Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology
Abstract
:1. Introduction
2. Results
2.1. Characterization of CNON Cell Type
2.2. Comparison CNON with Middle Turbinate Dataset
2.3. Characterization of MC Cell Type
2.4. Comparison of Single-Cell CNON Data with the Olfactory Neuroepithelium Dataset
2.5. Comparison of Single-Cell CNON Data with Embryonic Brain Dataset
2.6. Schizophrenia vs. Control CNON Comparison
3. Discussion
4. Materials and Methods
4.1. Biopsy Collection and Sample Preparation
4.2. CNON Cell Culture
4.3. Single-Cell Preparation from CNON
4.4. scRNA-seq Sample Processing
4.5. scRNA-seq Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, R.M.; Bhavsar, V.; Tripoli, G.; Howes, O. 30 Years on: How the Neurodevelopmental Hypothesis of Schizophrenia Morphed into the Developmental Risk Factor Model of Psychosis. Schizophr. Bull. 2017, 43, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Brennand, K.J.; Gage, F.H. Concise review: The promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 2011, 29, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Topol, A.; Zhu, S.; Tran, N.; Simone, A.; Fang, G.; Brennand, K.J. Altered WNT Signaling in Human Induced Pluripotent Stem Cell Neural Progenitor Cells Derived from Four Schizophrenia Patients. Biol. Psychiatry 2015, 78, E29–E34. [Google Scholar] [CrossRef]
- Räsänen, N.; Tiihonen, J.; Koskuvi, M.; Lehtonen, Š.; Koistinaho, J. The iPSC perspective on schizophrenia. Trends Neurosci. 2022, 45, 8–26. [Google Scholar] [CrossRef]
- Som, P.M.; Naidich, T.P. Illustrated Review of the Embryology and Development of the Facial Region, Part 1: Early Face and Lateral Nasal Cavities. AJNR Am. J. Neuroradiol. 2013, 34, 2233–2240. [Google Scholar] [CrossRef]
- Kaltschmidt, B.; Kaltschmidt, C.; Widera, D. Adult Craniofacial Stem Cells: Sources and Relation to the Neural Crest. Stem Cell Rev. Rep. 2012, 8, 658–671. [Google Scholar] [CrossRef]
- Arnold, S.E.; Han, L.Y.; Moberg, P.J.; Turetsky, B.I.; Gur, R.E.; Trojanowski, J.Q.; Hahn, C.G. Dysregulation of olfactory receptor neuron lineage in schizophrenia. Arch. Gen. Psychiatry 2001, 58, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Wolozin, B.; Sunderland, T.; Zheng, B.; Resau, J.; Dufy, B.; Barker, J.; Swerdlow, R.; Coon, H. Continuous culture of neuronal cells from adult human olfactory epithelium. J. Mol. Neurosci. 1992, 3, 137–146. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Kondo, M.A.; Okada, K.; Takayanagi, Y.; Tanaka, T.; Ho, T.; Varvaris, M.; Tajinda, K.; Hiyama, H.; Ni, K.; et al. Molecular signatures associated with cognitive deficits in schizophrenia: A study of biopsied olfactory neural epithelium. Transl. Psychiatry 2016, 6, e915. [Google Scholar] [CrossRef]
- Zhang, X.; Klueber, K.M.; Guo, Z.; Lu, C.; Roisen, F.J. Adult human olfactory neural progenitors cultured in defined medium. Exp. Neurol. 2004, 186, 112–123. [Google Scholar] [CrossRef]
- Gomez, G.; Rawson, N.E.; Hahn, C.G.; Michaels, R.; Restrepo, D. Characteristics of odorant elicited calcium changes in cultured human olfactory neurons. J. Neurosci. Res. 2000, 62, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, J.; Sawa, A.; Ishizuka, K. Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research. Curr. Opin. Psychiatry 2017, 30, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Mackay-Sim, A. Concise review: Patient-derived olfactory stem cells: New models for brain diseases. Stem Cells 2012, 30, 2361–2365. [Google Scholar] [CrossRef] [PubMed]
