The Clinical and Genetic Characteristics of Streptococcus agalactiae Meningitis in Neonates
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Neonates with GBS Meningitis
2.2. Molecular Characteristics and Antimicrobial Resistance of GBS Isolates That Caused Meningitis
2.3. WGS for GBS Isolates That Caused Neonatal Meningitis
2.4. Discussion
3. Materials and Methods
3.1. GBS Isolates, Data Collection, and Definition
3.2. Capsular Serotyping, MLST, and Pilus Genes
3.3. Antimicrobial Susceptibility Testing
3.4. Whole Genome Sequencing
3.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ouchenir, L.; Renaud, C.; Khan, S.; Bitnun, A.; Boisvert, A.-A.; McDonald, J.; Bowes, J.; Brophy, J.; Barton, M.; Ting, J.; et al. The epidemiology, management, and outcomes of bacterial meningitis in infants. Pediatrics 2017, 140, e20170476. [Google Scholar] [CrossRef]
- Ku, L.C.; Boggess, K.A.; Cohen-Wolkowiez, M. Bacterial meningitis in infants. Clin. Perinatol. 2015, 42, 29–45. [Google Scholar] [CrossRef]
- Hasbun, R.; Wootton, S.H.; Rosenthal, N.; Balada-Llasat, J.M.; Chung, J.; Duff, S.; Bozzette, S.; Zimmer, L.; Ginocchio, C.C. Epidemiology of meningitis and encephalitis in infants and children in the United States, 2011–2014. Pediatr. Infect. Dis. J. 2019, 38, 37–41. [Google Scholar] [CrossRef]
- Romain, A.-S.; Cohen, R.; Plainvert, C.; Joubrel, C.; Béchet, S.; Perret, A.; Tazi, A.; Poyart, C.; Levy, C. Clinical and laboratory features of Group B Streptococcus meningitis in infants and newborns: Study of 848 cases in France, 2001–2014. Clin. Infect. Dis. 2017, 66, 857–864. [Google Scholar] [CrossRef]
- Kohli-Lynch, M.; Russell, N.J.; Seale, A.C.; Dangor, Z.; Tann, C.J.; Baker, C.J.; Bartlett, L.; Cutland, C.; Gravett, M.G.; Heath, P.T.; et al. Neurodevelopmental impairment in children after Group B Streptococcus disease worldwide: Systemic review and meta-analysis. Clin. Infect. Dis. 2017, 65, S190–S199. [Google Scholar] [CrossRef]
- Nanduri, S.A.; Petit, S.; Smelser, C.; Apostol, M.; Alden, N.B.; Harrison, L.H.; Lynfield, R.; Vagnone, P.S.; Burzlaff, K.; Spina, N.L.; et al. Epidemiology of invasive early-onset and late-onset Group B Streptococcal disease in the United States, 2006 to 2015: Multistate laboratory and population-based surveillance. JAMA Pediatr. 2019, 173, 224–233. [Google Scholar] [CrossRef]
- Guan, X.; Mu, X.; Ji, W.; Yuan, C.; He, P.; Zhang, L.; Huang, Y.; Li, J.; Chen, J.; Zhong, H.; et al. Epidemiology of invasive group B streptococcal disease in infants from urban area of South China, 2011–2014. BMC Infect. Dis. 2018, 18, 14. [Google Scholar] [CrossRef]
- Horvath-Puho, E.; van Kassel, M.N.; Goncalves, B.P.; de Gier, B.; Procter, S.R.; Paul, P.; van der Ende, A.; Søgaard, K.K.; Hahné, S.J.; Chandna, J.; et al. Mortality, neurodevelopmental impairments, and economic outcomes after invasive group B streptococcal disease in early infancy in Denmark and the Netherlands: A national matched cohort study. Lancet Child Adolesc. Health 2021, 5, 398–407. [Google Scholar] [CrossRef]
