Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks
Abstract
:1. Introduction
2. Results
2.1. Subsection
2.1.1. Identification of Sequence Variation in Yak ACACB
2.1.2. Association between Yak ACACB Genotype and Carcass and Meat Quality Traits
2.1.3. Association between Yak ACACB Haplotype and Carcass and Meat Quality Traits
3. Discussion
4. Materials and Methods
4.1. Animals and Sample Collection
4.2. Measurement of Carcass and Meat Quality Traits
4.3. Polymerase Chain Reaction (PCR) Amplification and Genotyping
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, S.; Liu, J.; Gu, Z.; Liu, P.; Lan, Q. Physiological and Metabolic Adaptation to Heat Stress at Different Altitudes in Yaks. Metabolites 2022, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, J.; Teng, S.; Zhang, W.; Purslow, P.; Zhang, R. Changes in Collagen Properties and Cathepsin Activity of Beef M. Semitendinosus by the Application of Ultrasound During Post-Mortem Aging. Meat Sci. 2022, 185, 108718. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ding, L.; Zhou, Y.; Jing, X.; Degen, A.A. Behavioural Characteristics of Yaks Grazing Summer and Winter Pastures on the Qinghai-Tibetan Plateau. Appl. Anim. Behav. Sci. 2019, 218, 104826. [Google Scholar] [CrossRef]
- Guo, X.; Long, R.; Kreuzer, M.; Ding, L.; Shang, Z.; Zhang, Y.; Yang, Y. Importance of Functional Ingredients in Yak Milk-Derived Food on Health of Tibetan Nomads Living under High-Altitude Stress: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Luo, X.; Xia, B.; Guan, J.; Nie, Y.; Li, L.; Duan, J.; Suman, S.P.; Sun, Q. Post-Mortem Oxidative Stability of Three Yak (Bos Grunniens) Muscles as Influenced by Animal Age. Meat Sci. 2015, 105, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Gao, X.; Shi, B.; Chen, H.; Zhao, Z.; Wang, J.; Liu, X.; Li, S.; Luo, Y. Sequence and Haplotypes of Ankyrin 1 Gene (Ank1) and Their Association with Carcass and Meat Quality Traits in Yak. Mamm. Genome 2021, 32, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Picard, B.; Gagaoua, M.; Micol, D.; Cassar-Malek, I.; Hocquette, J.F.; Terlouw, C.E. Inverse Relationships between Biomarkers and Beef Tenderness According to Contractile and Metabolic Properties of the Muscle. J. Agric. Food Chem. 2014, 62, 9808–9818. [Google Scholar] [CrossRef] [PubMed]
- Sakowski, T.; Grodkowski, G.; Golebiewski, M.; Slosarz, J.; Kostusiak, P.; Solarczyk, P.; Puppel, K. Genetic and Environmental Determinants of Beef Quality-a Review. Front Vet. Sci. 2022, 9, 819605. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, S.; Gilbert, E.R.; Siegel, P.B.; Zhu, Q.; Wong, E.A. Expression Profiles of Muscle Genes in Postnatal Skeletal Muscle in Lines of Chickens Divergently Selected for High and Low Body Weight. Poult. Sci. 2014, 93, 147–154. [Google Scholar] [CrossRef]
- Ekine-Dzivenu, C.; Vinsky, M.; Basarab, J.A.; Aalhus, J.L.; Dugan, M.E.R.; Li, C. Phenotypic and Genetic Correlations of Fatty Acid Composition in Subcutaneous Adipose Tissue with Carcass Merit and Meat Tenderness Traits in Canadian Beef Cattle. J. Anim. Sci. 2017, 95, 5184–5196. [Google Scholar] [CrossRef]
- Gagaoua, M.; Bonnet, M.; Picard, B. Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods 2020, 9, 1180. [Google Scholar] [CrossRef] [PubMed]
- Pewan, S.B.; Otto, J.R.; Huerlimann, R.; Budd, A.M.; Mwangi, F.W.; Edmunds, R.C.; Holman, B.W.B.; Henry, M.L.E.; Kinobe, R.T.; Adegboye, O.A.; et al. Genetics of Omega-3 Long-Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs. Genes 2020, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Liu, H.; Liu, K.; Cao, H.; Mao, H.; Dong, X.; Yin, Z. Analysis of the Physical Meat Quality in Partridge (Alectoris Chukar) and Its Relationship with Intramuscular Fat. Poult. Sci. 2020, 99, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Xie, L.; Ma, J.E.; Luo, W.; Zhang, L.; Chao, Z.; Chen, S.; Nie, Q.; Lin, Z.; Zhang, X. Lower Expression of Slc27a1 Enhances Intramuscular Fat Deposition in Chicken Via Down-Regulated Fatty Acid Oxidation Mediated by Cpt1a. Front. Physiol. 