Cytotoxic-Ag-Modified Eggshell Membrane Nanocomposites as Bactericides in Concrete Mortar
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of ESM and Mortar Composites
2.2. Antimicrobial Activity of Mortar Composite
2.3. Mechanical Strength Characteristics of Mortar Composite
3. Materials and Methods
3.1. Preparation of Ag-Modified Eggshell membranes (Ag-EMs)
3.2. Preparation of Cement Mortar
3.3. Characterization of ESM Modified Mortar
3.4. Antimicrobial Activity of ESM Modified Mortar
3.5. Mechanical Strength Test
- density of mortar in g/cm3.
- density of water in g/cm3 = 1 g/cm3.
- W(air) is weight in air in g.
- W(water) is weight in water in g.
- Rf is the flexural strength, in megapascals.
- b is the side of the square section of the prism, in millimeters.
- Ff is the load applied to the middle of the prism at fracture, in newtons.
- l is the distance between the supports, in millimeters.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Damme, H. Concrete Material Science: Past, Present, and Future Innovations. Cem. Concr. Res. 2018, 112, 5–24. [Google Scholar] [CrossRef]
- Gardner, D.; Lark, R.; Jefferson, T.; Davies, R. A Survey on Problems Encountered in Current Concrete Construction and the Potential Benefits of Self-Healing Cementitious Materials. Case Stud. Constr. Mater. 2018, 8, 238–247. [Google Scholar] [CrossRef]
- Royal Society of Chemistry The Concrete Conundrum. Chemistry World 2008. Available online: https://www.chemistryworld.com/features/the-concrete-conundrum/3004823.article (accessed on 17 October 2023).
- Cement Production Global 2022|Statista. Available online: https://www.statista.com/statistics/1087115/global-cement-production-volume/ (accessed on 17 October 2023).
- Qiu, L.; Dong, S.; Ashour, A.; Han, B. Antimicrobial Concrete for Smart and Durable Infrastructures: A Review. Constr. Build. Mater. 2020, 260, 120456. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, R.; Luo, J.; Hasan, M.; Shu, X. Synthesis of Phytonic Silver Nanoparticles as Bacterial and ATP Energy Silencer. J. Inorg. Biochem. 2022, 231, 111802. [Google Scholar] [CrossRef]
- Zuo, J.; Li, H.; Dong, B.; Wang, L. Effects of Metakaolin on the Mechanical and Anticorrosion Properties of Epoxy Emulsion Cement Mortar. Appl. Clay Sci. 2020, 186, 105431. [Google Scholar] [CrossRef]
- Caruso, M.R.; Megna, B.; Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes-Based Nanocomposites for the Hydrophobization of Hydraulic Mortar. J. Coat. Technol. Res. 2021, 18, 1625–1634. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, Q. The Stabilizing Effect of Carboxymethyl Cellulose on Foamed Concrete. Int. J. Mol. Sci. 2022, 23, 15473. [Google Scholar] [CrossRef]
- Abass Sofi, M.; Sunitha, S.; Ashaq Sofi, M.; Khadheer Pasha, S.K.; Choi, D. An Overview of Antimicrobial and Anticancer Potential of Silver Nanoparticles. J. King Saud. Univ. Sci. 2022, 34, 101791. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Menichetti, A.; Mavridi-Printezi, A.; Mordini, D.; Montalti, M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. J. Funct. Biomater. 2023, 14, 244. [Google Scholar] [CrossRef]
- Hymavathi, A. Materials Today: Proceedings A Green Synthetic Approach of Silver Nanoparticles Using Premna Tomentosa Leaf Extract and Their Anti-Microbial Study. Mater. Today Proc. 2022, 62, 6776–6779. [Google Scholar] [CrossRef]