- Campisi, E.; Rosini, R.; Ji, W.; Guidotti, S.; Rojas-López, M.; Geng, G.; Deng, Q.; Zhong, H.; Wang, W.; Liu, H.; et al. Genomic analysis reveals multi-drug resistant clusters in Group B Streptococcus CC17 hypervirulent isolates causing neonatal invasive disease in southern mainland China. Front. Microbiol. 2016, 7, 1265. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Hsu, J.-F.; Lai, M.-Y.; Lin, L.-C.; Chu, S.-M.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Lu, J.-J. Molecular characteristics and antimicrobial resistance of Group B Streptococcus Strains causing invasive disease in neonates and adults. Front. Microbiol. 2019, 10, 264. [Google Scholar] [CrossRef]
- Zurn, K.; Lander, F.; Hufnagel, M.; Monecke, S.; Berner, R. Microaray analysis of Group B Streptococci causing invasive neonatal early and late-onset infection. Pediatr. Infect. Dis. J. 2020, 39, 449–453. [Google Scholar] [CrossRef]
- Lohrmann, F.; Berg, A.; Wicker, E.; Imm, A.; Krause, G.; Zürn, K.; Berner, R.; Hufnagel, M.; Lander, F. Prevalence of capsular serotype, pilus island distribution, and antibiotic resistance in pediatric and adult invasive Group B Streptococcus isolates: Data from a nationwide prospective surveillance study in Germany. Pediatr. Infect. Dis. J. 2021, 40, 76–82. [Google Scholar] [CrossRef]
- Kadambari, S.; Trotter, C.L.; Heath, P.T.; Goldacre, M.J.; Pollard, A.J.; Goldacre, R. Group B streptococcal disease in England (1998–2017): A population-based observational study. Clin. Infect. Dis. 2021, 72, e791–e798. [Google Scholar] [CrossRef]
- Hsu, M.-H.; Hsu, J.-F.; Kuo, H.-C.; Lai, M.-Y.; Chiang, M.-C.; Lin, Y.-J.; Huang, H.-R.; Chu, S.-M.; Tsai, M.-H. Neurological complications in young infants with acute bacterial meningitis. Front. Neurol. 2018, 9, 903. [Google Scholar] [CrossRef]
- Tavares, T.; Pinho, L.; Andrade, E.B. Group B Streptococcal neonatal meningitis. Clin. Microbiol. Rev. 2022, 35, e0007921. [Google Scholar] [CrossRef]
- de Cambronne, R.D.; Fouet, A.; Picart, A.; Bourrel, A.-S.; Anjou, C.; Bouvier, G.; Candeias, C.; Bouaboud, A.; Costa, L.; Boulay, A.-C.; et al. CC17 Group B Streptococcus exploits integrins for neonatal meningitis development. J. Clin. Investig. 2021, 131, e136737. [Google Scholar] [CrossRef]
- Travier, L.; Alonso, M.; Andronico, A.; Hafner, L.; Disson, O.; Lledo, P.-M.; Cauchemez, S.; Lecuit, M. Neonatal susceptibility to meningitis results from the immaturity of epithelial barriers and gut microbiota. Cell Rep. 2021, 35, 109319. [Google Scholar] [CrossRef]
- Tazi, A.; Plainvert, C.; Anselem, O.; Ballon, M.; Marcou, V.; Seco, A.; El Alaoui, F.; Joubrel, C.; El Helali, N.; Falloukh, E.; et al. Risk factors for infant colonization by hypervirulent CC17 Group B Streptococcus: Toward the understanding of late-onset disease. Clin. Infect. Dis. 2019, 69, 1740–1748. [Google Scholar] [CrossRef]
