Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon (Cucumis melo L.): A Review
Abstract
:1. Introduction
2. Molecular Markers, QTLs, and Candidate Genes for Horticultural Traits in Melon
2.1. Plant Architecture
2.1.1. Dwarfism
2.1.2. Branching
2.2. Flower Traits
2.2.1. Sex Expression
2.2.2. Male Sterility
2.3. Fruit Traits
2.3.1. Fruit Rind Color
2.3.2. Fruit Shape
2.3.3. Fruit Flesh Color
2.3.4. Fruit Rind Netting
2.3.5. Fruit Yield and Its Components
2.4. Seed Traits
2.4.1. Seed Coat Color
2.4.2. Seed Size
3. Molecular Markers, QTLs, and Candidate Genes for Biochemical Compounds in Melon
3.1. Sugar Content
3.2. Volatile Aromatic Components
4. Limitations and Challenges
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Production/Crops. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 26 April 2023).
- Market Research Future. Vegetable Seeds Market Research Report—Global Forecast to 2027. 2021. Available online: https://www.marketresearchfuture.com/reports/vegetable-seeds-market-2784 (accessed on 28 April 2023).
- Daryono, B.S.; Kumalawati, D.A. Identification of local melon (Cucumis melo L. var. Bartek) based on chromosomal characters. HAYATI J. Biosci. 2011, 18, 197–200. [Google Scholar] [CrossRef]
- Jeffrey, C. A review of the Cucurbitaceae. Bot. J. Linn. Soc. 1980, 81, 233–247. [Google Scholar] [CrossRef]
- Pitrat, M.; Hanelt, P.; Hammer, K. Some comments on infraspecific classification of cultivars of melon. In Proceedings of the VII Eucarpia Meeting on Cucurbit Genetics and Breeding, Ma’ale Ha Hamisha, Israel, 19–23 March 2000; Volume 510, pp. 29–36. [Google Scholar] [CrossRef]
- Robinson, R.W.; Decker-Walters, D.S. Major and minor crops. In Cucurbits; CAB International: Wallingford Oxon, UK, 1997; pp. 58–112. [Google Scholar]
- Sebastian, P.; Schaefer, H.; Telford, I.R.; Renner, S.S. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc. Natl. Acad. Sci. USA 2010, 107, 14269–14273. [Google Scholar] [CrossRef]
- Farré, G.; Sanahuja, G.; Naqvi, S.; Bai, C.; Capell, T.; Zhu, C.; Christou, P. Travel advice on the road to carotenoids in plants. Plant Sci. 2010, 179, 28–48. [Google Scholar] [CrossRef]
- DellaPenna, D.; Pogson, B.J. Vitamin synthesis in plants: Tocopherols and carotenoids. Annu. Rev. Plant Biol. 2006, 57, 711–738. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, L.; Kovalski, I.; Brotman, Y.; Perin, C.; Dogimont, C.; Pitrat, M.; Klingler, J.; Thompson, G.; Portnoy, V.; Katzir, N.; et al. Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 2003, 46, 761–773. [Google Scholar] [CrossRef]
- Ari, B.Ç.; Kayak, N.; Ünal, K.A.L.; Neslihan, I.S.S.I.; Türkmen, Ö.; Yeşim, D.A.L.; Kurtar, E.S.; Seymen, M. Determination of yield and quality characteristics of hybrid melon cultivar candidates in Konya ecology. Mustafa Kemal Univ. J. Agric. Sci. 2022, 27, 309–317. [Google Scholar] [CrossRef]
- Diaz, A.; Zarouri, B.; Fergany, M.; Eduardo, I.; Álvarez, J.M.; Picó, B.; Monforte, A.J. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘Piel de Sapo’melon (Cucumis melo L.). PLoS ONE 2014, 9, e104188. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, T.; Meng, X.; Song, J.; Zhang, C.; Gao, P. Genetic mapping and QTL analysis of fruit traits in melon (Cucumis melo L.). Curr. Issues Mol. Biol. 2023, 45, 3419–3433. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y.; McGregor, C.; Liu, S.; Luan, F.; Gao, M.; Weng, Y. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theor. Appl. Genet. 2020, 133, 1–21. [Google Scholar] [CrossRef]
- Shen, J.; Xu, X.; Zhang, Y.; Niu, X.; Shou, W. Genetic mapping and identification of the candidate genes for mottled rind in Cucumis melo L. Front. Plant Sci. 2021, 2563, 769989. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, C.; Zong, M.; Qiu, Y.; Liu, Y.; Huang, Y.; Xie, Y.; Zhang, H.; Wang, J. CmFSI8/CmOFP13 encoding an OVATE family protein controls fruit shape in melon. J. Exp. Bot. 2022, 73, 1370–1384. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, H.; Yadav, R.K.; Maurya, S.K. Principles and techniques for rapid improvement of muskmelon for yield, fruit quality and resistance to biotic stresses. In Accelerated Plant Breeding; Springer: Cham, Switzerland, 2020; Volume 2, pp. 373–395. [Google Scholar] [CrossRef]