2017, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Kong, X.; Hu, C.; Zhou, B.; Wang, C.; Shen, Q.W. Fatty Acid Content, Flavor Compounds, and Sensory Quality of Pork Loin as Affected by Dietary Supplementation with L-Arginine and Glutamic Acid. J. Food Sci. 2019, 84, 3445–3453. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, J.; Wang, X.; Ma, Y. Transcription Factors Regulate Adipocyte Differentiation in Beef Cattle. Anim. Genet. 2020, 51, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Boudon, S.; Henry-Berger, J.; Cassar-Malek, I. Aggregation of Omic Data and Secretome Prediction Enable the Discovery of Candidate Plasma Biomarkers for Beef Tenderness. Int. J. Mol. Sci. 2020, 21, 664. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Shin, S.; Chung, E. Effects of Genetic Variants for the Bovine Calpain Gene on Meat Tenderness. Mol. Biol. Rep. 2014, 41, 2963–2970. [Google Scholar] [CrossRef]
- Marty, A.; Amigues, Y.; Servin, B.; Renand, G.; Leveziel, H.; Rocha, D. Genetic Variability and Linkage Disequilibrium Patterns in the Bovine Dnaja1 Gene. Mol. Biotechnol. 2010, 44, 190–197. [Google Scholar] [CrossRef]
- Goszczynski, D.E.; Papaleo-Mazzucco, J.; Ripoli, M.V.; Villarreal, E.L.; Rogberg-Munoz, A.; Mezzadra, C.A.; Melucci, L.M.; Giovambattista, G. Genetic Variation in Fabp4 and Evaluation of Its Effects on Beef Cattle Fat Content. Anim. Biotechnol. 2017, 28, 211–219. [Google Scholar] [CrossRef]
- Cesar, A.S.; Regitano, L.C.; Koltes, J.E.; Fritz-Waters, E.R.; Lanna, D.P.; Gasparin, G.; Mourao, G.B.; Oliveira, P.S.; Reecy, J.M.; Coutinho, L.L. Putative Regulatory Factors Associated with Intramuscular Fat Content. PLoS ONE 2015, 10, e0128350. [Google Scholar] [CrossRef] [PubMed]
- Foldi, J.; Marczyk, M.; Gunasekharan, V.; Qing, T.; Sehgal, R.; Shan, N.L.; Muthusamy, V.; Umlau, S.; Surovtseva, Y.V.; Kibbey, R.; et al. Abstract P5-17-01: Targeting Acetyl-Coa Carboxylase in Pre-Clinical Breast Cancer Models. Cancer Res. 2022, 82, P5–P17. [Google Scholar] [CrossRef]
- Parekh, N.; Chandran, U.; Bandera, E.V. Obesity in Cancer Survival. Annu. Rev. Nutr. 2012, 32, 311–342. [Google Scholar] [CrossRef] [PubMed]
- Zu, X.; Zhong, J.; Luo, D.; Tan, J.; Zhang, Q.; Wu, Y.; Liu, J.; Cao, R.; Wen, G.; Cao, D. Chemical Genetics of Acetyl-Coa Carboxylases. Molecules 2013, 18, 1704–1719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kim, K.H. Acetyl-Coa Carboxylase Is Essential for Nutrient-Induced Insulin Secretion. Biochem. Biophys. Res. Commun. 1996, 229, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.; Awan, F.R.; Najam, S.S.; Islam, M.; Khan, A.R.; Bilal, A.; Bellili, N.; Marre, M.; Roussel, R.; Fumeron, F. Association of Acacb Gene Polymorphism (Rs2268388, G > a) with Type 2 Diabetes and End Stage Renal Disease in Pakistani Punjabi Population. Meta Gene 2017, 12, 109–112. [Google Scholar] [CrossRef]
- Harwood, H.J., Jr. Treating the Metabolic Syndrome: Acetyl-Coa Carboxylase Inhibition. Expert Opin. Ther. Targets 2005, 9, 267–281. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Jiang, H.; Tang, R.N. The Acacb Gene Rs2268388 Polymorphism Is Associated with Nephropathy in Caucasian Patients with Diabetes: A Meta-Analysis. Ren. Fail. 2015, 37, 925–928. [Google Scholar] [CrossRef]
- Riancho, J.A.; Vazquez, L.; Garcia-Perez, M.A.; Sainz, J.; Olmos, J.M.; Hernandez, J.L.; Perez-Lopez, J.; Amado, J.A.; Zarrabeitia, M.T.; Cano, A.; et al. Association of Acacb Polymorphisms with Obesity and Diabetes. Mol. Genet. Metab. 2011, 104, 670–676. [Google Scholar] [CrossRef]
- Costa, A.S.H.; Costa, P.; Alves, S.P.; Alfaia, C.M.; Prates, J.A.; Vleck, V.; Cassar-Malek, I.; Hocquette, J.F.; Bessa, R.J. Does Growth Path Influence Beef Lipid Deposition and Fatty Acid Composition? PLoS ONE 2018, 13, e0193875. [Google Scholar] [CrossRef]
