supercritical extraction of essential oil from Juniperus communis L. needles: Application of response surface methodology. J. Supercrit. Fluids 2015, 99, 8–14. [Google Scholar] [CrossRef]
- Formisano, C.; Delfine, S.; Oliviero, F.; Tenore, G.C.; Rigano, D.; Senatore, F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind. Crops Prod. 2015, 63, 256–263. [Google Scholar] [CrossRef]
- Adams, R.P. The serrate leaf margined Juniperus (Section Sabina) of the western hemisphere: Systematics and evolution based on leaf essential oils and Random Amplified Polymorphic DNAs (RAPDs). Biochem. Syst. Ecol. 2000, 28, 975–989. [Google Scholar] [CrossRef]
- Adams, R.P.; Ge-Lin, C.; Shao-Zhen, Z. The volatile leaf oils of Juniperus przewalskii Kom. and forma pendula (Cheng & LK Fu) RP Adams & Chu Ge-lin from China. J. Essent. Oil Res. 1994, 6, 17–20. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Ali, I.; Guetat, A.; Boussaid, M. Chemical and genetic variability of Thymus algeriensis Boiss. et Reut. (Lamiaceae), a North African endemic species. Ind. Crops Prod. 2012, 40, 277–284. [Google Scholar] [CrossRef]
- Zouari, S.; Ketata, M.; Boudhrioua, N.; Ammar, E. Allium roseum L. volatile compounds profile and antioxydant activity for chemotype discrimination–Case study of the wild plant of Sfax (Tunisia). Ind. Crops Prod. 2013, 41, 172–178. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Skała, E.; Kalemba, D.; Wajs, A.; Róźalski, M.; Krajewska, U.; Rózalska, B.; Wieckowska-Szakiel, M.; Wysokinska, H. In vitro propagation and chemical and biological studies of the essential oil of Salvia przewalskii Maxim. Z. Fuer Naturforschung C 2007, 62, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Nan, P.; Tsering, Q.; Tsering, T.; Bai, Z.; Wang, L.; Liu, Z.; Zhong, Y. Volatile constituents of the leaves and flowers of Salvia przewalskii Maxim. from Tibet. Flavour Fragr. J. 2006, 21, 435–438. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, W.; Liang, J.; You, C.; Geng, Z.; Wang, C.; Du, S. Contact and repellent activities of the essential oil from Juniperus formosana against two stored product insects. Molecules 2016, 21, 504. [Google Scholar] [CrossRef] [PubMed]
- Lakušić, B.; Ristić, M.; Slavkovska, V.; Antić-Stanković, J.; Milenković, M. Chemical composition and antimicrobial activity of the essential oil from Satureja horvatii Šilić (Lamiaceae). J. Serbian Chem. Soc. 2008, 73, 703–711. [Google Scholar] [CrossRef]
- Dambolena, J.S.; Meriles, J.M.; López, A.G.; Gallucci, M.N.; González, S.B.; Guerra, P.E.; Zunino, M.P. Antifungal activities of the essential oil of five species of Juniperus from Argentina. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2011, 10, 104–115. [Google Scholar]