- Jin, B.; Lee, J.; Kweon, S.; Cho, Y.; Choi, Y.; Lee, S.J.; Park, Y. Analysis of flesh color-related carotenoids and development of a CRTISO gene-based DNA marker for prolycopene accumulation in watermelon. Hortic. Environ. Biotechnol. 2019, 60, 399–410. [Google Scholar] [CrossRef]
- Paris, M.K.; Zalapa, J.E.; McCreight, J.D.; Staub, J.E. Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic× elite US Western Shipping germplasm. Mol. Breed. 2008, 22, 405–419. [Google Scholar] [CrossRef]
- Harel-Beja, R.; Tzuri, G.; Portnoy, V.; Lotan-Pompan, M.; Lev, S.; Cohen, S.; Dai, N.; Yeselson, L.; Meir, A.; Libhaber, S.E.; et al. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor. Appl. Genet. 2010, 121, 511–533. [Google Scholar] [CrossRef]
- Ramamurthy, R.K.; Waters, B.M. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 2015, 204, 163–177. [Google Scholar] [CrossRef]
- Monforte, A.J.; Oliver, M.; Gonzalo, M.J.; Alvarez, J.M.; Dolcet-Sanjuan, R.; Arus, P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor. Appl. Genet. 2004, 108, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, H.E.; Staub, J.E.; Simon, P.W.; Zalapa, J.E. A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theor. Appl. Genet. 2009, 119, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Argyris, J.M.; Díaz, A.; Ruggieri, V.; Fernández, M.; Jahrmann, T.; Gibon, Y.; Picó, B.; Martín-Hernández, A.M.; Monforte, A.J.; Garcia-Mas, J. QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). Front. Plant Sci. 2017, 8, 1679. [Google Scholar] [CrossRef] [PubMed]
- Zalapa, J.E.; Staub, J.E.; McCreight, J.D.; Chung, S.M.; Cuevas, H. Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor. Appl. Genet. 2007, 114, 1185–1201. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wu, D.H.; Huang, J.H.; Tsao, S.J.; Hwu, K.K.; Lo, H.F. Mapping quantitative trait loci for fruit traits and powdery mildew resistance in melon (Cucumis melo). Bot. Stud. 2016, 57, 19. [Google Scholar] [CrossRef]
- Amanullah, S.; Liu, S.; Gao, P.; Zhu, Z.; Zhu, Q.; Fan, C.; Luan, F. QTL mapping for melon (Cucumis melo L.) fruit traits by assembling and utilization of novel SNPs based CAPS markers. Sci. Hortic. 2018, 236, 18–29. [Google Scholar] [CrossRef]
- Argyris, J.M.; Ruiz-Herrera, A.; Madriz-Masis, P.; Sanseverino, W.; Morata, J.; Pujol, M.; Ramos-Onsins, S.E.; Garcia-Mas, J. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics. 2015, 16, 4. [Google Scholar] [CrossRef]
- Garcia-Mas, J.; Benjak, A.; Sanseverino, W.; Bourgeois, M.; Mir, G.; González, V.M.; Hénaff, E.; Câmara, F.; Cozzuto, L.; Lowy, E.; et al. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 2012, 109, 11872–11877. [Google Scholar] [CrossRef] [PubMed]
- Osei, M.K.; Prempeh, R.; Adjebeng-Danquah, J.; Opoku, J.A.; Danquah, A.; Danquah, E.; Blay, E.; Adu-Dapaah, H. Marker-assisted selection (MAS): A fast-track tool in tomato breeding. In Recent Advances in Tomato Breeding and Production; IntechOpen: London, UK, 2018; pp. 93–113. [Google Scholar] [CrossRef]
- MacKill, D.J. Breeding for resistance to abiotic stresses in rice: The value of quantitative trait loci. In Plant Breeding: The Arnel R. Hallauer International Symposium; Blackwell Publishing: Ames, IA, USA, 2006; pp. 201–212. [Google Scholar] [CrossRef]
- Muangprom, A.; Stephen, G.T.; Sun, T.; Thomas, C.O. A novel dwarfing mutation in a green revolution gene from Brassica rapa. Plant Physiol. 2005, 137, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Holst, K.; Schmulling, T.; Werner, T. Enhanced cytokinin degradation in leaf primordial of transgenic Arabidopsis plants reduces leaf size and shoot organ primordial formation. J. Plant Physiol. 2011, 168, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Oki, K.; Inaba, N.; Kitano, H.; Takahashi, S.; Fujisawa, Y.; Kato, H.; Iwasaki, Y. Study of novel d1 alleles, defective mutants of the α subunit of heterotrimeric G-protein in rice. Genes Genet. Syst. 2009, 84, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Oh, J.; Kim, Z.; Staub, J.E.; Chung, S.M.; Park, Y. Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.). Mol. Breed. 2014, 34, 949–961. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, S.; Park, J.; Kwon, S.; Park, G.; Kim, H.; Park, Y. Identification of a candidate gene controlling semi-dwarfism in watermelon, Citrullus lanatus, using a combination of genetic linkage mapping and QTL-seq. Hortic. Environ. Biotechnol. 2021, 62, 447–459. [Google Scholar] [CrossRef]