- Lee, A.K.; Kyriakou, T.; Weston, A.J.; O’Dell, S.D. Functional Single-Nucleotide Polymorphism in Acetyl-Coa Carboxylase Acacb Gene Promoter. DNA Cell Biol. 2010, 29, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Y.; He, L. Shesis, a Powerful Software Platform for Analyses of Linkage Disequilibrium, Haplotype Construction, and Genetic Association at Polymorphism Loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.H.A.; Gui, L.; Khan, R.; Schreurs, N.M.; Xiaoyu, W.; Wu, S.; Mei, C.; Wang, L.; Ma, X.; Wei, D.; et al. Association between Fasn Gene Polymorphisms Ultrasound Carcass Traits and Intramuscular Fat in Qinchuan Cattle. Gene 2018, 645, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Shergojry, S.A.; Verma, A.; Ghani, M.; Gupta, I.D.; Mir, N.A. Identification of Genetic Polymorphism of the Mbl2 Gene and Its Association with Clinical Mastitis in Murrah Buffaloes. J. Genet. 2023, 102, 21. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Z.; He, Z.; Tang, W.; Li, T.; Zeng, Z.; He, L.; Shi, Y. A Partition-Ligation-Combination-Subdivision Em Algorithm for Haplotype Inference with Multiallelic Markers: Update of the Shesis (http://Analysis.Bio-X.Cn). Cell Res. 2009, 19, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elheiga, L.; Jayakumar, A.; Baldini, A.; Chirala, S.S.; Wakil, S.J. Human Acetyl-Coa Carboxylase: Characterization, Molecular Cloning, and Evidence for Two Isoforms. Proc. Natl. Acad. Sci. USA 1995, 92, 4011–4015. [Google Scholar] [CrossRef]
- Tong, L. Acetyl-Coenzyme a Carboxylase: Crucial Metabolic Enzyme and Attractive Target for Drug Discovery. Cell. Mol. Life Sci. 2005, 62, 1784–1803. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Mondal, A.K.; Murea, M.; Sharma, N.K.; Tönjes, A.; Langberg, K.A.; Das, S.K.; Franks, P.W.; Kovacs, P.; Antinozzi, P.A.; et al. The Effect of Acacb Cis-Variants on Gene Expression and Metabolic Traits. PLoS ONE 2011, 6, e23860. [Google Scholar] [CrossRef]
- Maeda, S.; Kobayashi, M.A.; Araki, S.I.; Babazono, T.; Freedman, B.I.; Bostrom, M.A.; Cooke, J.N.; Toyoda, M.; Umezono, T.; Tarnow, L.; et al. A Single Nucleotide Polymorphism within the Acetyl-Coenzyme a Carboxylase Beta Gene Is Associated with Proteinuria in Patients with Type 2 Diabetes. PLoS Genet. 2010, 6, e1000842. [Google Scholar] [CrossRef]
- Tang, S.C.; Leung, V.T.; Chan, L.Y.; Wong, S.S.; Chu, D.W.; Leung, J.C.; Ho, Y.W.; Lai, K.N.; Ma, L.; Elbein, S.C.; et al. The Acetyl-Coenzyme a Carboxylase Beta (Acacb) Gene Is Associated with Nephropathy in Chinese Patients with Type 2 Diabetes. Nephrol. Dial. Transpl. 2010, 25, 3931–3934. [Google Scholar]
- Shah, V.N.; Cheema, B.S.; Sharma, R.; Khullar, M.; Kohli, H.S.; Ahluwalia, T.S.; Mohan, V.; Bhansali, A. Acacbeta Gene (Rs2268388) and Agtr1 Gene (Rs5186) Polymorphism and the Risk of Nephropathy in Asian Indian Patients with Type 2 Diabetes. Mol. Cell. Biochem. 2013, 372, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liang, W.; Liu, L.; Li, Y.; Sun, D. Genetic Association of the Acacb Gene with Milk Yield and Composition Traits in Dairy Cattle. Anim. Genet. 2018, 49, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Neil, C.R.; Fairbrother, W.G. Intronic RNA: Ad ’junk’ Mediator of Post-Transcriptional Gene Regulation. Biochim. Biophys. Acta Gene. Regul. Mech. 2019, 1862, 194439. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, G.; Barton, S.; Kaestner, K. The International Journal of Biochemistry & Cell Biology. Preface. Int. J. Biochem. Cell. Biol. 2011, 43, 172. [Google Scholar]