- Evgrafov, O.V.; Wrobel, B.B.; Kang, X.; Simpson, G.; Malaspina, D.; Knowles, J.A. Olfactory neuroepithelium-derived neural progenitor cells as a model system for investigating the molecular mechanisms of neuropsychiatric disorders. Psychiatr. Genet. 2011, 21, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, B.B.; Mazza, J.M.; Evgrafov, O.V.; Knowles, J.A. Assessing the efficacy of endoscopic office olfactory biopsy sites to produce neural progenitor cell cultures for the study of neuropsychiatric disorders. Int. Forum Allergy Rhinol. 2013, 3, 133–138. [Google Scholar] [CrossRef]
- Mathews, F.; Tung, V.S.K.; Foronjy, R.; Boruk, M.; Knowles, J.A.; Evgrafov, O.V. Cell type catalog of middle turbinate epithelium. bioRxiv 2022. [Google Scholar] [CrossRef]
- Eze, U.C.; Bhaduri, A.; Haeussler, M.; Nowakowski, T.J.; Kriegstein, A.R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 2021, 24, 584–594. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Harrison-Uy, S.J.; Pleasure, S.J. Wnt signaling and forebrain development. Cold Spring Harb. Perspect. Biol. 2012, 4, a008094. [Google Scholar] [CrossRef]
- Ling, L.; Nurcombe, V.; Cool, S.M. Wnt signaling controls the fate of mesenchymal stem cells. Gene 2009, 433, 1–7. [Google Scholar] [CrossRef]
- Lasky, J.L.; Wu, H. Notch Signaling, Brain Development, and Human Disease. Pediatr. Res. 2005, 57, 104R–109R. [Google Scholar] [CrossRef] [PubMed]
- Nian, F.S.; Hou, P.S. Evolving Roles of Notch Signaling in Cortical Development. Front. Neurosci. 2022, 16, 844410. [Google Scholar] [CrossRef] [PubMed]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020, arXiv:1802.03426. [Google Scholar]
- Evgrafov, O.V.; Armoskus, C.; Wrobel, B.B.; Spitsyna, V.N.; Souaiaia, T.; Herstein, J.S.; Walker, C.P.; Nguyen, J.D.; Camarena, A.; Weitz, J.R.; et al. Gene Expression in Patient-Derived Neural Progenitors Implicates WNT5A Signaling in the Etiology of Schizophrenia. Biol. Psychiatry 2020, 88, 236–247. [Google Scholar] [CrossRef]
- Durante, M.A.; Kurtenbach, S.; Sargi, Z.B.; Harbour, J.W.; Choi, R.; Kurtenbach, S.; Goss, G.M.; Matsunami, H.; Goldstein, B.J. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat. Neurosci. 2020, 23, 323–326. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Beckervordersandforth, R.; Tripathi, P.; Ninkovic, J.; Bayam, E.; Lepier, A.; Stempfhuber, B.; Kirchhoff, F.; Hirrlinger, J.; Haslinger, A.; Lie, D.C.; et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 2010, 7, 744–758. [Google Scholar] [CrossRef]
- Charbord, P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum. Gene Ther. 2010, 21, 1045–1056. [Google Scholar] [CrossRef]
- Si, Z.; Wang, X.; Sun, C.; Kang, Y.; Xu, J.; Wang, X.; Hui, Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed. Pharmacother. 2019, 114, 108765. [Google Scholar] [CrossRef]
- Davies, L.C.; Locke, M.; Webb, R.D.J.; Roberts, J.T.; Langley, M.; Thomas, D.W.; Archer, C.W.; Stephens, P. A multipotent neural crest-derived progenitor cell population is resident within the oral mucosa lamina propria. Stem Cells Dev. 2010, 19, 819–830. [Google Scholar] [CrossRef]