- Andreani, S.; Uehara, A.; Blagojević, P.; Radulović, N.; Muselli, A.; Baldovini, N. Key odorants of industrially-produced Helichrysum italicum subsp. italicum essential oil. Ind. Crops Prod. 2019, 132, 275–282. [Google Scholar] [CrossRef]
- Xu, H.; Dickschat, J.S. Hedycaryol–Central Intermediates in Sesquiterpene Biosynthesis, Part II. Chemistry 2022, 28, e202200405. [Google Scholar] [CrossRef]
- Xu, H.; Lackus, N.D.; Köllner, T.G.; Dickschat, J.S. Isotopic labeling experiments solve the hedycaryol problem. Org. Lett. 2022, 24, 587–591. [Google Scholar] [CrossRef]
- Vourlioti-Arapi, F.; Michaelakis, A.; Evergetis, E.; Koliopoulos, G.; Haroutounian, S.A. Essential oils of indigenous in Greece six Juniperus taxa. Parasitol. Res. 2012, 110, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Radoukova, T.; Zheljazkov, V.D.; Semerdjieva, I.; Dincheva, I.; Stoyanova, A.; Kačániová, M.; Marković, T.; Radanović, D.; Astatkie, T.; Salamon, I. Differences in essential oil yield, composition, and bioactivity of three juniper species from Eastern Europe. Ind. Crops Prod. 2018, 124, 643–652. [Google Scholar] [CrossRef]
- Asili, J.; Emami, S.A.; Rahimizadeh, M.; Fazly-Bazzaz, B.S.; Hassanzadeh, M.K. Chemical and antimicrobial studies of Juniperus sabina L. and Juniperus foetidissima Willd. essential oils. J. Essent. Oil Bear. Plants 2010, 13, 25–36. [Google Scholar] [CrossRef]
- Editorial Committee of FRPS. Flora of China; Science Press: Bejjing, China, 1999. [Google Scholar]
- Giachino, R.R.A.; Sönmez, Ç.; Tonk, F.A.; Bayram, E.; Yüce, S.; Telci, I.; Furan, M.A. RAPD and essential oil characterization of Turkish basil (Ocimum basilicum L.). Plant Syst. Evol. 2014, 300, 1779–1791. [Google Scholar] [CrossRef]
- Nordine, A.; Udupa, S.M.; Iraqi, D.; Meksem, K.; Hmamouchi, M.; ElMeskaoui, A. Correlation between the chemical and genetic relationships among Thymus saturejoides genotypes cultured under in vitro and in vivo environments. Chem. Biodivers. 2016, 13, 387–394. [Google Scholar] [CrossRef]
- Eckert, C.G.; Samis, K.E.; Lougheed, S.C. Genetic variation across species’ geographical ranges: The central–marginal hypothesis and beyond. Mol. Ecol. 2008, 17, 1170–1188. [Google Scholar] [CrossRef] [PubMed]
- Raguso, R.A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, W.; Wu, W.; Bai, R.; Kuang, S.; Shi, B.; Li, D. Chemical composition and diversity of the essential oils of Juniperus rigida along the elevations in Helan and Changbai Mountains and correlation with the soil characteristics. Ind. Crops Prod. 2021, 159, 113032. [Google Scholar] [CrossRef]
- Kadri, A.; Zarai, Z.; Chobba, I.B.; Gharsallah, N.; Damak, M.; Bekir, A. Chemical composition and in vitro antioxidant activities of Thymelaea hirsuta L. essential oil from Tunisia. Afr. J. Biotechnol. 2011, 10, 2930–2935. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem. 2001, 75, 197–202. [Google Scholar] [CrossRef]