- Wiik, M.U.; Evans, T.J.; Belhadj, S.; Bolton, K.A.; Dymerska, D.; Jagmohan-Changur, S.; Capellá, G.; Kurzawski, G.; Wijnen, J.T.; Valle, L. A Genetic Variant in Telomerase Reverse Transcriptase (Tert) Modifies Cancer Risk in Lynch Syndrome Patients Harbouring Pathogenic Msh2 Variants. Sci. Rep. 2021, 11, 11401. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.W.; Schuckman, M.; Becker, R.C.; Sadayappan, S. A Novel Homozygous Intronic Variant in Tnnt2 Associates with Feline Cardiomyopathy. Front. Physiol. 2020, 11, 608473. [Google Scholar] [CrossRef] [PubMed]
- Shaul, O. How Introns Enhance Gene Expression. Int. J. Biochem. Cell. Biol. 2017, 91, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Nott, A.; Meislin, S.H.; Moore, M.J. A Quantitative Analysis of Intron Effects on Mammalian Gene Expression. RNA 2003, 9, 607–617. [Google Scholar] [CrossRef]
- Chorev, M.; Carmel, L. The Function of Introns. Front. Genet. 2012, 3, 55. [Google Scholar] [CrossRef]
- Gao, X.; Shi, B.; Shi, X.; Zuo, Z.; Zhao, Z.; Wang, J.; Liu, X.; Luo, Y.; Hu, J. Variations in the Diacylglycerol Acyltransferase-1 (Dgat1) and Its Association with Meat Tenderness in Gannan Yaks (Bos grunniens). Ital. J. Anim. Sci. 2020, 19, 1026–1035. [Google Scholar] [CrossRef]
- Angiolillo, A.; Amills, M.; Urrutia, B.; Doménech, A.; Sastre, Y.; Badaoui, B.; Jordana, J. Identification of a Single Nucleotide Polymorphism at Intron 16 of the Caprine Acyl-Coenzyme A: Diacylglycerol Acyltransferase 1 (Dgat1) Gene. J. Dairy Res. 2007, 74, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shi, X.; Liu, Z.; Ren, W.; Wang, X.; Huang, B.; Kou, X.; Liang, H.; Wang, C.; Chai, W. A Novel a > G Polymorphism in the Intron 1 of Lcorl Gene Is Significantly Associated with Hide Weight and Body Size in Dezhou Donkey. Animals 2022, 12, 2581. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Gu, Z.L.; Zhao, J.G.; Wang, Q.G.; Wang, Y.X. Correlation Analysis between Single Nucleotide Polymorphism of the Leptin Receptor Intron 8 and Fatness Traits in Chickens. Yi Chuan Xue Bao = Acta Genet. Sin. 2004, 31, 265–269. [Google Scholar] [PubMed]
- Grochowska, E.; Borys, B.; Mroczkowski, S. Effects of Intronic Snps in the Myostatin Gene on Growth and Carcass Traits in Colored Polish Merino Sheep. Genes 2020, 11, 2. [Google Scholar]
- Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine Metabolism in Animals and Humans: Implications for Nutrition and Health. Amino Acids 2013, 45, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yan, Z.; Song, B.; Zheng, C.; Duan, Y.; Kong, X.; Deng, J.; Li, F. Dietary Supplementation with Betaine or Glycine Improves the Carcass Trait, Meat Quality and Lipid Metabolism of Finishing Mini-Pigs. Anim. Nutr. 2021, 7, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Snyder, M.W.; Adey, A.; Kitzman, J.O.; Shendure, J. Haplotype-Resolved Genome Sequencing: Experimental Methods and Applications. Nat. Rev. Genet. 2015, 16, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Boichard, D.; Ducrocq, V.; Croiseau, P.; Fritz, S. Genomic Selection in Domestic Animals: Principles, Applications and Perspectives. C. R. Biol. 2016, 339, 274–277. [Google Scholar] [CrossRef]
- Scheike, T.H.; Martinussen, T.; Silver, J.D. Estimating Haplotype Effects for Survival Data. Biometrics 2010, 66, 705–715. [Google Scholar] [CrossRef]
- Sandrim, V.C.; Tanus-Santos, J.E. Haplotype Analysis Can Provide Improved Clinical Information Than Single Genotype Analysis. Thromb. Res. 2007, 120, 779. [Google Scholar] [CrossRef]
- An, Q.; Zhou, H.; Hu, J.; Luo, Y.; Hickford, J.G.H. Sequence and Haplotypes Variation of the Ovine Uncoupling Protein-1 Gene (Ucp1) and Their Association with Growth and Carcass Traits in New Zealand Romney Lambs. Genes 2018, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Peng, J.; Xu, D.Q.; Zheng, R.; Li, F.E.; Li, J.L.; Zuo, B.; Lei, M.G.; Xiong, Y.Z.; Deng, C.Y.; et al. Association of Myf5 and Myod1 Gene Polymorphisms and Meat Quality Traits in Large White X Meishan F2 Pig Populations. Biochem. Genet. 2008, 46, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef] [PubMed]