- Hsu, J.-F.; Tsai, M.-H.; Lin, L.-C.; Chu, S.-M.; Lai, M.-Y.; Huang, H.-R.; Chiang, M.-C.; Yang, P.-H.; Lu, J.-J. Genomic characterization of serotype III/ST17 Group B Streptococcus strains with antimicrobial resistance using whole genome sequencing. Biomedicines 2021, 9, 1477. [Google Scholar] [CrossRef]
- Wong, C.H.; Duque, J.R.; Wong, J.S.C.; Chan, C.V.; Lam, C.S.I.; Fu, Y.M.; Cheong, K.N.; Chua, G.T.; Lee, P.P.; Ip, P.; et al. Epidemiology and trends of infective meningitis in neonates and infants less than 3 months old in Hong Kong. Int. J. Infect. Dis. 2021, 111, 288–294. [Google Scholar] [CrossRef]
- Dominguez, K.; Lindon, A.K.; Gibbons, J.; Darch, S.E.; Randis, T.M. Group B Streptococcus drives major transcriptomic changes in the colonic epithelium. Infect. Immun. 2023, 91, e0003523. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, X.; Zheng, K.; Zhu, L.; Zhang, N.; Liu, L.; Chen, Z.; Liu, G.; He, Q. Increased risk of Group B Streptococcus causing meningitis in infants with mannose-binding lectin deficiency. Clin. Microbiol. Infect. 2019, 25, 384.e1–384.e3. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Chu, S.-M.; Wang, H.-C.; Yang, P.-H.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Tsai, M.-H.; Hsu, J.-F. Complicated Streptococcus agalactiae sepsis with/without meningitis in young infants and newborns: The clinical and molecular characteristics and outcomes. Microorganisms 2021, 9, 2094. [Google Scholar] [CrossRef] [PubMed]
- Lohrmann, F.; Hufnagel, M.; Kunze, M.; Afshar, B.; Creti, R.; Detcheva, A.; Kozakova, J.; Rodriguez-Granger, J.; Sørensen, U.B.S.; Margarit, I.; et al. Neonatal invasive disease caused by Streptococcus agalactiae in Europe: The DEVANI multi-center study. Infection 2022, 51, 981–991. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.-Q.; Yan, Q.; Lee, C.-C.; Hsu, M.-H.; Liao, W.-T.; Zhang, L.; Chiu, C.-H. Genomic Analysis of Group B Streptococcus from Neonatal Sepsis Reveals Clonal CC17 Expansion and Virulence- and Resistance-Associated Traits After Intrapartum Antibiotic Prophylaxis. Clin. Infect. Dis. 2022, 75, 2153–2160. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, F.; Najafi, M.; Hasani, A.; Kalantar, E.; Sharifi, E.; Amini, A.; Aghazadeh, M. Pilus–encoding islets in S. agalactiae and its association with antibacterial resistance and serotype distribution. Microb. Pathog. 2018, 116, 189–194. [Google Scholar] [CrossRef]
- Matuschek, E.; Ahman, J.; Webster, C.; Kahlmeter, G. Antimicrobial susceptibility testing of colistin-evolution of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018, 24, 865–870. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fifth Informational Supplement, M100, 31st ed.; SLCI: Wayne, PA, USA, 2021. [Google Scholar]
- Hsu, J.-F.; Chen, Y.-N.; Chu, S.-M.; Lee, W.-J.; Huang, H.-R.; Chiang, M.-C.; Yang, P.-H.; Tsai, M.-H.; Lu, J.-J. Clonal complex 12 serotype Ib Streptococcus agalactiae strain causing complicated sepsis in neonates: Clinical features and genetic characteristics. Microbiol. Spectr. 2022, 11, e0377822. [Google Scholar] [CrossRef]