- Li, Y.; Yang, L.; Pathak, M.; Li, D.; He, X.; Weng, Y. Fine genetic mapping of cp: A recessive gene for compact (dwarf) plant architecture in cucumber Cucumis sativus L. Theor. Appl. Genet. 2011, 123, 973–983. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, Y.; Sun, H.; Guo, S.; Zhang, F.; Zhang, J.; Zhang, H.; Jia, Z.; Fei, Z.; Xu, Y.; et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics. 2015, 16, 1101. [Google Scholar] [CrossRef] [PubMed]
- Knavel, D.E. Productivity and growth of short-internode muskmelon plants at various spacings or densities. J. Am. Soc. Hortic. Sci. 1991, 116, 926–929. [Google Scholar] [CrossRef]
- Nerson, H.; Paris, H.S.; Karchi, Z. Characteristics of birdnest- type muskmelons. Sci. Hortic. 1983, 21, 341–352. [Google Scholar] [CrossRef]
- Paris, H.S.; Karchi, Z.; Nerson, H.; Govers, A.; Freudenberg, D. A new plant type in Cucumis melo L. Cucurbit Genet. Coop. Rep. 1981, 4, 24–26. [Google Scholar]
- Paris, H.S.; Karchi, Z.; Nerson, H.; Burger, Y. On the compactappearance of birdnest type muskmelons. HortScience 1982, 17, 47. [Google Scholar]
- Fang, S.; Zhao, J.; Guo, K.; Duan, Y.; Wang, F.; Nie, L.; Zhao, W. Identification of SHORT VEGETATIVE PHASE (SVP)-like genes and necessary responsibility of CmSVPc for the development of lateral branches in melon (Cucumis melo L.). Sci. Hortic. 2023, 312, 111845. [Google Scholar] [CrossRef]
- Fukino, N.; Ohara, T.; Sugiyama, M.; Kubo, N.; Hirai, M.; Sakata, Y.; Matsumoto, S. Mapping of a gene that confers short lateral branching (slb) in melon (Cucumis melo L.). Euphytica 2012, 187, 133–143. [Google Scholar] [CrossRef]
- Dou, J.; Yang, H.; Sun, D.; Yang, S.; Sun, S.; Zhao, S.; Lu, X.; Zhu, H.; Liu, D.; Ma, C.; et al. The branchless gene Clbl in watermelon encoding a TERMINAL FLOWER 1 protein regulates the number of lateral branches. Theor. Appl. Genet. 2022, 135, 65–79. [Google Scholar] [CrossRef]
- Martin, A.; Troadec, C.; Boualem, A.; Rajab, M.; Fernandez, R.; Morin, H.; Pitrat, M.; Dogimont, C.; Bendahmane, A. A transposon-induced epigenetic change leads to sex determination in melon. Nature 2009, 461, 1135–1138. [Google Scholar] [CrossRef]
- Girek, Z.; Prodanovic, S.; Zdravkovic, J.; Zivanovic, T.; Ugrinovic, M.; Zdravkovic, M. The effect of growth regulators on sex expression in melon (Cucumis melo L.). Crop Breed. Appl. Biotechnol. 2013, 13, 165–171. [Google Scholar] [CrossRef]
- Boualem, A.; Fergany, M.; Fernandez, R.; Troadec, C.; Martin, A.; Morin, H.; Sari, M.A.; Collin, F.; Flowers, J.M.; Pitrat, M.; et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 2008, 321, 836–838. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Oh, J.; Kim, B.; Choi, E.K.; Hwang, U.S.; Staub, J.E.; Chung, S.M.; Park, Y. The CmACS-7 gene provides sequence variation for development of DNA markers associated with monoecious sex expression in melon (Cucumis melo L.). Hortic. Environ. Biotechnol. 2015, 56, 535–545. [Google Scholar] [CrossRef]
- Daryono, B.S.; Prasetya, E. Comparison of Cm ACS-7 Gene Expression in Melon (Cucumis melo L.) Flowers. J. Phys. Conf. Ser. 2021, 1819, 012041. [Google Scholar] [CrossRef]
- Kishor, D.S.; Noh, Y.; Song, W.H.; Lee, G.P.; Park, Y.; Jung, J.K.; Shim, E.J.; Sim, S.C.; Chung, S.M. SNP marker assay and candidate gene identification for sex expression via genotyping-by-sequencing-based genome-wide associations (GWAS) analyses in Oriental melon (Cucumis melo L. var. makuwa). Sci. Hortic. 2021, 276, 109711. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Little, H.A.; Hammar, S.A.; Grumet, R. Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex. Plant Reprod. 2005, 18, 131–142. [Google Scholar] [CrossRef]