Locus | Genotype Frequency/% | Allele Frequency/% | PIC 1 | He 2 | Ho 3 | Ne 4 | HWE 5 | |||
---|---|---|---|---|---|---|---|---|---|---|
g.50421 A > G | AA(19) 3.22 | GA(109) 18.47 | GG(462) 78.31 | A 12.46 | G 87.54 | 0.1943 | 0.2181 | 0.7819 | 1.2790 | p > 0.05 |
g.50592 C > A | AA(11) 1.86 | AC(119) 20.17 | CC(460) 77.97 | A 11.95 | C 88.05 | 0.1883 | 0.2104 | 0.7896 | 1.2665 | p > 0.05 |
g.50648 C > G | CC(131) 22.24 | GC(312) 52.97 | GG(146) 24.79 | C 48.73 | G 51.28 | 0.3748 | 0.4997 | 0.5003 | 1.9987 | p > 0.05 |
g.64548 C > T | CC(443) 75.08 | CT(132) 22.37 | TT(15) 2.54 | C 86.27 | T 13.73 | 0.2088 | 0.2368 | 0.7631 | 1.3104 | p > 0.05 |
g.64617 C > T | CC(401) 68.20 | CT(166) 28.23 | TT(21) 3.57 | C 82.32 | T 17.69 | 0.2488 | 0.2912 | 0.7088 | 1.4108 | p > 0.05 |
g.67836 G > A | AA(12) 2.04 | GA(158) 26.87 | GG(418) 71.09 | A 15.48 | G 84.53 | 0.2274 | 0.2616 | 0.7384 | 1.3543 | p > 0.05 |
g.68017 G > A | AA(177) 29.95 | GA(269) 45.52 | GG(145) 24.53 | A 52.71 | G 47.29 | 0.3743 | 0.4985 | 0.5015 | 1.9942 | p > 0.05 |
Locus | g.50421 A > G | g.50592 C > A | g.50648 C > G | g.64548 C > T | g.64617 C > T | g.67836 G > A | g.68017 G > A | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D’ | r2 | D’ | r2 | D’ | r2 | D’ | r2 | D’ | r2 | D´ | r2 | D’ | r2 | |
g.50421 A > G | - | - | 0.99 | 0.92 | 0.98 | 0.13 | 0.95 | 0.02 | 0.69 | 0.01 | 0.99 | 0.02 | 0.98 | 0.12 |
g.50592 C > A | - | - | - | - | 0.98 | 0.12 | 1.00 | 0.02 | 1.00 | 0.02 | 1.00 | 0.02 | 0.98 | 0.11 |
g.50648 C > G | - | - | - | - | - | - | 1.00 | 0.16 | 0.62 | 0.07 | 0.91 | 0.15 | 0.31 | 0.09 |
g.64548 C > T | - | - | - | - | - | - | - | - | 1.00 | 0.03 | 0.91 | 0.02 | 0.97 | 0.13 |
g.64617 C > T | - | - | - | - | - | - | - | - | - | - | 0.99 | 0.03 | 0.79 | 0.12 |
g.67836 G > A | - | - | - | - | - | - | - | - | - | - | - | - | 1.00 | 0.20 |
g.68017 G > A | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Haplotype | g.50421 A > G | g.50592 C > A | g.50648 C > G | g.64548 C > T | g.64617 C > T | g.67836 G > A | g.68017 G > A | Frequency | Diplotypes | Frequency |
---|---|---|---|---|---|---|---|---|---|---|
H1 | G | C | C | C | C | G | G | 0.271 | H1H1 | 0.069 |
H2 | G | C | G | C | T | G | A | 0.093 | H1H2 | 0.054 |
H3 | A | A | G | C | C | G | A | 0.115 | H1H3 | 0.073 |
H4 | G | C | G | C | C | A | G | 0.138 | H1H4 | 0.076 |
H5 | G | C | C | T | C | G | A | 0.136 | H1H5 | 0.057 |
H6 | G | C | G | C | C | G | A | 0.088 | H1H6 | 0.039 |
H7 | G | C | G | C | C | G | G | 0.035 | H4H5 | 0.040 |
H8 | G | C | C | C | T | G | A | 0.045 | H4H6 | 0.030 |
H5H6 | 0.039 | |||||||||
H7H8 | 0.054 |
Locus | Genotype | Meat Quality | Carcass Quality | |||||
---|---|---|---|---|---|---|---|---|
n | WBSF (kg) | CLR (%) | DLR (%) | REA (cm2) | n | HCW (kg) | ||
g.50421 A > G | AA | 19 | 5.18 ± 0.35 | 67.44 ± 1.25 ab | 23.05 ± 1.31 | 32.61 ± 1.93 | 6 | 157.25 ± 13.56 a |
GA | 109 | 5.45 ± 0.16 | 67.57 ± 0.56 a | 21.28 ± 0.59 | 31.84 ± 0.86 | 39 | 113.78 ± 6.18 b | |
GG | 462 | 5.46 ± 0.10 | 66.00 ± 0.37 b | 21.53 ± 0.39 | 32.36 ± 0.58 | 153 | 111.25 ± 3.83 b | |
p-value | 0.836 | 0.024 | 0.614 | 0.827 | 0.012 | |||
g.50592 C > A | AA | 11 | 5.25 ± 0.45 | 68.94 ± 1.63 a | 20.44 ± 1.71 | 28.58 ± 2.52 | 0 | / |
AC | 119 | 5.45 ± 0.15 | 67.31 ± 0.54 ab | 21.55 ± 0.56 | 32.22 ± 0.83 | 46 | 122.16 ± 5.86 | |
CC | 460 | 5.46 ± 0.10 | 66.03 ± 0.37 b | 21.42 ± 0.39 | 32.28 ± 0.58 | 151 | 112.96 ± 3.89 | |
p-value | 0.960 | 0.040 | 0.242 | 0.400 | 0.101 | |||
g.50648 C > G | CC | 131 | 5.49 ± 0.15 | 66.34 ± 0.53 | 20.51 ± 0.55 b | 31.79 ± 0.81 | 47 | 113.30 ± 5.71 |
GC | 312 | 5.45 ± 0.11 | 66.28 ± 0.41 | 21.81 ± 0.42 a | 32.57 ± 0.62 | 114 | 113.97 ± 4.30 | |
GG | 146 | 5.48 ± 0.15 | 66.74 ± 0.54 | 21.73 ± 0.56 ab | 31.98 ± 0.83 | 36 | 117.80 ± 6.24 | |
p-value | 0.238 | 0.792 | 0.038 | 0.782 | 0.842 | |||
g.64548 C > T | CC | 443 | 5.44 ± 0.10 ab | 66.29 ± 0.37 | 21.33 ± 0.38 b | 32.54 ± 0.57 | 148 | 112.34 ± 3.89 |