- Schürch, A.; Arredondo-Alonso, S.; Willems, R.; Goering, R. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. Clin. Microbiol. Infect. 2018, 24, 350–354. [Google Scholar] [CrossRef]
- Sharma, P.; Lata, H.; Arya, D.K.; Kashyap, A.K.; Kumar, H.; Dua, M.; Ali, A.; Johri, A.K. Role of pilus proteins in adherence and invasion of Streptococcus agalactiae to the lung and cervical epithelial cells. J. Biol. Chem. 2013, 288, 4023–4034. [Google Scholar] [CrossRef]
- Deng, L.; Spencer, B.L.; Holmes, J.A.; Mu, R.; Rego, S.; Weston, T.A.; Hu, Y.; Sanches, G.F.; Yoon, S.; Park, N.; et al. The group B Streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis. PLOS Pathog. 2019, 15, e1007848. [Google Scholar] [CrossRef] [PubMed]
- Manzer, H.S.; Villarreal, R.I.; Doran, K.S. Targeting the BspC-vimentin interaction to develop anti-virulence therapies during Group B Streptococcal meningitis. PLoS Pathog 2022, 18, e1010397. [Google Scholar] [CrossRef] [PubMed]
- McGee, L.; Chochua, S.; Li, Z.; Mathis, S.; Rivers, J.; Metcalf, B.; Ryan, A.; Alden, N.; Farley, M.M.; Harrison, L.H.; et al. Multistate, population-based distributions of candidate vaccine targets, clonal complexes, and resistance features of invasive group B Streptococci within the United States, 2015–2017. Clin. Infect. Dis. 2021, 72, 1004–1013. [Google Scholar] [CrossRef]
- Furuta, A.; Brokaw, A.; Manuel, G.; Dacanay, M.; Marcell, L.; Seepersaud, R.; Rajagopal, L.; Waldorf, K.A. Bacterial and host determinants of group B Streptococcal infection of the neonates and infant. Front. Microbiol. 2022, 13, 820365. [Google Scholar] [CrossRef]
- Springman, A.C.; Lacher, D.W.; A Waymire, E.; Wengert, S.L.; Singh, P.; Zadoks, R.N.; Dele Davies, H.; Manning, S.D. Pilus distribution among lineages of Group B Streptococcus: An evolutionary and clinical perspective. BMC Microbiol. 2014, 14, 159. [Google Scholar] [CrossRef]
- Lu, B.; Wu, J.; Chen, X.; Gao, C.; Yang, J.; Li, Y.; Wang, J.; Zeng, J.; Fang, Y.; Wang, D.; et al. Microbiological and clinical characteristics of Group B Streptococcus isolates causing materno-neonatal infections: High prevalence of CC17/PI-1 and PI-2b sublineage in neonatal infection. J. Med. Microbiol. 2018, 67, 1551–1559. [Google Scholar] [CrossRef]
- Mutschler, H.; Reinstein, J.; Meinhart, A. Assembly dynamics and stability of the pneumococcal epsilon zeta antitoxin toxin (PezAT) system from Streptococcus pneumonia. J. Biol. Chem. 2010, 285, 21797–21806. [Google Scholar] [CrossRef]
- Chan, W.T.; Espinosa, M. The Streptococcus pneumonia pezAT toxin-antitoxin system reduces ß-Lactam resistance and genetic competence. Front. Microbiol. 2016, 7, 1322. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F.; Guan, H.; Yu, J.; Yu, J.; Zhao, J.; Liu, Y.; Shen, L. Emerging fatal Ib/CC12 hypervirulent multiresistant Streptococcus agalactiae in young infants with bloodstream infection in China. Front. Microbiol. 2021, 12, 767803. [Google Scholar] [CrossRef] [PubMed]
- Dorling, J.S.; Field, D.J.; Manktelow, B. Neonatal disease severity scoring systems. Arch. Dis. Child Fetal. Neonatal. Ed. 2005, 90, F11–F16. [Google Scholar] [CrossRef] [PubMed]