- Ding, D.C.; Shyu, W.C.; Lin, S.Z. Mesenchymal stem cells. Cell Transplant. 2011, 20, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Pombero, A.; Garcia-Lopez, R.; Martinez, S. Brain mesenchymal stem cells: Physiology and pathological implications. Dev. Growth Differ. 2016, 58, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, S.L.; Johnstone, S.A.; Mountford, J.C.; Sheikh, S.; Allan, D.B.; Clark, L.; Barnett, S.C. Human mesenchymal stem cells isolated from olfactory biopsies but not bone enhance CNS myelination in vitro. Glia 2013, 61, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Delorme, B.; Nivet, E.; Gaillard, J.; Häupl, T.; Ringe, J.; Devèze, A.; Magnan, J.; Sohier, J.; Khrestchatisky, M.; Roman, F.S.; et al. The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev. 2010, 19, 853–866. [Google Scholar] [CrossRef]
- Lim, J.Y.; In Park, S.; Park, S.A.; Jeon, J.H.; Jung, H.Y.; Yon, J.M.; Jeun, S.S.; Lim, H.K.; Kim, S.W. Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer’s disease. Stem Cell Res. Ther. 2021, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.D.; Devéze, A.; Nivet, E.; Gepner, B.; Roman, F.S.; Féron, F. Isolating Nasal Olfactory Stem Cells from Rodents or Humans. J. Vis. Exp. 2011, 54, e2762. [Google Scholar] [CrossRef]
- Lampinen, R.; Fazaludeen, M.F.; Avesani, S.; Örd, T.; Penttilä, E.; Lehtola, J.M.; Saari, T.; Hannonen, S.; Saveleva, L.; Kaartinen, E.; et al. Single-Cell RNA-Seq Analysis of Olfactory Mucosal Cells of Alzheimer’s Disease Patients. Cells 2022, 11, 676. [Google Scholar] [CrossRef]
- Tomé, M.; Lindsay, S.L.; Riddell, J.S.; Barnett, S.C. Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa. Stem Cells 2009, 27, 2196–2208. [Google Scholar] [CrossRef]
- Murray, I.R.; Péault, B. Q&A: Mesenchymal stem cells—Where do they come from and is it important? BMC Biol. 2015, 13, 99. [Google Scholar] [CrossRef]
- Hernández, R.; Jiménez-Luna, C.; Perales-Adán, J.; Perazzoli, G.; Melguizo, C.; Prados, J. Differentiation of human mesenchymal stem cells towards neuronal lineage: Clinical trials in nervous system disorders. Biomol. Ther. 2020, 28, 34–44. [Google Scholar] [CrossRef]
- Nasri, A.; Foisset, F.; Ahmed, E.; Lahmar, Z.; Vachier, I.; Jorgensen, C.; Assou, S.; Bourdin, A.; De Vos, J. Roles of mesenchymal cells in the lung: From lung development to chronic obstructive pulmonary disease. Cells 2021, 10, 3467. [Google Scholar] [CrossRef] [PubMed]
- Partti, K.; Vasankari, T.; Kanervisto, M.; Perälä, J.; Saarni, S.I.; Jousilahti, P.; Lönnqvist, J.; Suvisaari, J. Lung function and respiratory diseases in people with psychosis: Population-based study. Br. J. Psychiatry 2015, 207, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.C.; Nanda, S.; Tripathi, A.; Sawlani, K.K.; Gupta, K.K.; Himanshu, D.; Verma, A.K. Prevalence of psychiatric comorbidities in chronic obstructive pulmonary disease patients. Lung India 2016, 33, 174–178. [Google Scholar] [CrossRef]
- Thorstensen, W.M.; Øie, M.R.; Dahlslett, S.B.; Sue-Chu, M.; Steinsvåg, S.K.; Helvik, A.S. Olfaction in COPD. Rhinology 2022, 60, 47–55. [Google Scholar] [CrossRef]
- Foronjy, R.; Imai, K.; Shiomi, T.; Mercer, B.; Sklepkiewicz, P.; Thankachen, J.; Bodine, P.; D’Armiento, J. The divergent roles of Secreted Frizzled Related Protein-1 (SFRP1) in lung morphogenesis and emphysema. Am. J. Pathol. 2010, 177, 598–607. [Google Scholar] [CrossRef]
- Foronjy, R.F.; Majka, S.M. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: Understanding microenvironmental cues. Cells 2012, 1, 874–885. [Google Scholar] [CrossRef]