CT | 132 | 5.60 ± 0.15 a | 66.54 ± 0.54 | 21.74 ± 0.56 b | 31.52 ± 0.83 | 45 | 112.46 ± 5.96 | |
TT | 15 | 4.94 ± 0.39 b | 67.61 ± 1.40 | 23.39 ± 1.46 a | 29.92 ± 2.15 | 5 | 124.18 ± 15.04 | |
p-value | 0.043 | 0.758 | 0.015 | 0.405 | 0.160 | |||
g.64617 C > T | CC | 401 | 5.41 ± 0.10 | 66.31 ± 0.38 | 21.42 ± 0.39 | 32.52 ± 0.58 | 136 | 113.74 ± 4.12 |
CT | 166 | 5.51 ± 0.14 | 66.71 ± 0.50 | 21.83 ± 0.53 | 31.92 ± 0.77 | 54 | 115.05 ± 5.42 | |
TT | 21 | 5.89 ± 0.33 | 66.47 ± 1.20 | 19.71 ± 1.25 | 29.70 ± 1.84 | 6 | 114.24 ± 13.97 | |
p-value | 0.474 | 0.521 | 0.222 | 0.385 | 0.995 | |||
g.67836 G > A | AA | 12 | 5.46 ± 0.43 | 66.65 ± 1.57 | 24.59 ± 1.61 a | 32.16 ± 2.39 | 3 | 90.46 ± 20.00 |
GA | 158 | 5.42 ± 0.14 | 65.91 ± 0.52 | 21.40 ± 0.53 b | 33.36 ± 0.79 | 40 | 115.51 ± 6.06 | |
GG | 418 | 5.48 ± 0.10 | 66.61 ± 0.38 | 21.23 ± 0.39 b | 31.77 ± 0.57 | 153 | 114.25 ± 3.97 | |
p-value | 0.773 | 0.348 | 0.000 | 0.096 | 0.551 | |||
g.68017 G > A | AA | 177 | 5.50 ± 0.14 | 67.03 ± 0.49 | 21.62 ± 0.53 | 31.58 ± 0.75 | 64 | 121.10 ± 5.18 |
GA | 269 | 5.46 ± 0.12 | 66.37 ± 0.42 | 21.52 ± 0.44 | 32.32 ± 0.65 | 89 | 115.82 ± 473 | |
GG | 145 | 5.43 ± 0.14 | 65.65 ± 0.51 | 21.10 ± 0.51 | 32.93 ± 0.79 | 45 | 106.82 ± 5.38 | |
p-value | 0.277 | 0.134 | 0.649 | 0.514 | 0.098 |
Trait (Unit)2 | Haplotype | n | Single-Haplotype Model | p | Multi-Haplotype Model | p | ||||
---|---|---|---|---|---|---|---|---|---|---|
Present | Absent | Present | Absent | Other Haplotypes in Model | Present | Absent | ||||
WBSF (kg) | H1 | 245 | 277 | 5.33 ± 0.11 | 5.43 ± 0.12 | 0.420 | H2, H5, H6 | 5.30 ± 0.16 | 5.43 ± 0.14 | 0.358 |
H2 | 89 | 433 | 5.56 ± 0.17 | 5.34 ± 0.10 | 0.186 | H5, H6 | 5.49 ± 0.19 | 5.30 ± 0.12 | 0.220 | |
H3 | 112 | 410 | 5.34 ± 0.15 | 5.38 ± 0.10 | 0.797 | H2, H5, H6 | 5.37 ± 0.20 | 5.39 ± 0.13 | 0.896 | |
H4 | 156 | 366 | 5.33 ± 0.14 | 5.39 ± 0.10 | 0.639 | H2, H5, H6 | 5.35 ± 0.18 | 5.40 ± 0.13 | 0.743 | |
H5 | 137 | 385 | 5.31 ± 0.14 | 5.58 ± 0.10 | 0.049 | H2, H6 | 5.25 ± 0.17 | 5.35 ± 0.13 | 0.051 | |
H6 | 104 | 418 | 5.03 ± 0.16 | 5.45 ± 0.10 | 0.006 | H2, H5 | 5.20 ± 0.18 | 5.59 ± 0.12 | 0.011 | |
H7 | 40 | 482 | 5.28 ± 0.24 | 5.41 ± 0.10 | 0.576 | H2, H5, H6 | 5.17 ± 0.27 | 5.39 ± 0.13 | 0.336 | |
H8 | 72 | 450 | 5.55 ± 0.18 | 5.38 ± 0.10 | 0.322 | H2, H5, H6 | 5.64 ± 0.21 | 5.37 ± 0.13 | 0.127 | |
CLR (%) | H1 | 245 | 277 | 66.08 ± 0.43 | 66.72 ± 0.46 | 0.171 | H3, H4, H7 | 65.60 ± 0.65 | 66.36 ± 0.60 | 0.120 |
H2 | 89 | 433 | 66.75 ± 0.65 | 66.30 ± 0.38 | 0.468 | H1, H3, H4, H7 | 66.50 ± 0.90 | 66.01 ± 0.58 | 0.449 | |
H3 | 112 | 410 | 67.60 ± 0.56 | 65.96 ± 0.39 | 0.004 | H1, H4, H7 | 66.54 ± 0.72 | 65.31 ± 0.55 | 0.020 | |
H4 | 156 | 366 | 65.80 ± 0.52 | 66.58 ± 0.40 | 0.129 | H1, H3, H7 | 65.64 ± 0.69 | 66.32 ± 0.57 | 0.200 | |
H5 | 137 | 385 | 66.50 ± 0.55 | 66.32 ± 0.39 | 0.737 | H1, H3, H4, H7 | 65.88 ± 0.82 | 65.98 ± 0.57 | 0.868 | |
H6 | 104 | 418 | 66.23 ± 0.60 | 66.39 ± 0.39 | 0.777 | H1, H3, H4, H7 | 65.57 ± 0.85 | 65.99 ± 0.57 | 0.505 | |
H7 | 40 | 482 | 65.00 ± 0.90 | 66.44 ± 0.37 | 0.097 | H1, H3, H4 | 65.28 ± 0.92 | 66.68 ± 0.42 | 0.107 | |
H8 | 72 | 450 | 66.11 ± 0.68 | 66.41 ± 0.39 | 0.663 | H1, H3, H4, H7 | 65.22 ± 0.88 | 66.01 ± 0.57 | 0.259 | |
DLR (%) | H1 | 245 | 277 | 21.45 ± 0.42 | 21.11 ± 0.45 | 0.476 | ||||
H2 | 89 | 433 | 21.79 ± 0.65 | 21.22 ± 0.38 | 0.356 | |||||
H3 | 112 | 410 | 21.25 ± 0.56 | 21.32 ± 0.40 | 0.909 | |||||
H4 | 156 | 366 | 21.55 ± 0.52 | 21.20 ± 0.40 | 0.489 | |||||
H5 | 137 | 385 | 21.65 ± 0.55 | 21.20 ± 0.39 | 0.385 | |||||
H6 | 104 | 418 | 21.16 ± 0.60 | 21.33 ± 0.39 | 0.762 | |||||
H7 | 40 | 482 | 22.15 ± 0.90 | 21.25 ± 0.37 | 0.298 | |||||
H8 | 72 | 450 | 19.96 ± 0.68 | 21.53 ± 0.38 | 0.019 | |||||
REA (cm2) | H1 | 245 | 277 | 32.48 ± 0.65 | 31.79 ± 0.70 | 0.336 | ||||
H2 | 89 | 433 | 31.92 ± 0.99 | 32.22 ± 0.58 | 0.754 | |||||
