DNA Methylation and Telomeres—Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging
Abstract
:1. Introduction
2. The Role of Epigenetics in the Development of AF
3. Epigenetic Clocks and AF
4. Telomeres and AF
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khraishah, H.; Alahmad, B.; Ostergard, R.L., Jr.; AlAshqar, A.; Albaghdadi, M.; Vellanki, N.; Chowdhury, M.M.; Al-Kindi, S.G.; Zanobetti, A.; Gasparrini, A. Climate change and cardiovascular disease: Implications for global health. Nat. Rev. Cardiol. 2022, 19, 798–812. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.; Tse, H.-F. Management of atrial fibrillation. Lancet 2007, 370, 604–618. [Google Scholar] [CrossRef]
- Satterfield, B.A.; Bhatt, D.L.; Gersh, B.J. Cardiac involvement in the long-term implications of COVID-19. Nat. Rev. Cardiol. 2022, 19, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Tomlin, A.M.; Lloyd, H.S.; Tilyard, M.W. Atrial fibrillation in New Zealand primary care: Prevalence, risk factors for stroke and the management of thromboembolic risk. Eur. J. Prev. Cardiol. 2017, 24, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Naccarelli, G.V.; Varker, H.; Lin, J.; Schulman, K.L. Increasing prevalence of atrial fibrillation and flutter in the United States. Am. J. Cardiol. 2009, 104, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Quality and Outcomes Framework—2009-10, England Level—NHS Digital. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/quality-and-outcomes-framework-achievement-prevalence-and-exceptions-data/quality-and-outcomes-framework-2009-10-england-level (accessed on 12 September 2023).
- Shi, S.; Tang, Y.; Zhao, Q.; Yan, H.; Yu, B.; Zheng, Q.; Li, Y.; Zheng, L.; Yuan, Y.; Zhong, J.; et al. Prevalence and risk of atrial fibrillation in China: A national cross-sectional epidemiological study. Lancet Reg. Health-West. Pac. 2022, 23, 100439. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.; Smeikal, M.; Gisinger, C.; Moertl, D.; Nopp, S.; Gartlehner, G.; Pabinger, I.; Ohrenberger, G.; Ay, C. Epidemiology, risk profile, management, and outcome in geriatric patients with atrial fibrillation in two long-term care hospitals. Sci. Rep. 2022, 12, 18725. [Google Scholar] [CrossRef]
- Elliott, A.D.; Middeldorp, M.E.; Van Gelder, I.C.; Albert, C.M.; Sanders, P. Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 2023, 20, 404–417. [Google Scholar] [CrossRef]
- Choi, S.H.; Yang, P.-S.; Kim, D.; Sung, J.-H.; Jang, E.; Yu, H.T.; Kim, T.-H.; Pak, H.-N.; Lee, M.-H.; Lip, G.Y. Association of obesity with incident atrial fibrillation in Korea and the United Kingdom. Sci. Rep. 2023, 13, 5197. [Google Scholar] [CrossRef]
- Freedman, B.; Hindricks, G.; Banerjee, A.; Baranchuk, A.; Ching, C.K.; Du, X.; Fitzsimons, D.; Healey, J.S.; Ikeda, T.; Lobban, T.C.A.; et al. World Heart Federation Roadmap on Atrial Fibrillation—A 2020 Update. Glob. Heart 2021, 16, 41. [Google Scholar] [CrossRef]
- Kang, S.H. Underweight is a risk factor for atrial fibrillation: A nationwide population-based study. Int. J. Cardiol. 2016, 215, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Nattel, S.; Kalman, J.M.; Sanders, P. Modifiable risk factors and atrial fibrillation. Circulation 2017, 136, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.; Kwan, G.F.; Benjamin, E.J. Global epidemiology of atrial fibrillation. Nat. Rev. Cardiol. 2014, 11, 639–654. [Google Scholar] [CrossRef]