- Nakano, T.; Ikawa, N.I.; Ozimek, L. Chemical Composition of Chicken Eggshell and Shell Membranes. Poult. Sci. 2003, 82, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A. Delectric Properties and Microwave Assisted Separation of Eggshell and Membrane. Master’s Thesis, McGill University, Ste Anne De Bellevue, QC, Canada, 2009. [Google Scholar]
- Buksh, N.; Yun, C.; Ping, X.; Jhatial, G.H.; Yanhai, S. Chicken Eggshell as a Potential Eco-Friendly, Low-Cost Sorbent: A Mini Review. J. Environ. Earth Sci. 2018, 8, 28–39. [Google Scholar]
- Li, X.; Cai, Z.; Ahn, D.U.; Huang, X. Development of an Antibacterial Nanobiomaterial for Wound-Care Based on the Absorption of AgNPs on the Eggshell Membrane. Colloids Surfaces B Biointerfaces 2019, 183, 110449. [Google Scholar] [CrossRef]
- Li, J.; Ng, D.H.L.; Ma, R.; Zuo, M.; Song, P. Eggshell Membrane-Derived MgFe2O4 for Pharmaceutical Antibiotics Removal and Recovery from Water. Chem. Eng. Res. Des. 2017, 126, 123–133. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Benelli, P.; Amante, E.R. A Literature Review on Adding Value to Solid Residues: Egg Shells. J. Clean. Prod. 2013, 46, 42–47. [Google Scholar] [CrossRef]
- Shahbandeh, M. Statista Global Egg Production from 1990 to 2018. Available online: https://www.statista.com/statistics/263972/egg-production-worldwide-since-1990/ (accessed on 27 April 2020).
- Shahbandeh, M. Production of Eggs Worldwide 2021|Statista. Available online: https://www.statista.com/statistics/263972/egg-production-worldwide-since-1990/ (accessed on 27 April 2020).
- South African Poultry Association Egg Industry Production Report. for November 2016. Available online: http://www.sapoultry.co.za/pdf-statistics/egg-industry.pdf (accessed on 10 March 2020).
- Ellen MacArthur Foundation Circularity Indicators: An Approach to Measuring Circularity. Ellen. MacArthur Found. 2015, 23, 159–161. [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy–A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation Towards the Circular Economy–Economic and Business Rationale for an Accelerated Transition. Greener Manag. Int. 2012, 1, 1–13.
- Ofuyatan, O.M.; Adeniyi, A.G.; Ijie, D.; Ighalo, J.O.; Oluwafemi, J. Development of High-Performance Self Compacting Concrete Using Eggshell Powder and Blast Furnace Slag as Partial Cement Replacement. Constr. Build. Mater. 2020, 256, 119403. [Google Scholar] [CrossRef]
- Venkata Krishnaiah, R.; Dayakar, P.; Mohan, S.J. Effect of Egg Shell Powder on Strength Behaviour of Concrete. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 562–564. [Google Scholar] [CrossRef]
- Raji, A.; Aina, S.T. Egg Shell As A Fine Aggregate In Concrete For Sustainable Construction. Int. J. Sci. Res. 2015, 4, 8–13. [Google Scholar]
- Cree, D.; Pliya, P. Effect of Elevated Temperature on Eggshell, Eggshell Powder and Eggshell Powder Mortars for Masonry Applications. J. Build. Eng. 2019, 26, 100852. [Google Scholar] [CrossRef]
- Tiong, H.Y.; Lim, S.K.; Lee, Y.L.; Ong, C.F.; Yew, M.K. Environmental Impact and Quality Assessment of Using Eggshell Powder Incorporated in Lightweight Foamed Concrete. Constr. Build. Mater. 2020, 244, 118341. [Google Scholar] [CrossRef]
- Bensaifi, E.; Bouteldja, F.; Nouaouria, M.S.; Breul, P. Influence of Crushed Granulated Blast Furnace Slag and Calcined Eggshell Waste on Mechanical Properties of a Compacted Marl. Transp. Geotech. 2019, 20, 100244. [Google Scholar] [CrossRef]