- Manzano, S.; Martinez, C.; Kraakman, P.; Jamilena, M. Use of ethylene production as a marker for the selection of gynoecy in melon (Cucumis melo). In Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Avignon, France, 21–24 May 2008; Pitrat, M., Ed.; INRA: Avignon, France, 2008; pp. 557–561. [Google Scholar]
- Thomas, T.D. The effect of in vivo and in vitro applications of ethrel and GA3 on sex expression in bitter melon (Momordica charantia L.). Euphytica 2008, 164, 317–323. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Y.J.; Timofejeva, L.; Chen, C.B.; Grossniklaus, U.; Ma, H. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 2006, 133, 3085–3095. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ding, Z.W.; Vizcay-Barrena, G.; Shi, J.X.; Liang, W.Q.; Yuan, Z.; Werck-Reichhart, D.; Schreiber, L.; Wilson, Z.A.; Zhang, D. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 2014, 26, 1544–1556. [Google Scholar] [CrossRef]
- Wilson, Z.A.; Morroll, S.M.; Dawson, J.; Swarup, R.; Tighe, P.J. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J. 2001, 28, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Lal, T.; Vashisht, V.K.; Punjab, D.N. Anmol A new hybrid of muskmelon (Cucumis melo L.). J. Res. Punjab Agric. Univ. 2007, 44, 83. [Google Scholar]
- Kaur, A.; Sharma, M. Comparative performance of muskmelon (Cucumis melo) hybrids at farmers’ field in district Kapurthala. J. Krishi Vigyan 2017, 6, 24–31. [Google Scholar] [CrossRef]
- Park, S.O.; Crosby, K.M. Developing a sequence characterized amplified region (SCAR) marker linked to the single recessive male-sterile ms-3 gene in melon. Subtrop. Plant Sci. 2004, 56, 1–4. [Google Scholar]
- Singh, M.; Sharma, S.P.; Sarao, N.K.; Kaur, S.; Chhuneja, P. Molecular mapping of nuclear male-sterility gene ms-1 in muskmelon (Cucumis melo L.). J. Hortic. Sci. Biotechnol. 2020, 95, 162–168. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, Y.; Jiao, S.; Jin, Y.; Ji, P.; Luan, F. Mapping and preliminary analysis of ABORTED MICROSPORES (AMS) as the candidate gene underlying the male sterility (MS-5) mutant in melon (Cucumis melo L.). Front. Plant Sci. 2017, 8, 902. [Google Scholar] [CrossRef]
- Burger, Y.; Bhasteker, D.; Saar, U.; Katzir, N.; Paris, H.S. A recessive gene for light immature exterior color of melon. Cucurbit Genet. Coop. Rep. 2005, 28, 17–18. [Google Scholar]
- Zhao, G.; Lian, Q.; Zhang, Z.; Fu, Q.; He, Y.; Ma, S.; Ruggieri, V.; Monforte, A.J.; Wang, P.; Julca, I.; et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 2019, 51, 1607–1615. [Google Scholar] [CrossRef]
- Oren, E.; Tzuri, G.; Vexler, L.; Dafna, A.; Meir, A.; Faigenboim, A.; Kenigswald, M.; Portnoy, V.; Schaffer, A.A.; Levi, A.; et al. The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. J. Exp. Bot. 2019, 70, 3781–3794. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiao, J.; Liang, X.; Liu, J.; Meng, H.; Chen, S.; Li, Y.; Cheng, Z. Map-based cloning, identification and characterization of the w gene controlling white immature fruit color in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 2016, 129, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Gur, A.; Tzuri, G.; Meir, A.; Saar, U.; Portnoy, V.; Katzir, N.; Schaffer, A.A.; Li, L.; Burger, J.; Tadmor, Y. Genome-wide linkage disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci. Rep. 2017, 7, 9770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ding, Z.; Liu, J.; Qiu, B.; Gao, P. QTL mapping of pericarp and fruit-related traits in melon (Cucumis melo L.) using SNP-derived CAPS markers. Sci. Hortic. 2020, 265, 109243. [Google Scholar] [CrossRef]
- Amanullah, S.; Gao, P.; Osae, B.A.; Saroj, A.; Yang, T.; Liu, S.; Weng, Y.; Luan, F. Genetic linkage mapping and QTLs identification for morphology and fruit quality related traits of melon by SNP based CAPS markers. Sci. Hortic. 2021, 278, 109849. [Google Scholar] [CrossRef]