H3 | 112 | 410 | 31.55 ± 0.87 | 32.38 ± 0.61 | 0.339 | |||||
H4 | 156 | 366 | 33.37 ± 0.80 | 31.72 ± 0.61 | 0.034 | |||||
H5 | 137 | 385 | 31.57 ± 0.84 | 32.35 ± 0.60 | 0.332 | |||||
H6 | 104 | 418 | 32.04 ± 0.92 | 32.21 ± 0.59 | 0.842 | |||||
H7 | 40 | 482 | 32.62 ± 1.38 | 32.15 ± 0.57 | 0.725 | |||||
H8 | 72 | 450 | 31.63 ± 1.04 | 32.27 ± 0.59 | 0.536 | |||||
HCW (kg) | H1 | 93 | 86 | 102.43 ± 3.85 | 110.05 ± 4.15 | 0.094 | ||||
H2 | 30 | 149 | 105.92 ± 6.38 | 105.79 ± 3.39 | 0.983 | |||||
H3 | 36 | 143 | 109.55 ± 5.45 | 104.70 ± 3.55 | 0.387 | |||||
H4 | 41 | 138 | 109.94 ± 5.20 | 104.42 ± 3.57 | 0.303 | |||||
H5 | 43 | 136 | 111.64 ± 5.26 | 104.03 ± 3.52 | 0.155 | |||||
H6 | 41 | 138 | 106.97 ± 5.35 | 105.47 ± 5.32 | 0.781 | |||||
H7 | 12 | 167 | 108.63 ± 9.03 | 105.58 ± 3.38 | 0.736 | |||||
H8 | 27 | 152 | 106.36 ± 6.38 | 105.70 ± 3.45 | 0.918 |
Trait (Unit)2 | Haplotype | n | Single-Haplotype Model | p | Multi-Haplotype Model | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Absent | One Copy Present | Two Copy Present | Absent | One Copy Present | Two Copy Present | Other Haplotypes in Model | Absent | One Copy Present | Two Copy Present | ||||
WBSF (kg) | H1 | 277 | 204 | 41 | 5.43 ± 0.12 | 5.30 ± 0.12 | 5.46 ± 0.23 | 0.570 | H2, H5, H6 | 5.75 ± 0.32 | 5.62 ± 0.36 | 5.80 ± 0.42 | 0.539 |
H2 | 433 | 83 | 6 | 5.34 ± 0.10 | 5.47 ± 0.18 | 6.56 ± 0.57 | 0.077 | H5, H6 | 5.31 ± 0.24 | 5.43 ± 0.30 | 6.53 ± 0.62 | 0.085 | |
H3 | 410 | 103 | 9 | 5.37 ± 0.10 | 5.37 ± 0.15 | 4.86 ± 0.48 | 0.549 | H2, H5, H6 | 5.74 ± 0.32 | 5.76 ± 0.37 | 5.27 ± 0.58 | 0.587 | |
H4 | 366 | 145 | 11 | 5.39 ± 0.10 | 5.28 ± 0.14 | 5.90 ± 0.43 | 0.322 | H2, H5, H6 | 5.77 ± 0.32 | 5.69 ± 0.36 | 6.33 ± 0.55 | 0.316 | |
H5 | 385 | 123 | 14 | 5.30 ± 0.10 | 5.63 ± 0.15 | 5.18 ± 0.38 | 0.075 | H2, H6 | 5.71 ± 0.28 b | 6.04 ± 0.31 a | 5.53 ± 0.47 b | 0.046 | |
H6 | 418 | 98 | 6 | 5.52 ± 0.10 a | 5.44 ± 0.16 b | 4.99 ± 0.57 b | 0.014 | H2, H5 | 6.02 ± 0.25 a | 5.41 ± 0.29 b | 5.84 ± 0.62 b | 0.021 | |
H8 | 450 | 70 | 2 | 5.34 ± 0.10 | 5.54 ± 0.18 | 5.93 ± 0.98 | 0.450 | H2, H5, H6 | 5.78 ± 0.32 | 6.06 ± 0.37 | 6.42 ± 1.03 | 0.249 | |
CLR (%) | H1 | 277 | 204 | 41 | 66.72 ± 0.46 | 66.92 ± 0.45 | 66.85 ± 0.86 | 0.232 | |||||
H2 | 433 | 83 | 6 | 66.30 ± 0.38 | 66.84 ± 0.67 | 65.58 ± 2.19 | 0.658 | ||||||
H3 | 410 | 103 | 9 | 66.00 ± 0.39 bc | 67.45 ± 0.58 b | 69.20 ± 1.80 a | 0.007 | ||||||
H4 | 366 | 145 | 11 | 66.58 ± 0.40 | 65.81 ± 0.53 | 65.78 ± 1.63 | 0.316 | ||||||
H5 | 385 | 123 | 14 | 66.32 ± 0.39 | 66.36 ± 0.57 | 67.75 ± 1.45 | 0.611 | ||||||
H6 | 418 | 98 | 6 | 66.39 ± 0.39 | 66.25 ± 0.62 | 65.87 ± 2.18 | 0.947 | ||||||
H8 | 450 | 70 | 2 | 66.41 ± 0.39 | 66.06 ± 0.69 | 67.88 ± 3.76 | 0.811 | ||||||
DLR (%) | H1 | 277 | 204 | 41 | 21.12 ± 0.45 ab | 21.84 ± 0.45 a | 19.52 ± 0.86 b | 0.028 | H8 | 17.70 ± 1.29 b | 18.17 ± 1.32 a | 15.71 ± 1.52 ab | 0.023 |
H2 | 433 | 83 | 6 | 21.23 ± 0.38 | 21.95 ± 0.67 | 19.74 ± 2.18 | 0.402 | H1, H8 | 17.19 ± 1.31 | 17.60 ± 1.46 | 15.45 ± 2.54 | 0.575 | |
H3 | 410 | 103 | 9 | 21.31 ± 0.40 | 21.27 ± 0.58 | 21.03 ± 1.81 | 0.985 | H1, H8 | 17.22 ± 1.31 | 16.91 ± 1.41 | 16.71 ± 2.22 | 0.842 | |
H4 | 366 | 145 | 11 | 21.21 ± 0.40 | 21.47 ± 0.53 | 22.70 ± 1.62 | 0.596 | H1, H8 | 17.21 ± 1.31 | 17.19 ± 1.41 | 18.41 ± 2.10 | 0.752 | |
H5 | 385 | 123 | 14 | 21.20 ± 0.39 | 21.64 ± 0.57 | 21.74 ± 1.45 | 0.684 | H1, H8 | 17.20 ± 1.31 | 17.35 ± 1.43 | 17.55 ± 1.97 | 0.947 | |
H6 | 418 | 98 | 6 | 21.33 ± 0.39 | 21.16 ± 0.62 | 21.03 ± 2.17 | 0.954 | H1, H8 | 17.19 ± 1.31 | 16.82 ± 1.44 | 16.47 ± 2.54 | 0.797 | |
H8 | 450 | 70 | 2 | 21.52 ± 0.38 a | 20.18 ± 0.68 b | 11.55 ± 3.71 c | 0.004 | H1 | 21.00 ± 0.42 a | 19.58 ± 0.74 b | 11.00 ± 3.70 c | 0.004 | |
REA (cm2) | H1 | 277 | 204 | 41 | 31.79 ± 0.70 | 32.51 ± 0.70 | 32.34 ± 1.32 | 0.625 | |||||
H2 | 433 | 83 | 6 | 32.22 ± 0.58 | 32.03 ± 1.02 | 30.54 ± 3.35 | 0.867 | ||||||