- Abdelmalik, A.A.; Ogbodo, M.O.; Momoh, G.E. Investigating the Mechanical and Insulation Performance of Waste Eggshell Powder/Epoxy Polymer for Power Insulation Application. SN Appl. Sci. 2019, 1, 1238. [Google Scholar] [CrossRef]
- Jaques, N.G.; William de Lima Souza, J.; Popp, M.; Kolbe, J.; Lia Fook, M.V.; Ramos Wellen, R.M. Kinetic Investigation of Eggshell Powders as Biobased Epoxy Catalyzer. Compos. Part. B. Eng. 2020, 183, 107651. [Google Scholar] [CrossRef]
- Little, B.J.; Blackwood, D.J.; Hinks, J.; Lauro, F.M.; Marsili, E.; Okamoto, A.; Rice, S.A.; Wade, S.A.; Flemming, H.C. Microbially Influenced Corrosion—Any Progress? Corros. Sci. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Nath, D.; Jangid, K.; Susaniya, A.; Kumar, R.; Vaish, R. Eggshell Derived CaO-Portland Cement Antibacterial Composites. Compos. Part C Open Access 2021, 5, 100123. [Google Scholar] [CrossRef]
- Wei, S.; Jiang, Z.; Liu, H.; Zhou, D.; Sanchez-Silva, M. Microbiologically Induced Deterioration of Concrete–A Review. Braz. J. Microbiol. 2013, 44, 1001–1007. [Google Scholar] [CrossRef]
- Grengg, C.; Mittermayr, F.; Ukrainczyk, N.; Koraimann, G.; Kienesberger, S.; Dietzel, M. Advances in Concrete Materials for Sewer Systems Affected by Microbial Induced Concrete Corrosion: A Review. Water Res. 2018, 134, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Jin, Y.; Bai, F.; Jin, S. Pseudomonas Aeruginosa. In Molecular Medical Microbiology; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; pp. 753–767. ISBN 9780123971692. [Google Scholar]
- Poole, K. Pseudomonas Aeruginosa: Resistance to the Max. Front. Microbiol. 2011, 2, 65. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to Manage Pseudomonas Aeruginosa Infections. Drugs Context. 2018, 7, 212527. [Google Scholar] [CrossRef] [PubMed]
- Kovács, Á.T. Bacillus Subtilis. Trends Microbiol. 2019, 27, 724–725. [Google Scholar] [CrossRef]
- Earl, A.M.; Losick, R.; Kolter, R. Ecology and Genomics of Bacillus Subtilis. Trends Microbiol. 2008, 16, 269–275. [Google Scholar] [CrossRef]
- Yassin, N.; Ahmad, A. Incidence and Resistotyping Profiles of Bacillus Subtilis Isolated from Azadi Teaching Hospital in Duhok City, Iraq. Mater. Socio Med. 2012, 24, 194. [Google Scholar] [CrossRef]
- Zubrowska-Sudol, M.; Sytek-Szmeichel, K.; Krawczyk, P.; Bisak, A. Energy-Positive Disintegration of Waste Activated Sludge—Full Scale Study. Energies 2022, 15, 555. [Google Scholar] [CrossRef]
- Jafari, M.; Botte, G.G. Electrochemical Valorization of Waste Activated Sludge for Short-Chain Fatty Acids Production. Front. Chem. 2022, 10, 974223. [Google Scholar] [CrossRef]
- Xie, N.; Zhong, L.; Ouyang, L.; Xu, W.; Zeng, Q.; Wang, K.; Zaynab, M.; Chen, H.; Xu, F.; Li, S. Community Composition and Function of Bacteria in Activated Sludge of Municipal Wastewater Treatment Plants. Water 2021, 13, 852. [Google Scholar] [CrossRef]
- Ohshima, Y.; Takada, D.; Namai, S.; Sawai, J.; Kikuchi, M.; Hotta, M. Antimicrobial Characteristics of Heated Eggshell Powder. Biocontrol Sci. 2015, 20, 239–246. [Google Scholar] [CrossRef]
- Kiernan, D. Chapter 6: Two-Way Analysis of Variance. In Natural Resources Biometrics; Open SUNY Textbooks: New York, NY, USA, 2014; ISBN 978-1-942341-17-8. [Google Scholar]