- Baarsma, H.A.; Spanjer, A.I.R.; Haitsma, G.; Engelbertink, L.H.J.M.; Meurs, H.; Jonker, M.R.; Timens, W.; Postma, D.S.; Kerstjens, H.A.M.; Gosens, R. Activation of WNT/β-catenin signaling in pulmonary fibroblasts by TGF-β 1 is increased in chronic obstructive pulmonary disease. PLoS ONE 2011, 6, e25450. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M.; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al. Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587.e29. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef]
Predicted Number of Mapped Cells | Average Predicted ID Score | ||||
---|---|---|---|---|---|
CNON-CTRL | CNON-SCZ | CNON-CTRL | CNON-SCZ | ||
MT-CTRL Cell-Cycle Regressed | MC | 12,234 | 3303 | 1 | 1 |
MT-SCZ Cell-Cycle Regressed | Basal | 0 | 35 | 0 | 0.035 |
MC | 12,234 | 3268 | 1 | 0.964 | |
ON-Patient 2 | MC | 11,425 | 2428 | 1 | 0.0853 |
Vascular Smooth Muscle | 0 | 127 | 0 | 0.117 | |
ON-Integrated | MC | 10,901 | 1868 | 0.986 | 0.864 |
Vascular Smooth Muscle | 78 | 207 | 0.014 | 0.136 | |
CS14_3 | Cluster 0 | 1 | 6 | 0.05 | 0.015 |
Cluster 9 | 12,233 | 3297 | 0.995 | 0.985 |
CNON-CTRL | CNON-SCZ | Bulk CNON | ||||
---|---|---|---|---|---|---|
Average Expression | Percentage of Cells Expressing Gene | Average Expression | Percentage of Cells Expressing Gene | TPM | ||
Housekeeping | ACTB | 2.456 | 100 | 2.456 | 100 | 1540.14 |
GAPDH | 1.697 | 100 | 3.4082 | 100 | 1153.02 | |
Basal | SERPINB3 | 0.00375 | 0.0172 | 0 | 0 | 0.01 |
KRT5 | 0 | 0 | 0.0005 | 0.303 | 0.21 | |
Endothelial | CCL14 | 0 | 0 | 0 | 0 | 0.20 |
VWF | 0.0009 | 0.058 | 0.0031 | 0.182 | 0.09 | |
Serous | DMBT1 | 0.0001 | 0.0007 | 0.006 | 0.394 | 0.04 |
Club | LYPD2 | 0 | 0 | 0 | 0 | 0.02 |
SCGB1A1 | 0 | 0 | 0 | 0.003 | 0.00 | |
Ciliated | SNTN | 0.0005 | 0.0327 | 0.004 | 0.272 | 0.23 |
Goblet | MUC5B | 0 | 0 | 0.001 | 0.0606 | 0.06 |
Ionocytes | CFTR | 0 | 0 | 0.0005 | 0.0303 | 0.07 |
CNON-CTRL | CNON-SCZ | |||
---|---|---|---|---|
Number of Cells | Percentage of Cells | Number of Cells | Percentage of Cells | |
G0 | 10854 | 88.7 | 2553 | 77.3 |
G1 | 634 | 5.2 | 348 | 10.5 |
S | 556 | 4.5 | 242 | 7.3 |
G2-M | 143 | 1.2 | 106 | 3.2 |
Apoptotic | 47 | 0.4 | 54 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tung, V.S.K.; Mathews, F.; Boruk, M.; Suppa, G.; Foronjy, R.; Pato, M.T.; Pato, C.N.; Knowles, J.A.; Evgrafov, O.V. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. Int. J. Mol. Sci. 2023, 24, 15339. https://doi.org/10.3390/ijms242015339
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato MT, Pato CN, Knowles JA, Evgrafov OV. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. International Journal of Molecular Sciences. 2023; 24(20):15339. https://doi.org/10.3390/ijms242015339
Chicago/Turabian StyleTung, Victoria Sook Keng, Fasil Mathews, Marina Boruk, Gabrielle Suppa, Robert Foronjy, Michele T. Pato, Carlos N. Pato, James A. Knowles, and Oleg V. Evgrafov. 2023. "Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology" International Journal of Molecular Sciences 24, no. 20: 15339. https://doi.org/10.3390/ijms242015339
APA StyleTung, V. S. K., Mathews, F., Boruk, M., Suppa, G., Foronjy, R., Pato, M. T., Pato, C. N., Knowles, J. A., & Evgrafov, O. V. (2023). Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. International Journal of Molecular Sciences, 24(20), 15339. https://doi.org/10.3390/ijms242015339