- Tien, N.; Ho, C.-M.; Lin, H.-J.; Shih, M.-C.; Ho, M.-W.; Lin, H.-C.; Lin, H.-S.; Chang, C.-C.; Lu, J.-J. Multilocus sequencing typing of invasive Group B Streptococcus in central area of Taiwan. J. Microbiol. Immunol. Infect. 2011, 44, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, B.J.; Chochua, S.; Gertz, R.E., Jr.; Hawkins, P.A.; Ricaldi, J.; Li, Z.; Walker, H.; Tran, T.; Rivers, J.; Mathis, S.; et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. Clin. Microbiol. Infect. 2017, 23, 574.e7–574.e14. [Google Scholar] [CrossRef] [PubMed]
- Shelburne, S.A.; Sahasrabhojane, P.; Saldana, M.; Yao, H.; Su, X.; Horstmann, N.; Thompson, E.; Flores, A.R. Streptococcus mitis strains causing severe clinical disease in cancer patients. Emerg. Infect. Dis. 2014, 20, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Marine, R.L.; Magana, L.C.; Castro, C.J.; Zhao, K.; Montmayeur, A.M.; Schmidt, A.; Diez-Valcarce, M.; Ng, T.F.F.; Vinjé, J.; Burns, C.C. Comparsion of Illumina MiSeq and the Ion Torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses. J. Vriol. Methods 2020, 280, 113865. [Google Scholar] [CrossRef]
- Erickson, T.A.; Munoz, F.M.; Troisi, C.L.; Nolan, M.S.; Hasbun, R.; Brown, E.L.; Murray, K.O. The epidemiology of meningitis in infants under 90 days of age in a large pediatric hospital. Microorganisms 2021, 9, 526. [Google Scholar] [CrossRef]
- Dutta, S.; Sachdeva, N.; Pal, A.; Ray, P. Cerebrospinal fluid and plasma procalcitonin for the diagnosis of neonatal bacterial meningitis. J. Paediatr. Child Heal. 2022, 58, 1425–1430. [Google Scholar] [CrossRef]
- Obiero, C.W.; Mturi, N.; Mwarumba, S.; Ngari, M.; Newton, C.; van Hensbroek, M.B.; Berkley, J.A. Clinical features to distinguish meningitis among young infants at a rural Kenyan hospital. Arch. Dis. Child. 2020, 106, 130–136. [Google Scholar] [CrossRef]
- Nakwa, F.L.M.; Lala, S.G.M.; Madhi, S.A.M.; Dangor, Z.M. Neurodevelopmental impairment at 1 year of age in infants with previous invasive group B Streptococcal sepsis and meningitis. Pediatr. Infect. Dis. J. 2020, 39, 794–798. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
Neonates with GBS Meningitis (Total n = 48) | Neonates with GBS Sepsis without Meningitis (n = 140) | p Values | |
---|---|---|---|
Gestational age, (week) | 38.0 (37.0–39.0) | 38.0 (36.0–39.8) | 0.956 |
Birth body weight, (g) | 2900.0 (2651.3–3251.3) | 2885.0 (2412–3236.3) | 0.481 |
Gender, (male/female, n/%) | 19 (39.6)/29 (60.4) | 62 (44.3)/78 (55.7) | 0.615 |
Birth via NSD/Cesarean section, n (%) | 32 (66.7)/16 (33.3) | 98 (70.0)/42 (30.0) | 0.718 |
5 min Apgar score < 7, n (%) | 0 (0) | 12 (8.6) | 0.036 |
Premature rupture of membrane, n (%) | 7 (14.6) | 28 (20.0) | 0.521 |
Onset of GBS bacteremia (day), median (IQR) | 19.5 (7.3–33.8) | 30.0 (11.0–54.8) | 0.229 |
Early-onset sepsis (≤7 days), n (%) | 12 (25.0) | 32 (22.9) | 0.826 |
Late-onset sepsis (8–90 days), n (%) | 34 (70.8) | 99 (70.7) | |
Very-late onset sepsis (>90 days), n (%) | 2 (4.2) | 9 (6.4) | |