- Calvino, M.M.; Lisuzzo, L.; Cavallaro, G.; Lazzara, G.; Milioto, S. Halloysite Based Geopolymers Filled with Wax Microparticles as Sustainable Building Materials with Enhanced Thermo-Mechanical Performances. J. Environ. Chem. Eng. 2022, 10, 108594. [Google Scholar] [CrossRef]
- Aina, S.T.; Kyomuhimbo, H.D.; Ramjee, S.; Du Plessis, B.; Mjimba, V.; Maged, A.; Haneklaus, N.; Brink, H.G. Synthesis and Assessment of Antimicrobial Composites of Ag Nanoparticles or AgNO3 and Egg Shell Membranes. Molecules 2023, 28, 4654. [Google Scholar] [CrossRef] [PubMed]
- Aina, S.; Du Plessis, B.; Mjimba, V.; Brink, H. Eggshell Valorization: Membrane Removal, Calcium Oxide Synthesis, and Biochemical Compound Recovery towards Cleaner Productions. Biointerface Res. Appl. Chem. 2022, 12, 5870–5883. [Google Scholar] [CrossRef]
- Tufail, M.S.; Liaqat, I.; Andleeb, S.; Naseem, S.; Zafar, U.; Sadiqa, A.; Liaqat, I.; Ali, N.M.; Bibi, A.; Arshad, N.; et al. Biogenic Synthesis, Characterization and Antibacterial Properties of Silver Nanoparticles against Human Pathogens. J. Oleo Sci. 2022, 71, 257–265. [Google Scholar] [CrossRef]
- Shahbandeh, M.; Moghadam, M.T.; Mirnejad, R.; Mirkalantari, S.; Mirzaei, M. The Efficacy of AGNO3 Nanoparticles Alone and Conjugated with Imipenem for Combating Extensively Drug-Resistant Pseudomonas Aeruginosa. Int. J. Nanomed. 2020, 15, 6905–6916. [Google Scholar] [CrossRef]
- Hsueh, Y.H.; Lin, K.S.; Ke, W.J.; Hsieh, C.T.; Chiang, C.L.; Tzou, D.Y.; Liu, S.T. The Antimicrobial Properties of Silver Nanoparticles in Bacillus Subtilis Are Mediated by Released Ag+ Ions. PLoS ONE 2015, 10, e0144306. [Google Scholar] [CrossRef]
- Choi, O.; Hu, Z. Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environ. Sci. Technol. 2008, 42, 4583–4588. [Google Scholar] [CrossRef]
- Choi, O.; Clevenger, T.E.; Deng, B.; Surampalli, R.Y.; Ross, L.; Hu, Z. Role of Sulfide and Ligand Strength in Controlling Nanosilver Toxicity. Water Res. 2009, 43, 1879–1886. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, S.; Yuan, H.; Zhou, Q.; Gu, G. Hydrolysis and Acidification of Waste Activated Sludge at Different PHs. Water Res. 2007, 41, 683–689. [Google Scholar] [CrossRef]
- Sanjaya, A.P.; Praseptiangga, D.; Zaman, M.Z.; Umiati, V.F.; Baraja, S.I. Effect of PH, Temperature, and Salt Concentration on the Growth of Bacillus Subtilis T9-05 Isolated from Fish Sauce. IOP Conf. Ser. Earth Environ. Sci. 2023, 1200, 012050. [Google Scholar] [CrossRef]
- Ahmed, F.; Mirani, Z.A.; Mirani, P.N.; Imdad, M.J.; Khan, F.Z.; Khan, M.N.; Khan, A.B.; Li, Y.; Zhao, Y. Pseudomonas Aeruginosa Response to Acidic Stress and Imipenem Resistance. Appl. Sci. 2022, 12, 8357. [Google Scholar] [CrossRef]
- Salih, H.H.M.; El Badawy, A.M.; Tolaymat, T.M.; Patterson, C.L. Removal of Stabilized Silver Nanoparticles from Surface Water by Conventional Treatment Processes. Adv. Nanopart. 2019, 08, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Paruthi, S.; Khan, A.H.; Kumar, A.; Kumar, F.; Hasan, M.A.; Magbool, H.M.; Manzar, M.S. Sustainable Cement Replacement Using Waste Eggshells: A Review on Mechanical Properties of Eggshell Concrete and Strength Prediction Using Artificial Neural Network. Case Stud. Constr. Mater. 2023, 18, e02160. [Google Scholar] [CrossRef]
- Kumar, R. How Can We Extract Silver from Silver Nitrate? 2018. Available online: https://www.researchgate.net/post/How-can-we-extract-silver-from-silver-nitrate (accessed on 10 April 2021).