- Lugasi, A. The role of antioxidant phytonutrients in the prevention of diseases. Acta Biol. Szeged. 2003, 47, 119–125. [Google Scholar]
- Narishetty, S.; Panchagnula, R. Transdermal delivery of zidovudine: Effect of terpenes and their mechanism of action. J. Control. Release 2004, 95, 367–379. [Google Scholar] [CrossRef]
- da Silva Dannenberg, G.; Funck, G.D.; da Silva, W.P.; Fiorentini, Â.M. Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control 2019, 95, 115–120. [Google Scholar] [CrossRef]
- Hao, Y.; Kang, J.; Yang, R.; Li, H.; Cui, H.; Bai, H.; Tsitsilin, A.; Li, J.; Shi, L. Multidimensional exploration of essential oils generated via eight oregano cultivars: Compositions, chemodiversities, and antibacterial capacities. Food Chem. 2022, 374, 131629. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, K.; Weigand, H.; Weis, N.; Schwarm, H.M.; Vigenschow, H. Action of terpenoids on energy metabolism. In Progress in Essential Oil Research; Walter de Gruyter: Berlin, Germany, 1986; pp. 429–445. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994, 269, 8022–8028. [Google Scholar] [CrossRef] [PubMed]
- Combrinck, S.; Regnier, T.; Kamatou, G.P. In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Ind. Crops Prod. 2011, 33, 344–349. [Google Scholar] [CrossRef]
- Marinelli, L.; Di Stefano, A.; Cacciatore, I. Carvacrol and its derivatives as antibacterial agents. Phytochem. Rev. 2018, 17, 903–921. [Google Scholar] [CrossRef]
- Purbowati, I.S.M.; Maksum, A. Antibakterial activity of roselle (Hibiscus sabdariffa) extract phenolics compound produced with variying drying methods and duration. J. Teknol. Ind. 2018, 28, 19–27. [Google Scholar]
- Song, Y.R.; Choi, M.S.; Choi, G.W.; Park, I.K.; Oh, C.S. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit. Plant Pathol. J. 2016, 32, 363–370. [Google Scholar] [CrossRef]
- Leandro, L.M.; de Sousa Vargas, F.; Barbosa, P.C.S.; Neves, J.K.O.; Da Silva, J.A.; da Veiga-Junior, V.F. Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules 2012, 17, 3866–3889. [Google Scholar] [CrossRef]
- Denyer, S.P.; Hugo, W.B. Biocide-induced damage to the bacterial cyctoplasmic membrane. Society for Applied Bacteriology. Tech. Ser. 1991, 27, 171–187. [Google Scholar]
- Zhang, Y.; Wu, D.; Kuang, S.; Qing, M.; Ma, Y.; Yang, T.; Wang, T.; Li, D. Chemical composition, antioxidant, antibacterial and cholinesterase inhibitory activities of three Juniperus species. Nat. Prod. Res. 2020, 34, 3531–3535. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- Peet, R.K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 1974, 5, 285–307. [Google Scholar] [CrossRef]
- Viuda Martos, M.; Ruiz Navajas, Y.; Fernádez López, J.; Pérez Álvarez, J.A. Methods for the determination of antioxidant activity. Aliment. Equiposy Tecnol. 2010, 254, 40–43. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Meng, X.; Li, D.; Zhou, D.; Wang, D.; Liu, Q.; Fan, S. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae. J. Ethnopharmacol. 2016, 194, 698–705. [Google Scholar] [CrossRef]