- Siddiqi, H.K.; Vinayagamoorthy, M.; Gencer, B.; Ng, C.; Pester, J.; Cook, N.R.; Lee, I.-M.; Buring, J.; Manson, J.E.; Albert, C.M. Sex Differences in Atrial Fibrillation Risk: The VITAL Rhythm Study. JAMA Cardiol. 2022, 7, 1027–1035. [Google Scholar] [CrossRef]
- Gutierrez-Roelens, I.; Roy, L.D.; Ovaert, C.; Sluysmans, T.; Devriendt, K.; Brunner, H.G.; Vikkula, M. A novel CSX/NKX2-5 mutation causes autosomal-dominant AV block: Are atrial fibrillation and syncopes part of the phenotype? Eur. J. Hum. Genet. 2006, 14, 1313–1316. [Google Scholar] [CrossRef]
- Olesen, M.S.; Nielsen, M.W.; Haunsø, S.; Svendsen, J.H. Atrial fibrillation: The role of common and rare genetic variants. Eur. J. Hum. Genet. 2014, 22, 297–306. [Google Scholar] [CrossRef]
- Olson, T.M.; Alekseev, A.E.; Moreau, C.; Liu, X.K.; Zingman, L.V.; Miki, T.; Seino, S.; Asirvatham, S.J.; Jahangir, A.; Terzic, A. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med. 2007, 4, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Orr, N.; Arnaout, R.; Gula, L.J.; Spears, D.A.; Leong-Sit, P.; Li, Q.; Tarhuni, W.; Reischauer, S.; Chauhan, V.S.; Borkovich, M. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation. Nat. Commun. 2016, 7, 11303. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D. Atrial remodeling and ectopic burden in recreational athletes: Implications for risk of atrial fibrillation. Clin. Cardiol. 2018, 41, 843–848. [Google Scholar] [CrossRef]
- Elliott, A.D.; Linz, D.; Verdicchio, C.V.; Sanders, P. Exercise and atrial fibrillation: Prevention or causation? Heart Lung Circ. 2018, 27, 1078–1085. [Google Scholar] [CrossRef]
- Elliott, A.D.; Maatman, B.; Emery, M.S.; Sanders, P. The role of exercise in atrial fibrillation prevention and promotion: Finding optimal ranges for health. Heart Rhythm. 2017, 14, 1713–1720. [Google Scholar] [CrossRef]
- Kar, S.P.; Quiros, P.M.; Gu, M.; Jiang, T.; Mitchell, J.; Langdon, R.; Iyer, V.; Barcena, C.; Vijayabaskar, M.S.; Fabre, M.A.; et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 2022, 54, 1155–1166. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, J.H.; Lim, D.S.; Shim, W.J.; Ro, Y.M.; Park, G.H.; Becker, K.G.; Cho-Chung, Y.S.; Kim, M. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp. Mol. Med. 2003, 35, 336–349. [Google Scholar] [CrossRef]
- Manoharan, A.; Sambandam, R.; Ballambattu, V.B. Genetics of atrial fibrillation—An update of recent findings. Mol. Biol. Rep. 2022, 49, 8121–8129. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y. Genome and atrial fibrillation. J. Arrhythmia 2023, 39, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, D.; Aguilar, M.; Heijman, J.; Guichard, J.-B.; Nattel, S. Postoperative atrial fibrillation: Mechanisms, manifestations and management. Nat. Rev. Cardiol. 2019, 16, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Felisbino, M.B.; McKinsey, T.A. Epigenetics in Cardiac Fibrosis: Emphasis on Inflammation and Fibroblast Activation. JACC Basic. Transl. Sci. 2018, 3, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Galea, R.; Cardillo, M.T.; Caroli, A.; Marini, M.G.; Sonnino, C.; Narducci, M.L.; Biasucci, L.M. Inflammation and C-reactive protein in atrial fibrillation: Cause or effect? Tex. Heart Inst. J. 2014, 41, 461–468. [Google Scholar] [CrossRef]