- EN 196-1:2005; Methods of Testing Cement–Part 1: Determination of Strength. European Committee for Standardization (CEN). European Standard: Basel, Switzerland, 2005.
- SANS 50196-1:2006; South African National Standard Methods of Testing Cement Part 1: Determination Of Strength. South African Bureau of Standards: KwaZulu-Natal, South Africa, 2006.
- Gavanji, S.; Bakhtari, A.; Famurewa, A.C.; Othman, E.M. Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chem. Biodivers. 2023, 20, ce202201098. [Google Scholar] [CrossRef] [PubMed]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium Salts and Formazan Products in Cell Biology: Viability Assessment, Fluorescence Imaging, and Labeling Perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Patravale, V.; Dandekar, P.; Jain, R. Nanotoxicology: Evaluating Toxicity Potential of Drug-Nanoparticles. In Nanoparticulate Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2012; pp. 123–155. [Google Scholar]
Mix No | Membrane | % Replacement | Membrane (g) | Cement (g) | Sand (g) | Water (g) |
---|---|---|---|---|---|---|
1 | - | 0 | - | 500 | 1500 | 250 |
2 | AgNO3/ESM | 1 | 5 | 495 | 1500 | 250 |
3 | AgNO3/ESM | 2 | 10 | 490 | 1500 | 250 |
4 | AgNO3/ESM | 5 | 25 | 475 | 1500 | 250 |
5 | AgNPs/ESM | 1 | 5 | 495 | 1500 | 250 |
6 | AgNPs/ESM | 2 | 10 | 490 | 1500 | 250 |
7 | AgNPs/ESM | 5 | 25 | 475 | 1500 | 250 |
8 | ESM | 1 | 5 | 495 | 1500 | 250 |
9 | ESM | 2 | 10 | 490 | 1500 | 250 |
10 | ESM | 5 | 25 | 475 | 1500 | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aina, S.T.; Kyomuhimbo, H.D.; Du Plessis, B.; Mjimba, V.; Haneklaus, N.; Brink, H.G. Cytotoxic-Ag-Modified Eggshell Membrane Nanocomposites as Bactericides in Concrete Mortar. Int. J. Mol. Sci. 2023, 24, 15463. https://doi.org/10.3390/ijms242015463
Aina ST, Kyomuhimbo HD, Du Plessis B, Mjimba V, Haneklaus N, Brink HG. Cytotoxic-Ag-Modified Eggshell Membrane Nanocomposites as Bactericides in Concrete Mortar. International Journal of Molecular Sciences. 2023; 24(20):15463. https://doi.org/10.3390/ijms242015463
Chicago/Turabian StyleAina, Samuel Tomi, Hilda Dinah Kyomuhimbo, Barend Du Plessis, Vuyo Mjimba, Nils Haneklaus, and Hendrik Gideon Brink. 2023. "Cytotoxic-Ag-Modified Eggshell Membrane Nanocomposites as Bactericides in Concrete Mortar" International Journal of Molecular Sciences 24, no. 20: 15463. https://doi.org/10.3390/ijms242015463
APA StyleAina, S. T., Kyomuhimbo, H. D., Du Plessis, B., Mjimba, V., Haneklaus, N., & Brink, H. G. (2023). Cytotoxic-Ag-Modified Eggshell Membrane Nanocomposites as Bactericides in Concrete Mortar. International Journal of Molecular Sciences, 24(20), 15463. https://doi.org/10.3390/ijms242015463