Clinical features *, n (%) | |||
Fever (≥38.3 °C) | 43 (89.6) | 110 (78.6) | 0.131 |
Apnea, bradycardia, and/or cyanosis | 27 (56.3) | 45 (32.1) | 0.005 |
Ventilator requirement | 0.001 | ||
Room air | 21 (43.8) | 95 (67.9) | |
Nasal canula | 3 (6.3) | 5 (3.6) | |
Non-invasive ventilator (N-CPAP and N-IMV) | 3 (6.3) | 15 (10.7) | |
Intubation | 20 (41.7) | 17 (12.1) | |
High-frequency oscillatory ventilator | 1 (2.1) | 8 (5.7) | |
Abdominal distension and/or vomiting | 27 (56.3) | 44 (31.4) | 0.003 |
Hypoglycemia | 5 (10.4) | 17 (12.1) | 1.000 |
Hypotension | 12 (25.0) | 22 (15.7) | 0.191 |
Severe sepsis | 22 (45.8) | 39 (27.9) | 0.031 |
Disseminated intravascular coagulopathy | 8 (16.7) | 6 (4.3) | 0.009 |
Requirement of blood transfusion ** | 28 (58.3) | 60 (42.9) | 0.068 |
Laboratory data at onset of GBS bacteremia, n (%) | |||
Leukocytosis (WBC > 20,000/L) | 25 (52.1) | 85 (60.7) | 0.313 |
Leukopenia (WBC < 4000/L) | 17 (35.4) | 24 (17.1) | 0.014 |
Shift to left in WBC (immature > 20%) | 10 (20.8) | 13 (9.3) | 0.043 |
Anemia (hemoglobin level < 11.5 g/dL) | 27 (56.3) | 70 (50.0) | 0.505 |
Thrombocytopenia (platelet < 150,000/μL) | 11 (22.9) | 19 (13.6) | 0.169 |
Metabolic acidosis | 12 (25.0) | 15 (10.7) | 0.029 |
Coagulopathy | 13 (27.1) | 17 (12.1) | 0.022 |
C-reactive protein (mg/dL), median (IQR) | 123.8 (45.8–187.9) | 21.8 (8.3–57.7) | <0.001 |
Neurological Complications, Sequelae and Death | Neonates with GBS Meningitis (n = 48) | Neonates with GBS Sepsis without Meningitis (n = 140) |
---|---|---|
Any neurological complications | 37 (77.8) | 8 (5.7) |
Seizure | 22 (45.8) | 5 (3.6) |
Subdural effusion | 16 (33.3) | 1 (0.7) |
Increased intracranial pressure | 12 (25.0) | 7 (5.0) |
Ventriculomegaly | 17 (35.4) | 0 (0) |
Hydrocephalus | 6 (12.5) | 1 (0.7) |
Encephalomalacia | 6 (12.5) | 0 (0) |
Subependymal hemorrhage | 5 (10.4) | 2 (1.4) |
Intraventricular hemorrhage | 4 (8.3) | 4 (2.9) |
Ventriculitis | 4 (8.3) | 0 (0) |
Periventricular leukomalacia | 1 (2.1) | 1 (0.7) |
Infarction | 5 (10.4) | 0 (0) |
Subdural empyema or abscess | 2 (4.2) | 0 (0) |
Brain atrophy | 1 (2.1) | 0 (0) |
Discharge with neurological sequelae | 17 (41.5) | 4 (2.9) |
Final in-hospital mortality | 7 (14.6) | 12 (8.6) |
GBS Isolates of Neonatal Meningitis (Total n = 48) | GBS Isolates of Neonatal Sepsis without Meningitis (Total n = 140) | |||
---|---|---|---|---|
Serotypes | Type III GBS strains (n = 33) | Non-Type III GBS strains (n = 15) | Serotype III GBS strains (n = 92) | Non-Type III GBS strains (n = 48) |
Sequence types | ST17 (27), ST19 (5), ST438 (1) | ST1 (1), ST12 (4), ST23 (5), ST24 (3), ST268 (2) | ST17 (85), ST19 (5), ST335 (1), ST890 (1) | ST1 (14), ST10 (1), ST12 (10), ST23 (11), ST24 (6), ST144 (1), ST452 (1), ST890 (4) |
Clonal Complex | CC17 (27), CC19 (5), CC438 (1) | CC1 (1), CC12 (6), CC23 (5), CC24 (3) | CC17 (85), CC19 (6), CC890 (1) | CC1 (14), CC12 (11), CC23 (12), CC24 (6), CC144 (1), CC890 (4) |
Genetic characteristics | ||||
Pilus genes | ||||