- Liu, Z.; Kuang, S.; Qing, M.; Wang, D.; Li, D. Data supporting metabolite profiles of essential oils and SSR molecular markers in Juniperus rigida Sieb. et Zucc. from different regions: A potential source of raw materials for the perfume and healthy products. Data Brief 2019, 25, 104113. [Google Scholar] [CrossRef]
- M07-A10; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. CLSI document; C. a. L. S. Institute. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015.
- Vanegas, D.; Abril-Novillo, A.; Khachatryan, A.; Jerves-Andrade, L.; Peñaherrera, E.; Cuzco, N.; León-Tamariz, F. Validation of a method of broth microdilution for the determination of antibacterial activity of essential oils. BMC Res. Notes 2021, 14, 439. [Google Scholar] [CrossRef]
NO. | Compounds | RI a | RI b | Area (%) | |||||
---|---|---|---|---|---|---|---|---|---|
J. formosana | J. przewalskii | J. convallium | J. tibetica | J. komarovii | J. sabina | ||||
Monoterpene hydrocarbons | |||||||||
1 | β-Thujene | 920 | 902 | 0.16 | 1.28 | 1.04 | 1.09 | 1.93 | 1.76 |
2 | α-Pinene | 940 | 911 | 17.31 | 5.86 | 5.58 | 6.93 | 2.71 | 2.74 |
3 | Camphene | 954 | 927 | 0.32 | 0.04 | 0.05 | 0.07 | 0.03 | 0.04 |
4 | Sabinene | 975 | 956 | 4.91 | 12.14 | 15.33 | 16.13 | 17.5 | 19.83 |
5 | β-Pinene | 980 | 959 | 2.15 | 0.06 | 0.05 | 0.07 | nd | 2.63 |
6 | β-Myrcene | 991 | 973 | 3.13 | 0.53 | 1.38 | 1.85 | 1.17 | nd |
7 | 4-Carene | 1001 | 981 | 0.38 | nd | 0.37 | 0.83 | 0.06 | 0.92 |
8 | α-Phellandrene | 1002 | 985 | 0.58 | 0.04 | 0.02 | 0.04 | 0.12 | 0.19 |
9 | α-Terpinene | 1007 | 996 | 0.29 | 1.78 | 1.54 | 2 | 3.19 | 3.15 |
10 | Sylvestrene | 1027 | 1009 | 3.49 | 8.58 | 2.35 | 3.78 | 3.07 | 1.84 |
11 | (Z)-β-Ocimene | 1031 | 1020 | 0.01 | nd | nd | tr | nd | 0.15 |
12 | γ-Terpinene | 1054 | 1042 | 0.56 | 2.99 | 2.46 | 3.02 | 4.42 | 4.46 |
13 | Terpinolene | 1086 | 1072 | 0.62 | 0.9 | 0.89 | 1.18 | 1.48 | 1.8 |
Oxygenated monoterpenes | |||||||||
14 | 4-Thujanol | 1077 | 1051 | nd | 0.18 | 0.25 | 0.21 | 0.2 | 0.14 |
15 | Linalool | 1095 | 1083 | 0.21 | 0.79 | nd | 0.13 | 0.17 | 0.68 |
16 | Rose oxide | 1108 | 1089 | nd | nd | nd | nd | nd | 0.12 |
17 | (Z)-Thujone | 1111 | 1091 | nd | 0.18 | 0.02 | 0.25 | 0.22 | 0.03 |
18 | Butanoic acid, 3-methyl-, 3-methyl-3-butenyl ester | 1112 | 1096 | nd | 0.01 | nd | nd | 0.05 | 0.23 |
19 | (E)-Thujone | 1114 | 1097 | 0.02 | nd | 0.11 | nd | nd | nd |
20 | 3-Thujanone | 1124 | 1099 | nd | 0.9 | nd | nd | nd | nd |
21 | p-Menth-2-en-1-ol | 1125 | 1102 | 0.06 | 0.28 | 0.33 | 0.6 | 0.62 | 0.59 |
22 | (R)-α-Campholene aldehyde | 1126 | 1107 | 0.63 | nd | 0.02 | 0.03 | nd | nd |