- Pereira, L.; Ruggieri, V.; Pérez, S.; Alexiou, K.G.; Fernández, M.; Jahrmann, T.; Pujol, M.; Garcia-Mas, J. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biol. 2018, 18, 324. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Liu, S.; Wang, Z.; Shao, R.; Ye, J.; Yan, W.; Lv, H.; Hasi, A.; Che, G. Genome-wide identification of the SUN gene family in melon (Cucumis melo) and functional characterization of Two CmSUN genes in regulating fruit shape variation. Int. J. Mol. Sci. 2022, 23, 16047. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dai, D.Y.; Wu, X.; Sheng, Y.Y.; Ji, P.; Li, D.D.; Zhang, F.; Wang, D. Genes regulating the ABORTED MICROSPORES (AMS)-mediated male sterility networks in melon (Cucumis melo L.). Hortic. Sci. Technol. 2021, 39, 645–659. [Google Scholar] [CrossRef]
- Galpaz, N.; Gonda, I.; Shem-Tov, D.; Barad, O.; Tzuri, G.; Lev, S.; Lev, S.; Fei, Z.; Xu, Y.; Mao, L.; et al. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J. 2018, 94, 169–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yi, H.; Wu, M.; Zhang, Y.; Zhang, X.; Li, M.; Wang, G. Mapping the flavor contributing traits on” Fengwei melon”(Cucumis melo L.) chromosomes using parent resequencing and super bulked-segregant analysis. PLoS ONE 2016, 11, e0148150. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Shi, X.; Chen, X.; Zheng, J.; Zhang, A.; Wang, H.; Fu, Q. Fine-mapping and identification of a candidate gene controlling seed coat color in melon (Cucumis melo L. var. chinensis Pangalo). Theor. Appl. Genet. 2022, 135, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Burger, Y.; Paris, H.; Cohen, R.; Katzir, N.; Tadmor, Y.; Lewinsohn, E.; Schaffer, A.A. Genetic diversity of Cucumis melo. Hortic. Rev. Am. Soc. Hortic. Sci. 2009, 36, 165–198. [Google Scholar] [CrossRef]
- Nunez-Palenius, H.G.; Gomez-Lim, M.; Ochoa-Alejo, N.; Grumet, R.; Lester, G.; Cantliffe, D.J. Melon fruits: Genetic diversity, physiology, and biotechnology features. Crit. Rev. Biotechnol. 2008, 28, 13–55. [Google Scholar] [CrossRef]
- Diaz, A.; Fergany, M.; Formisano, G.; Ziarsolo, P.; Blanca, J.; Fei, Z.; Staub, J.E.; Zalapa, J.E.; Cuevas, H.E.; Dace, G.; et al. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 2011, 11, 111–125. [Google Scholar] [CrossRef]
- Hughes, M.B. The inheritance of two characters of Cucumis melo and their interrelationship. Proc. Am. Soc. Hortic. Sci. 1948, 52, 399–402. [Google Scholar]
- Clayberg, C.D. Interaction and linkage test of flesh colour genes in Cucumis melo L. Cucurbit Genet. Coop. 1992, 15, 53. [Google Scholar]
- Tzuri, G.; Zhou, X.; Chayut, N.; Yuan, H.; Portnoy, V.; Meir, A.; Sa’ar, U.; Baumkoler, F.; Mazourek, M.; Lewinsohn, E.; et al. A ‘golden’SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 2015, 82, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Perin, C.; Hagen, L.S.; Giovinazzo, N.; Besombes, D.; Dogimont, C.; Pitrat, M. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol. Genet. Genom. 2002, 266, 933–941. [Google Scholar] [CrossRef]
- Oren, E.; Tzuri, G.; Dafna, A.; Meir, A.; Kumar, R.; Katzir, N.; Elkind, Y.; Freilich, S.; Schaffer, A.A.; Tadmor, Y.; et al. High-density NGS-based map construction and genetic dissection of fruit shape and rind netting in Cucumis melo. Theor. Appl. Genet. 2020, 133, 1927–1945. [Google Scholar] [CrossRef] [PubMed]
- Keren-Keiserman, A.; Tanami, Z.; Shoseyov, O.; Ginzberg, I. Differing rind characteristics of developing fruits of smooth and netted melons (Cucumis melo). J. Hortic. Sci. Biotechnol. 2004, 79, 107–113. [Google Scholar] [CrossRef]
- Perpiñá, G.; Esteras, C.; Gibon, Y.; Monforte, A.J.; Picó, B. A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol. 2016, 16, 154. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Li, Q.; Cao, L.; Du, X.; Qiang, J.; Hou, J.; Li, X.; Zhu, H.; Yang, S.; Liu, D.; et al. Natural allelic variation in the EamA-like transporter, CmSN, is associated with fruit skin netting in melon. Theor. Appl. Genet. 2023, 136, 192. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Production of Melons. 2019. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 May 2023).