H3 | 410 | 103 | 9 | 32.30 ± 0.61 | 31.91 ± 0.88 | 26.60 ± 2.76 | 0.107 | ||||||
H4 | 366 | 145 | 11 | 31.72 ± 0.61 | 33.36 ± 0.81 | 33.50 ± 2.48 | 0.105 | ||||||
H5 | 385 | 123 | 14 | 32.35 ± 0.60 | 31.66 ± 0.88 | 30.78 ± 2.22 | 0.580 | ||||||
H6 | 418 | 98 | 6 | 32.21 ± 0.59 | 32.05 ± 0.95 | 31.81 ± 3.34 | 0.978 | ||||||
H8 | 450 | 70 | 2 | 32.27 ± 0.59 | 31.60 ± 1.06 | 32.83 ± 0.75 | 0.807 | ||||||
HCW (kg) | H1 | 83 | 77 | 19 | 109.40 ± 4.10 a | 105.99 ± 4.05 ab | 86.68 ± 7.32 c | 0.011 | H4 | 101.72 ± 6.56 a | 97.79 ± 7.05 ab | 79.17 ± 9.54 c | 0.014 |
H2 | 149 | 28 | 2 | 105.79 ± 3.40 | 106.24 ± 6.56 | 101.36 ± 21.51 | 0.975 | H1, H4 | 92.72 ± 6.79 | 88.84 ± 9.38 | 82.63 ± 22.38 | 0.755 | |
H4 | 138 | 38 | 3 | 104.44 ± 3.55 | 112.08 ± 5.34 | 83.02 ± 17.39 | 0.160 | H1 | 100.27 ± 3.82 | 104.73 ± 5.81 | 73.69 ± 17.38 | 0.197 | |
H5 | 138 | 38 | 3 | 103.92 ± 3.53 | 110.40 ± 5.62 | 119.53 ± 13.63 | 0.300 | H1, H4 | 92.78 ± 6.78 | 95.27 ± 9.03 | 105.99 ± 15.57 | 0.625 | |
H6 | 138 | 33 | 167 | 105.44 ± 3.53 | 106.27 ± 5.57 | 115.20 ± 18.26 | 0.861 | H1, H4 | 92.91 ± 6.79 | 90.21 ± 9.14 | 96.25 ± 19.65 | 0.880 | |
H8 | 153 | 25 | 1 | 105.64 ± 3.46 | 107.63 ± 6.60 | 97.84 ± 30.52 | 0.945 | H1, H4 | 92.75 ± 6.79 | 89.13 ± 9.89 | 77.77 ± 30.82 | 0.784 |
Diplotypes | Meat Quality | Carcass Quality | |||||
---|---|---|---|---|---|---|---|
n | WBSF (kg) | CLR (%) | DLR (%) | REA (cm2) | n | HCW (kg) | |
H1H1 | 41 | 5.45 ± 0.22 | 66.59 ± 0.92 | 19.65 ± 0.91 | 32.15 ± 1.47 | 19 | 87.99 ± 8.21 |
H1H2 | 32 | 5.16 ± 0.25 | 67.17 ± 1.05 | 22.29 ± 1.04 | 30.76 ± 1.67 | 12 | 94.52 ± 10.07 |
H1H3 | 43 | 5.29 ± 0.21 | 66.91 ± 0.88 | 23.09 ± 0.87 | 33.39 ± 1.41 | 20 | 114.38 ± 7.44 |
H1H4 | 45 | 5.12 ± 0.21 | 65.12 ± 0.89 | 22.19 ± 0.87 | 33.50 ± 1.41 | 15 | 110.03 ± 8.76 |
H1H5 | 34 | 5.77 ± 0.24 | 65.12 ± 1.01 | 20.98 ± 1.00 | 31.01 ± 1.62 | 11 | 111.14 ± 10.32 |
H1H6 | 23 | 5.05 ± 0.29 | 66.22 ± 1.22 | 21.16 ± 1.21 | 32.46 ± 1.95 | 11 | 97.36 ± 9.97 |
H4H5 | 24 | 5.65 ± 0.29 | 65.82 ± 1.22 | 21.70 ± 1.20 | 32.31 ± 1.94 | 6 | 112.55 ± 13.42 |
H4H6 | 18 | 4.72 ± 0.33 | 65.31 ± 1.38 | 20.57 ± 1.36 | 33.29 ± 2.20 | 2 | 83.57 ± 22.65 |
H5H6 | 23 | 5.30 ± 0.30 | 66.17 ± 1.24 | 21.66 ± 1.23 | 30.74 ± 1.99 | 10 | 122.13 ± 10.60 |
H7H8 | 32 | 5.16 ± 0.25 | 67.17 ± 1.05 | 22.29 ± 1.04 | 30.76 ± 1.67 | 12 | 94.52 ± 10.07 |
p-value | 0.146 | 0.716 | 0.220 | 0.839 | 0.095 |
Gene | Region | Primer Sequence (5′–3′) | Amplicon Size (bp) | Annealing Temperature (°C) |
---|---|---|---|---|
ACACB | Exon 37–intron 37 | F: AAAATCTTCTTCCTCCCTG R: CGTGTATCTGTGCCGTCTA | 455 | 60 |
ACACB | Exon 46–intron 46 | F: ACGGTGGCTGCCTTGCTTT R: ATGCTGGACGCTGGTTTCA | 362 | 60 |
ACACB | Intron 47 | F: TCCCAGAGCACTTTACTT R: ATACCCGTCATCACCAT | 790 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Qi, Y.; Wang, X.; Mi, B.; Cui, C.; Chen, S.; Zhao, Z.; Zhao, F.; Liu, X.; Wang, J.; et al. Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks. Int. J. Mol. Sci. 2023, 24, 15488. https://doi.org/10.3390/ijms242015488
Zhu C, Qi Y, Wang X, Mi B, Cui C, Chen S, Zhao Z, Zhao F, Liu X, Wang J, et al. Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks. International Journal of Molecular Sciences. 2023; 24(20):15488. https://doi.org/10.3390/ijms242015488
Chicago/Turabian StyleZhu, Chune, Youpeng Qi, Xiangyan Wang, Baohong Mi, Changze Cui, Shaopeng Chen, Zhidong Zhao, Fangfang Zhao, Xiu Liu, Jiqing Wang, and et al. 2023. "Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks" International Journal of Molecular Sciences 24, no. 20: 15488. https://doi.org/10.3390/ijms242015488
APA StyleZhu, C., Qi, Y., Wang, X., Mi, B., Cui, C., Chen, S., Zhao, Z., Zhao, F., Liu, X., Wang, J., Shi, B., & Hu, J. (2023). Variation in Acetyl-CoA Carboxylase Beta Gene and Its Effect on Carcass and Meat Traits in Gannan Yaks. International Journal of Molecular Sciences, 24(20), 15488. https://doi.org/10.3390/ijms242015488