23 | (E)-Pinocarveol | 1135 | 1121 | 0.57 | nd | nd | nd | nd | nd |
24 | (E)-p-Menth-2-en-1-ol | 1140 | 1123 | nd | 0.2 | 0.23 | 0.44 | nd | nd |
25 | (E)-Verbenol | 1144 | 1128 | 0.39 | nd | 0.03 | 0.05 | nd | nd |
26 | Citronellal | 1152 | 1139 | nd | tr | nd | nd | nd | 0.32 |
27 | p-Mentha-1,5-dien-8-ol | 1170 | 1150 | 1.2 | nd | nd | nd | nd | nd |
28 | 4-Terpineol | 1177 | 1161 | 1.16 | 6.58 | 5.55 | nd | 8.81 | 8.96 |
29 | (R)-4-Carvomenthenol | 1182 | 1163 | nd | nd | nd | 6.55 | nd | nd |
30 | α-Terpineol | 1186 | 1175 | 0.42 | 0.2 | 0.16 | 0.19 | 0.5 | 0.58 |
31 | (Z)-Piperitol | 1195 | 1179 | nd | 0.07 | 0.07 | 0.14 | 0.22 | 0.24 |
32 | 2-Pinen-10-ol | 1198 | 1179 | 0.41 | nd | nd | nd | nd | nd |
33 | Berbenone | 1204 | 1191 | 0.16 | nd | nd | nd | nd | nd |
34 | (E)-Piperitol | 1207 | 1192 | nd | 0.09 | 0.11 | 0.21 | 0.32 | 0.35 |
35 | (E)-Carveol | 1215 | 1200 | 0.2 | 0.02 | tr | 0.01 | nd | nd |
36 | Fenchyl acetate | 1223 | 1202 | 0.22 | nd | nd | nd | nd | nd |
37 | Citronellol | 1228 | 1210 | 0.38 | 0.06 | 0.01 | 0.03 | 0.04 | 2.31 |
38 | (E)-Chrysanthenyl acetate | 1238 | 1217 | 0.22 | nd | nd | nd | nd | nd |
39 | Piperitone | 1249 | 1239 | nd | 0.01 | 0.49 | 0.89 | 0.01 | 0.37 |
40 | Linalyl acetate | 1254 | 1241 | nd | nd | nd | nd | nd | 0.29 |
41 | Citronellic acid, methyl ester | 1261 | 1244 | nd | nd | 0.01 | 0.01 | 0.11 | 2.55 |
42 | Hexanoic acid, 3-methyl-2-butenyl ester | 1292 | 1277 | 0.74 | nd | nd | nd | nd | nd |
43 | (E)-Geranic acid methyl ester | 1315 | 1306 | nd | nd | nd | nd | nd | 0.72 |
44 | (E,E)-2,4-Decadienal | 1315 | 1297 | 0.01 | nd | 0.01 | 0.01 | nd | 0.13 |
45 | α-Terpinyl acetate | 1349 | 1334 | 1.12 | nd | nd | nd | nd | 0.1 |
46 | Citronellol acetate | 1350 | 1337 | nd | nd | nd | nd | nd | 0.28 |
47 | Geranyl acetate | 1379 | 1366 | 0.05 | nd | nd | nd | nd | 0.18 |
Sesquiterpene hydrocarbons | |||||||||
48 | β-Bourbonene | 1388 | 1372 | 0.14 | nd | nd | nd | nd | nd |
49 | β-Elemene | 1390 | 1378 | 0.25 | nd | 0.12 | 0.03 | 0.01 | 0.06 |
50 | Cedrene | 1413 | 1392 | nd | nd | nd | tr | 0.11 | nd |
51 | (E)-Caryophyllene | 1417 | 1407 | 1.77 | 0.14 | 0.23 | 0.05 | nd | 0.1 |
52 | β-Copaene | 1430 | 1411 | nd | nd | nd | nd | nd | 0.02 |
53 | γ-Elemene | 1434 | 1419 | nd | nd | 0.3 | 0.04 | 0.04 | 0.04 |
54 | α-Humulene | 1454 | 1442 | 2.01 | nd | 0.05 | 0.01 | 0.02 | 0.08 |
55 | (1S,4S,4aS)-1-Isopropyl-4,7-dimethyl-1,2,3,4,4a,5-hexahydronaphthalene | 1458 | 1461 | nd | nd | 0.16 | 0.07 | 0.13 | nd |
56 | (Z)-Muurola-4(15),5-diene | 1465 | 1464 | nd | nd | 0.57 | nd | 0.19 | 0.12 |
57 | γ-Muurolene | 1478 | 1464 | 0.28 | nd | nd | nd | nd | 0.23 |
58 | (E)-Germacrene D | 1485 | 1470 | 7.32 | 0.04 | nd | 0.06 | nd | 0.58 |
59 | α-Muurolene | 1500 | 1483 | nd | nd | nd | 0.14 | 0.37 | 0.83 |
60 | δ-Amorphene | 1522 | 1502 | 1.28 | nd | 2.09 | 1.03 | 1.72 | 3.76 |