PI-1 + PI-2a | 4 (12.1) | 5 (33.3) | 6 (6.5) | 24 (50.0) |
PI-1 + PI-2b | 8 (24.2) | 0 (0) | 9 (9.8) | 1 (2.1) |
PI-2a only | 0 (0) | 10 (66.7) | 1 (1.1) | 21 (43.8) |
PI-2b only | 21 (63.6) | 0 (0) | 76 (82.6) | 2 (4.2) |
Virulence genes | ||||
PezT | 20 (60.6) | 9 (60.0) | 76 (82.6) | 21 (43.8) |
HvgA | 27 (81.8) | 0 (0) | 85 (92.4) | 0 (0) |
BspC | 28 (84.8) | 9 (60.0) | 79 (85.9) | 26 (54.2) |
ICESag37 | 20 (60.6) | 5 (33.3) | 76 (82.6) | 12 (25.0) |
ISSag5 | 8 (24.2) | 2 (13.3) | 10 (10.9) | 13 (27.1) |
Antibiotic resistance genes | ||||
lsa(E) | 5 (15.2) | 7 (46.7) | 22 (23.9) | 14 (29.2) |
lun(B) | 5 (15.2) | 7 (46.7) | 22 (23.9) | 14 (29.2) |
Antibiotic resistance patterns [No. (%) of resistant GBS isolates] | ||||
Ery (R) + Clin (R) | 23 (69.7) | 6 (40.0) | 79 (85.9) | 21 (43.8) |
Ery (S) + Clin (S) | 8 (24.2) | 8 (53.3) | 9 (9.8) | 26 (54.2) |
Ery (R) + Clin (S) | 2 (6.1) | 0 (0) | 3 (3.3) | 1 (2.1) |
Ery (S) + Clin (R) | 0 (0) | 1 (6.7) | 1 (1.1) | 0 (0) |
Gene | Sequence (5′-> 3′ Y) | Product Size (bp) |
---|---|---|
HvgA | F: ATGTTTACGAAAAAGTTAAACCAG | 204 |
R: CCAAGTTTCCGCTAGTATTAACCG | ||
BspC | F: ATATTTTGAGGGCAAGATCGC | 376 |
R: AGGTCCAGCTTCAAATCCTTC | ||
ICESag37 head | F: ACATAGCCCCGTCAGTATG | 816 |
R: ATCACGTGGAGTGGTAGTG | ||
ICESag37 tail | F: GCAACGTGGTGAATTGATAGGG | 1011 |
R: AAAACTGCACGATCAAACTCCG | ||
lea(E) | F: TGTCAAATGGTGAGCAAACG | 495 |
R: TGTAAAACGGCTTCCTGATG | ||
Inu(B) | F: ACCAAAGGAGAAGGTGACCAA | 584 |
R: ACCTTATCTAATCGAGCAGTGGT | ||
PezT | F: ATACGAAAATTTACCTTGTCGC | 926 |
R: TAAATCCTCGCAATTCTAACCC | ||
PI-1 | F: CAAGATTGACCGGGTGGAGA | 325 |
R: ATGGGCAGTTAGAACGGCAT | ||
PI-2a | F: CGGGGTGCAAGTCAATAAGG | 264 |
R: GGAGCAGGGCATTTAGAAGGT | ||
PI-2b | F: CTCTGCTACCACCAAAGCGT | 665 |
R: GTGGGGGTAGGCTTAATGGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, J.-F.; Lu, J.-J.; Chu, S.-M.; Lee, W.-J.; Huang, H.-R.; Chiang, M.-C.; Yang, P.-H.; Tsai, M.-H. The Clinical and Genetic Characteristics of Streptococcus agalactiae Meningitis in Neonates. Int. J. Mol. Sci. 2023, 24, 15387. https://doi.org/10.3390/ijms242015387
Hsu J-F, Lu J-J, Chu S-M, Lee W-J, Huang H-R, Chiang M-C, Yang P-H, Tsai M-H. The Clinical and Genetic Characteristics of Streptococcus agalactiae Meningitis in Neonates. International Journal of Molecular Sciences. 2023; 24(20):15387. https://doi.org/10.3390/ijms242015387
Chicago/Turabian StyleHsu, Jen-Fu, Jang-Jih Lu, Shih-Ming Chu, Wei-Ju Lee, Hsuan-Rong Huang, Ming-Chou Chiang, Peng-Hong Yang, and Ming-Horng Tsai. 2023. "The Clinical and Genetic Characteristics of Streptococcus agalactiae Meningitis in Neonates" International Journal of Molecular Sciences 24, no. 20: 15387. https://doi.org/10.3390/ijms242015387
APA StyleHsu, J. -F., Lu, J. -J., Chu, S. -M., Lee, W. -J., Huang, H. -R., Chiang, M. -C., Yang, P. -H., & Tsai, M. -H. (2023). The Clinical and Genetic Characteristics of Streptococcus agalactiae Meningitis in Neonates. International Journal of Molecular Sciences, 24(20), 15387. https://doi.org/10.3390/ijms242015387