- Rad, M.N.; Allahdoo, M.; Fanaei, H.R. Study of some yield traits relationship in melon (Cucumis melo L.) germplasm gene bank of Iran by correlation and factor analysis. Trakia J. Sci. 2010, 8, 27–32. [Google Scholar]
- Goldman, A. Melons for the passionate Grower, Artisan, New York Conditions. Mus. Kem. Üniv. Tar. Bili. Der. 2002, 27, 309–317. [Google Scholar]
- Amanullah, S.; Osae, B.A.; Yang, T.; Abbas, F.; Liu, S.; Liu, H.; Wang, X.; Gao, P.; Luan, F. Mapping of genetic loci controlling fruit linked morphological traits of melon using developed CAPS markers. Mol. Biol. Rep. 2022, 49, 5459–5472. [Google Scholar] [CrossRef] [PubMed]
- Lian, Q.; Fu, Q.; Xu, Y.; Hu, Z.; Zheng, J.; Zhang, A.; He, Y.; Wang, C.; Xu, C.; Chen, B.; et al. QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps. BMC Plant Biol. 2021, 21, 126. [Google Scholar] [CrossRef] [PubMed]
- Khalid, W.; Ikram, A.; Rehan, M.; Afzal, F.A.; Ambreen, S.; Ahmad, M.; Aziz, A.; Sadiq, A. Chemical composition and health benefits of melon seed: A review. Pak. J. Agric. Res. 2021, 34, 309–317. [Google Scholar] [CrossRef]
- Malencic, D.; Cvejic, J.; Miladinovic, J. Polyphenol content and antioxidant properties of colored soybean seeds from central Europe. J. Med. Food 2012, 15, 89–95. [Google Scholar] [CrossRef]
- Zeb, A. Phenolic profile and antioxidant activity of melon (Cucumis melo L.) seeds from Pakistan. Foods 2016, 5, 67. [Google Scholar] [CrossRef] [PubMed]
- De Souza, F.D.; Marcos-Filho, J. The seed coat as a modulator of seed-environment relationships in Fabaceae. Rev. Brasi. Bot. 2001, 4, 365–375. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C.; Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 2000, 15, 139–152. [Google Scholar] [CrossRef]
- Abdullah, W.D.; Powell, A.A.; Matthews, S. Association of differences in seed vigour in long bean with testa colour and imbibition damage. J. Agric. Sci. 1991, 116, 259–264. [Google Scholar] [CrossRef]
- Zhang, K.X.; Dai, D.Y.; Wang, H.N.; Yu, M.Y.; Sheng, Y.Y. Genetic and QTL analysis of seed traits in melon (Cucumis melo L.). Acta Agric. Zhejiang 2018, 30, 1496–1503. [Google Scholar]
- Li, J.F.; Wang, L.; Dai, D.Y.; Tian, L.M.; Sheng, Y.Y. Construction of preliminary QTL mapping of seed related traits based on SLAF linkage map of muskmelon. In Proceedings of the 8th International Horticulture Research Conference, Zoom Webinar. Nanjing, China, 20–22 July 2021. [Google Scholar]
- Gu, Y.; Li, W.; Jiang, H.; Wang, Y.; Gao, H.; Liu, M.; Chen, Q.; Lai, Y.; He, C. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J. Exp. Bot. 2017, 68, 2717–2729. [Google Scholar] [CrossRef] [PubMed]
- Smitchger, J.; Weeden, N.F. The ideotype for seed size: A model examining the relationship between seed size and actual yield in pea. Int. J. Agron. 2018, 2018, 9658707. [Google Scholar] [CrossRef]
- Ruggieri, V.; Alexiou, K.G.; Morata, J.; Argyris, J.; Pujol, M.; Yano, R.; Nonaka, S.; Ezura, H.; Latrasse, D.; Boualem, A.; et al. An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Sci. Rep. 2018, 8, 8088. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Li, M.; Yang, Y.; Li, Z.; Xu, Y.; Wang, H.; Wang, D.; Zhang, Y.; Wang, H.; et al. Molecular mapping for fruit-related traits, and joint identification of candidate genes and selective sweeps for seed size in melon. Genomics 2022, 114, 110306. [Google Scholar] [CrossRef]
- Jiao, S.Q. QTL Analysis of Fruit and Seed Related Traits in Melon; Northeast Agricultural University: Harbin, China, 2017; pp. 4–25. [Google Scholar]
- Ye, W.Z.; Liu, S.; Ma, H.Y.; Liu, H.Y.; Li, G.Y.; Luan, F.S. QTL analysis on related seed traits in melon based on CAPS markers. North Hortic. 2017, 12, 119–128. [Google Scholar] [CrossRef]
- Burger, Y.; Saar, U.; Katzir, N.; Paris, H.S.; Yeselson, Y.; Levin, I.; Schaffer, A.A. A single recessive gene for sucrose accumulation in Cucumis melo fruit. J. Am. Soc. Hortic. Sci. 2002, 127, 938–943. [Google Scholar] [CrossRef]