61 | Cadine-1,4-diene | 1533 | 1509 | nd | nd | nd | 0.01 | 0.06 | 0.13 |
62 | α-Cadinene | 1538 | 1520 | nd | nd | nd | nd | nd | 0.22 |
63 | Germacrene B | 1559 | 1530 | nd | 0.4 | 0.68 | nd | nd | 0.05 |
Oxygenated sesquiterpenes | |||||||||
64 | Epi-cubebol | 1493 | 1482 | nd | 0.03 | nd | nd | 0.12 | 0.32 |
65 | Cubebol | 1514 | 1496 | nd | nd | 0.74 | 0.28 | nd | nd |
66 | α-Copaen-11-ol | 1539 | 1522 | nd | 0.19 | nd | nd | 0.01 | nd |
67 | Hedycaryol | 1548 | 1523 | 0.8 | 6.8 | 9.83 | 9.44 | 7.15 | 1 |
68 | Occidentalol | 1550 | 1528 | nd | nd | nd | nd | 0.13 | nd |
69 | (E)-Nerolidol | 1561 | 1534 | 0.48 | nd | nd | nd | 0.2 | 0.04 |
70 | Germacrene D-4-ol | 1575 | 1541 | 0.46 | 0.18 | 1.34 | 0.61 | 0.54 | 1.65 |
71 | Caryophyllene oxide | 1582 | 1547 | 0.79 | 0.01 | nd | nd | nd | nd |
72 | Salvial-4(14)-en-1-one | 1594 | 1553 | 0.12 | nd | nd | nd | nd | nd |
73 | 7-epi-γ-Eudesmol | 1622 | 1574 | nd | 2.14 | 2.07 | 1.62 | 1.62 | nd |
74 | 1-epi-Cubenol | 1627 | 1577 | nd | nd | nd | nd | nd | 0.45 |
75 | epi-α-Cadinol (T-cadinol) | 1638 | 1579 | 0.39 | 0.48 | nd | 0.58 | nd | nd |
76 | T-Muurolol | 1640 | 1579 | nd | nd | 1 | nd | 1.65 | 4.11 |
77 | α-Muurolol | 1644 | 1581 | nd | 0.05 | 0.13 | 0.08 | 0.29 | 0.89 |
78 | β-Eudesmol | 1649 | 1587 | nd | 0.01 | nd | nd | 1.29 | 0.09 |
79 | α-Cadinol | 1652 | 1590 | nd | nd | nd | nd | 3.04 | 5.69 |
80 | ent-Germacra-4(15),5,10(14)-trien-1β-ol | 1685 | 1603 | 0.73 | nd | nd | nd | 0.12 | 0.16 |
81 | Shyobunol | 1688 | 1605 | 0.05 | nd | 0.1 | 0.04 | nd | 0.07 |
Others | |||||||||
82 | 2-Nonanone | 1087 | 1075 | 0.02 | 0.01 | nd | nd | nd | 0.21 |
83 | Isoamyl isovalerate | 1102 | 1085 | nd | nd | nd | nd | nd | 0.16 |
84 | exo-2,7,7-trimethylbicyclo [2.2.1] heptan-2-ol | 1146 | 1132 | 0.28 | nd | nd | 0.02 | nd | nd |
85 | Bornyl acetate | 1288 | 1271 | 1.28 | 0.02 | 0.08 | 0.1 | 0.05 | 0.04 |
86 | 2-Undecanone | 1293 | 1279 | nd | nd | nd | nd | nd | 4.37 |
87 | 2-Undecanol | 1301 | 1285 | nd | nd | nd | nd | nd | 0.25 |
88 | Dodecanoic acid | 1565 | 1540 | nd | nd | nd | 0.11 | nd | 0.4 |
89 | Allo-cedrol | 1589 | 1550 | nd | nd | nd | nd | 0.12 | nd |
90 | Ethyl dodecanoate | 1594 | 1550 | nd | nd | nd | nd | nd | 0.24 |
91 | Epicedrol | 1618 | 1559 | 1.18 | 7.76 | 0.32 | 0.81 | 10.48 | nd |
92 | Aromadendrene oxide-(2) | 1678 | 1600 | 0.18 | nd | 0.08 | nd | nd | nd |
93 | Total monoterpenes | 42.56 | 43.85 | 38.6 | 46.94 | 47.18 | 59.09 | ||
94 | Monoterpene hydrocarbons | 34.39 | 34.28 | 31.2 | 37.19 | 35.91 | 39.92 | ||
95 | Oxygenated monoterpenes | 8.17 | 9.57 | 7.4 | 9.75 | 11.27 | 19.17 | ||
96 | Total sesquiterpenes | 16.87 | 10.47 | 19.41 | 14.09 | 18.81 | 20.69 | ||
97 | Sesquiterpene hydrocarbons | 13.05 | 0.58 | 4.2 | 1.44 | 2.65 | 6.22 | ||
98 | Oxygenated sesquiterpenes | 3.82 | 9.89 | 15.21 | 12.65 | 16.16 | 14.47 | ||
99 | Others | 2.94 | 7.79 | 0.6 | 1.13 | 10.65 | 5.67 | ||
100 | Total area (%) | 61.89 | 62.03 | 58.35 | 61.87 | 76.41 | 85.04 | ||
101 | Number of compounds | 52 | 40 | 45 | 48 | 47 | 63 | ||
102 | Yield | 4.13% | 3.40% | 2.77% | 2.53% | 1.63% | 1.30% |
NO. | Samples | DPPH (IC50) (mg/mL) | ABTS (µmol Trolox/g) |
---|---|---|---|
1 | J. formosana | 18.83 ± 0.90 cd | 44.34 ± 7.55 a |
2 | J. przewalskii | 45.62 ± 0.37 e | 25.10 ± 7.98 b |
3 | J. convallium | 16.89 ± 3.14 c | 44.19 ± 0.46 a |
4 | J. tibetica | 21.26 ± 2.19 d | 43.73 ± 1.62 a |
5 | J. komarovii | 11.94 ± 0.14 b | 48.83 ± 0.88 a |
6 | J. sabina | 17.82 ± 0.11 c | 49.34 ± 0.95 a |
7 | Trolox | 0.01 ± 0.21 a | - |
No. | Herbarium No | Species | Collection Place | Coordinates | Height | Sample Plots |
---|---|---|---|---|---|---|
1 | JF. 20. 24 | J. formosana | Guanting Town, Minhe County, Qinghai Province, China | N 35.757222° E 102.434444° | 2350 m | 3 |
2 | JP. 20. 37 | J. przewalskii | Maixiu Forest Farm, Zeku County, Huangnan Tibetan Autonomous Prefecture, Qinghai Province, China | N 35.228333° E 101.851667° | 3519 m | 24 |
3 | JC. 20. 39 | J. convallium | Jiangxi Forest Farm, Yushu County, Yushu Prefecture, Qinghai Province, China | N 32.055833° E 97.0038889° | 3520 m | 3 |
4 | JT. 20. 77 | J. tibetica | Jiangxi Forest Farm, Yushu County, Yushu Prefecture, Qinghai Province, China | N 32.072777° E 97.0241667° | 3600 m | 21 |
5 | JK. 20. 31 | J. komarovii | Doke River Forest Farm, Banma County, Guoluo Tibetan Autonomous Prefecture, Qinghai Province, China | N 32.745833° E 100.751111° | 3550 m | 3 |
6 | JS. 20. 24 | J. sabina | Ketusha District, Haiyan County, Haibei Prefecture, Qinghai Province, China | N 36.759662° E 100.794524° | 3317 m | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Li, D.; Bai, R.; Zhang, W.; Luo, H.; Yu, E. Chemodiversity and Bioactivity of the Essential Oils of Juniperus and Implication for Taxonomy. Int. J. Mol. Sci. 2023, 24, 15203. https://doi.org/10.3390/ijms242015203
Hu H, Li D, Bai R, Zhang W, Luo H, Yu E. Chemodiversity and Bioactivity of the Essential Oils of Juniperus and Implication for Taxonomy. International Journal of Molecular Sciences. 2023; 24(20):15203. https://doi.org/10.3390/ijms242015203
Chicago/Turabian StyleHu, Huizhong, Dengwu Li, Ruxue Bai, Weiping Zhang, Hong Luo, and Enping Yu. 2023. "Chemodiversity and Bioactivity of the Essential Oils of Juniperus and Implication for Taxonomy" International Journal of Molecular Sciences 24, no. 20: 15203. https://doi.org/10.3390/ijms242015203
APA StyleHu, H., Li, D., Bai, R., Zhang, W., Luo, H., & Yu, E. (2023). Chemodiversity and Bioactivity of the Essential Oils of Juniperus and Implication for Taxonomy. International Journal of Molecular Sciences, 24(20), 15203. https://doi.org/10.3390/ijms242015203