- Shin, A.Y.; Kim, Y.M.; Koo, N.; Lee, S.M.; Nahm, S.; Kwon, S.Y. Transcriptome analysis of the oriental melon (Cucumis melo L. var. makuwa) during fruit development. PeerJ 2017, 5, e2834. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wen, S.; Xiao, S.; Lu, B.; Ma, M.; Bie, Z. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. J. Exp. Bot. 2018, 69, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Aubert, C.; Bourger, N. Investigation of volatiles in Charentais cantaloupe melons (Cucumis melo Var. cantalupensis). Characterization of aroma constituents in some cultivars. J. Agric. Food Chem. 2004, 52, 4338–4344. [Google Scholar] [CrossRef] [PubMed]
- Allwood, J.W.; Cheung, W.; Xu, Y.; Mumm, R.; De Vos, R.C.; Deborde, C.; Biais, B.; Maucourt, M.; Berger, Y.; Schaffer, A.A.; et al. Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry 2014, 99, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, C.; Cao, S.; Wang, X.; Qi, H. The effect of CmLOXs on the production of volatile organic compounds in four aroma types of melon (Cucumis melo). PLoS ONE 2015, 10, e0143567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jin, Y.; Liu, J.; Tang, Y.; Cao, S.; Qi, H. The phylogeny and expression profiles of the lipoxygenase (LOX) family genes in the melon (Cucumis melo L.) genome. Sci. Hortic. 2014, 170, 94–102. [Google Scholar] [CrossRef]
- Mayobre, C.; Pereira, L.; Eltahiri, A.; Bar, E.; Lewinsohn, E.; Garcia-Mas, J.; Pujol, M. Genetic dissection of aroma biosynthesis in melon and its relationship with climacteric ripening. Food Chem. 2021, 353, 129484. [Google Scholar] [CrossRef] [PubMed]
- Perpiñá, G.; Roselló, S.; Esteras, C.; Beltrán, J.; Monforte, A.J.; Cebolla-Cornejo, J.; Picó, B. Analysis of aroma-related volatile compounds affected by ‘Ginsen Makuwa’ genomic regions introgressed in ‘Vedrantais’ melon background. Sci. Hortic. 2021, 276, 109664. [Google Scholar] [CrossRef]
- Choudhary, M.; Wani, S.H.; Kumar, P.; Bagaria, P.K.; Rakshit, S.; Roorkiwal, M.; Varshney, R.K. QTLian breeding for climate resilience in cereals: Progress and prospects. Funct. Integr. Genom. 2019, 19, 685–701. [Google Scholar] [CrossRef]
- Xu, L.; He, Y.; Tang, L.; Xu, Y.; Zhao, G. Genetics, Genomics, and Breeding in Melon. Agronomy 2022, 12, 2891. [Google Scholar] [CrossRef]
Traits | QTL Name | Parents | Generation a | Linkage Group | Markers | Reference |
---|---|---|---|---|---|---|
Fruit shape | fs1.1 | USDA-846-1 × Top Mark | RIL | I | OPAL11-1250 | [19] |
fs1.2 | I | OPP12-564 | ||||
fs2.3 | II | E14M50-159 | ||||
fs6.4 | VI | OPR5-500 | ||||
fs7.5 | VII | OPAD15-830 | ||||
fs11.6 | XI | OPAO7-600 | ||||
fs11.7 | XI | TJ23 | ||||
fslg9.8 | IX | E25M17-165 | ||||
fsqs2.1 | Piel de Sapo × PI124112 | F2 | II | CMPSNP431-AIuICAPS | [12] | |
fsqs8.1 | VIII | GCM241-PSI_25-H03 | ||||
fsqs12.1 | XII | AI_35-A08-CMPSNP361 | ||||
fsh8.1 | PI 414723-S5 × Dulce | RIL | VIII | NA | [20] | |
fsh2.1 | II | NA | ||||
Fruit length | flqs2.1 | Piel de Sapo × PI124112 | F2 | II | CMPSNP431-ECM61 | [12] |
flqs3b.1 | IIIb | ECM205-CMPSNP998 | ||||
flqs6a.1 | VIa | ECM52-CMTCN41 | ||||
flqs8.1 | VIII | GCM241-PSI_25-H03 | ||||
fl2.1 | PI414723-S5 × Dulce | RIL | II | NA | [20] | |
fl8.1 | VIII | NA | ||||
FL1 | PI435288 × C940-fe | F2 | I | CMGAN271-DE1240 | [21] | |
FL2 | II | DE1468-CMN038 | ||||
Fruit weight | fw3.1 | Piel de Sapo × PI161375 | DHL | III | CSAT425B-CM139 | [22] |
fw4.1 | IV | CMAT35-MC256 | ||||
fw5.1 | V | CMTC160-MC264 | ||||
fw12.1 | XII | MC226-MC8 | ||||
Soluble solid content | ssc1.1 | USDA-846-1 × Top Mark | RIL | I | TJ27 | [19] |
ssc2.2 | II | OPAD14-400 | ||||
ssc6.3 | VI | OPAI8-800 | ||||
ssc7.4 | VII | E19M51-302 | ||||
ssc7.4 | VII | E24M48-133 | ||||
ssc8.5 | VIII | OPAY1-831 | ||||
ssc8.6 | VIII | OPAY16-400 | ||||
ssc9.7 | IX | CMATN22 | ||||
ssc10.8 | X | CMGA172 | ||||
Flesh color | flc2.1 | PI414723-S5 × Dulce | RIL | II | NA | [20] |
flc6.1 | VI | NA | ||||
flc8.1 | VIII | NA | ||||
FC1 | PI435288 × C940-fe | F2 | I | CMN238-DM0085 | [21] | |
FC2 | II | CMN04_19-CMMS35_5 | ||||
Percent netting at full slip | pn2.1 | USDA-846-1 × Top Mark | RIL | II | OPAI9-250 | [19] |
pn5.2 | V | CMTCN9 | ||||
pn6.3 | VI | OPO6-1375 | ||||
pn8.4 | VIII | OPAH14-831 | ||||
pn11.5 | XI | CMGA104 | ||||
Net density | ntd2.1 | PI414723-S5 × Dulce | RIL | II | NA | [20] |
ntd 2.2 | II | NA | ||||
ntd 2.3 | II | NA | ||||
ntd 2.4 | II | NA | ||||
ND | PI435288 × C940-fe | F2 | NA | TJ24-SSR02042 | [21] | |
Total carotenoid | car6.1 | PI 414723-S5 × Dulce | RIL | VI | NA | [20] |
car8.1 | VIII | NA | ||||
β-carotene | βcr6.1 | PI414723-S5 × Dulce | RIL | VI | NA | [20] |
βcr2.1 | II | NA | ||||
βcarM.8.1 | Chinese melon line ‘Q 3-2-2′ × Top Mark | F3 | VIII | CMN21_25 | [23] | |
βcarM.91 | IX | Or | ||||
βcarE.6.1 | VI | CMTCN41 | ||||
βcarE.9.1 | IX | Or | ||||
Sugar content | SUCQSC5.1 | Piel de Sapo × Songwhan Charmi | NIL | V | CMPSNP437 | [24] |
Primary branch | Pb1.1 | USDA 846-1 × Top Mark | RIL | I | OPAE3-600 | [25] |
pb1.2 | I | CMGAN25 | ||||
pb2.3 | II | E13M51-284 | ||||
pb8.4 | VIII | OPAL8-400 | ||||
pb10.5 | X | OPAB4-750 | ||||
pb12.6 | XII | CMCTN1 |
Traits | Locus Name | Chr. | Gene ID | Gene Function | Marker Name (Type a) | Primer Sequence (5′-3′) | References |
---|---|---|---|---|---|---|---|
Sex expression | A | NA | CmACS-7 | 1-aminocyclopropane-1-carboxylic acid synthase (ACS) | T1ex (SCAR) EX1_C170T (CAPS) | F: AACGGATGAAGAAGGAAAACGAAG R: ATATTGGGCAGTGTCCACACAAAA F: TTGGCTCTCAAAAAGGGAAA R: CCCTCACAATTTTCCTCCAA | [49] |
Male sterility | NA | 9 | MELO3C021653T1 | Transcription factor ABORTED MICROSPORES isoform X1 | AMS | F: CGCTGGGACTGAGAACAATA R: TAGCCAGTTGGGTTCATTTG | [72] |
Fruit rind color | NA | 4 | (CmMt1) CmAPRR2 MELO3C003375 | Two-component response regulator-like protein APRR2 | (CmAPRR2SNP(G/T)) (KASP) | F: GTTTATTAGGTGGACTGGACCCCAG R: GTTTATTAGGTGGACTGGACCCCAT | [15,64] |
NA | 2 | (CmMt2) MELO3C026282 | Sec14p-like phosphatidylinositol transfer family protein | CmSNP19 (KASP) | F:TCAGCGGCCTCAAATGAAG R: TCAGCGGCCTCAAATGAAA | [15] | |
NA | 8 | MELO3C003097 | SLOW GREEN 1 | NA | NA | [64] | |
Fruit shape | CmFSI8/CmOFP13 | 8 | MELO3C025206 | Transcription repressor, Ovate Family Protein 1 (OFP1) | ID-FS6 (CAPS) | F: CTCGCCCCCACAGTTCTAAA R: TGATAATGTCACACACACGCA | [16] |
ID-FS8 | F: ATGGGGACAAACTCTGAAGACC R: GACGAAGTAGGCATCGTTGGA | ||||||
NA | 6 | MELO3C006884 | Protein IQ-DOMAIN 14-like | CmSUN23-24 | F: ATTTGACAACTCGGCACTTCTG R: TCTAACCAACTTGACCCGACTG | [71] | |
NA | 4 | MELO3C013004 | Protein IQ-DOMAIN 14-like | CmSUN25-26-27c | F: TTTCTTCTCCACTCCCTTGTCG R: ATCGTGGAGTGCTCTGTGCC | [71] | |
Flesh color | gf orange/non orange | 9 | (CmOr) MELO3C005449 | Protein ORANGE-ORANGE, chloroplastic | OR CAPS | F: CTCCTTGGTTTTCTTCATG R: CGACTTCGAATGTTCTCC | [67] |
Wf | 8 | MELO3C003097 | SLOW GREEN 1 | NA | NA | [64] | |
8 | (CmPPR1) MELO3C003069 | Pentatricopeptide repeat-containing family protein | CAPS | F: CTACCTCCGCTTCCATTG R: TCGTCACAAAGTCCCAAAG | [73] | ||
Sweetness | NA | 10 | MELO3C011944T1 | N-acetylglucosaminyl transferase III | SLAF18745 | NA | [74] |
Seed coat color | CmBS-1 | 6 | MELO3C019554 | Homeobox protein | NA | NA | [75] |
Biochemical compound (Thiol acyltransferase) | NA | 1 | (CmThAT1) MELO3C024190 | Acetyl-CoA acetyltransferase | NA | NA | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahwar, D.; Khan, Z.; Park, Y. Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon (Cucumis melo L.): A Review. Int. J. Mol. Sci. 2023, 24, 15490. https://doi.org/10.3390/ijms242015490
Shahwar D, Khan Z, Park Y. Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon (Cucumis melo L.): A Review. International Journal of Molecular Sciences. 2023; 24(20):15490. https://doi.org/10.3390/ijms242015490
Chicago/Turabian StyleShahwar, Durre, Zeba Khan, and Younghoon Park. 2023. "Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon (Cucumis melo L.): A Review" International Journal of Molecular Sciences 24, no. 20: 15490. https://doi.org/10.3390/ijms242015490
APA StyleShahwar, D., Khan, Z., & Park, Y. (2023). Molecular Marker-Assisted Mapping, Candidate Gene Identification, and Breeding in Melon (Cucumis melo L.): A Review. International Journal of Molecular Sciences, 24(20), 15490. https://doi.org/10.3390/ijms242015490