- Hu, Y.-F.; Chen, Y.-J.; Lin, Y.-J.; Chen, S.-A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 2015, 12, 230–243. [Google Scholar] [CrossRef]
- Peng, X.; Wang, S.; Wang, J.; Ju, W.; Yang, G.; Gu, K.; Liu, H.; Wang, Z.; Jiang, X.; Li, M.; et al. Plasma 8-Hydroxy-2′-Deoxyguanosine, a Potential Valuable Biomarker for Atrial Fibrosis Is Influenced by Polymorphism of DNA Methylation Gene. Circ. J. 2023, 87, 964–972. [Google Scholar] [CrossRef]
- Shao, J.; Liu, J.; Zuo, S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022, 11, 2347. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Yang, J.-J.; Chen, Z.-W.; Xu, S.-S.; Zhou, X.; Zhan, H.-Y.; Shi, K.-H. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 2014, 323, 42–50. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, X.; Hu, J.; Zheng, Y.; Shen, Y. Integration Analysis of Epigenetic-related m 6 A-SNPs Associated with Atrial Fibrillation. Cardiovasc. Innov. Appl. 2023, 8. [Google Scholar] [CrossRef]
- Lozano-Velasco, E.; Franco, D.; Aranega, A.; Daimi, H. Genetics and epigenetics of atrial fibrillation. Int. J. Mol. Sci. 2020, 21, 5717. [Google Scholar] [CrossRef] [PubMed]
- Puertas, R.D.; Arora, R.; Rome, S.; Asatryan, B.; Roderick, H.L.; Chevalier, P. Epigenetics in atrial fibrillation: A reappraisal. Heart Rhythm 2021, 18, 824–832. [Google Scholar] [CrossRef] [PubMed]
- van Ouwerkerk, A.F.; Hall, A.W.; Kadow, Z.A.; Lazarevic, S.; Reyat, J.S.; Tucker, N.R.; Nadadur, R.D.; Bosada, F.M.; Bianchi, V.; Ellinor, P.T. Epigenetic and transcriptional networks underlying atrial fibrillation. Circ. Res. 2020, 127, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.D.; Li, F.; Qian, L.L.; Wang, R.X. Research progress on the roles of epigenetic modifications in atrial fibrillation. Zhonghua Xin Xue Guan Bing Za Zhi 2023, 51, 426–430. [Google Scholar]
- Lyko, F. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 2018, 19, 81–92. [Google Scholar] [CrossRef]
- Hoff, K.; Lemme, M.; Kahlert, A.-K.; Runde, K.; Audain, E.; Schuster, D.; Scheewe, J.; Attmann, T.; Pickardt, T.; Caliebe, A. DNA methylation profiling allows for characterization of atrial and ventricular cardiac tissues and hiPSC-CMs. Clin. Epigenetics 2019, 11, 1–19. [Google Scholar] [CrossRef]
- Madsen, A.; Höppner, G.; Krause, J.; Hirt, M.N.; Laufer, S.D.; Schweizer, M.; Tan, W.L.W.; Mosqueira, D.; Anene-Nzelu, C.G.; Lim, I. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation 2020, 142, 1562–1578. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Yin, X.; Gona, P.; Larson, M.G.; Beiser, A.S.; McManus, D.D.; Newton-Cheh, C.; Lubitz, S.A.; Magnani, J.W.; Ellinor, P.T.; et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet 2015, 386, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Proietti, M.; Romiti, G.F.; Raparelli, V.; Diemberger, I.; Boriani, G.; Dalla Vecchia, L.A.; Bellelli, G.; Marzetti, E.; Lip, G.Y.; Cesari, M. Frailty prevalence and impact on outcomes in patients with atrial fibrillation: A systematic review and meta-analysis of 1,187,000 patients. Ageing Res. Rev. 2022, 79, 101652. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, A.; Bellino, L.; Consoli, D.; Mori, F.; Zaninelli, A.; Baldereschi, M.; Cattarinussi, A.; D’Alfonso, M.G.; Gradia, C.; Sgherzi, B. Prevalence of atrial fibrillation in the Italian elderly population and projections from 2020 to 2060 for Italy and the European Union: The FAI Project. EP Eur. 2019, 21, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.D.; Vittinghoff, E.; Lu, A.T.; Alonso, A.; Wang, B.; Sitlani, C.M.; Mohammadi-Shemirani, P.; Fornage, M.; Kornej, J.; Brody, J.A. Epigenetic age and the risk of incident atrial fibrillation. Circulation 2021, 144, 1899–1911. [Google Scholar] [CrossRef]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Mattei, A.L.; Bailly, N.; Meissner, A. DNA methylation: A historical perspective. Trends Genet. 2022, 38, 676–707. [Google Scholar] [CrossRef]
- Zhao, G.; Zhou, J.; Gao, J.; Liu, Y.; Gu, S.; Zhang, X.; Su, P. Genome-wide DNA methylation analysis in permanent atrial fibrillation. Mol. Med. Rep. 2017, 16, 5505–5514. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Zhang, M.; Zhang, Q.; Wu, L.; Lu, Y.; He, Y.; Jiang, J.; Zhang, X.; Hu, J.; et al. Serum atrial natriuretic peptide, NPPA promoter methylation, and cardiovascular disease: A 10-year follow-up study in Chinese adults. Glob. Heart 2022, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Rizal, A.; Yuniadi, Y. Epigenetic implication in atrial fibrillation: A potential biomarker. J. Lab. Precis. Med. 2019, 4, 33. [Google Scholar] [CrossRef]
- Shen, K.; Tu, T.; Yuan, Z.; Yi, J.; Zhou, Y.; Liao, X.; Liu, Q.; Zhou, X. DNA methylation dysregulations in valvular atrial fibrillation. Clin. Cardiol. 2017, 40, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Sramko, M.; Wichterle, D.; Melenovsky, V.; Franekova, J.; Clemens, M.; Fukunaga, M.; Kautzner, J. Independent effect of atrial fibrillation on natriuretic peptide release. Clin. Res. Cardiol. 2019, 108, 142–149. [Google Scholar] [CrossRef]
- Aguilar, M.; Rose, R.A.; Takawale, A.; Nattel, S.; Reilly, S. New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation. Cardiovasc. Res. 2021, 117, 1645–1661. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.J.; Mackasey, M.; Moghtadaei, M.; Liu, Y.; Kaur, J.; Egom, E.E.; Tuomi, J.M.; Rafferty, S.A.; Kirkby, A.W.; Rose, R.A. NPR-C (Natriuretic Peptide Receptor-C) Modulates the Progression of Angiotensin II–Mediated Atrial Fibrillation and Atrial Remodeling in Mice. Circ. Arrhythmia Electrophysiol. 2019, 12, e006863. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, A.; Urbanek, K.; De Angelis, A.; Sessa, M.; Scavone, C.; Berrino, L.; Rosano, G.M.C.; Capuano, A. Angiotensin II and angiotensin 1–7, which is their role in atrial fibrillation? Heart Fail. Rev. 2020, 25, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.-H.; Chen, Y.-C.; Chung, C.-C.; Lien, G.-S.; Chen, S.-A.; Kuo, C.-C.; Chen, Y.-J. Heart failure and angiotensin II modulate atrial Pitx2c promotor methylation. Clin. Exp. Pharmacol. Physiol. 2013, 40, 379–384. [Google Scholar] [CrossRef]
- Ocaranza, M.P.; Riquelme, J.A.; García, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin–angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020, 17, 116–129. [Google Scholar] [CrossRef]
- Verano-Braga, T.; Martins, A.L.V.; Motta-Santos, D.; Campagnole-Santos, M.J.; Santos, R.A.S. ACE2 in the renin–angiotensin system. Clin. Sci. 2020, 134, 3063–3078. [Google Scholar] [CrossRef]
- Blagosklonny, M.V.; Pardee, A.B. The restriction point of the cell cycle. Cell Cycle 2002, 1, 102–109. [Google Scholar] [CrossRef]
- Yan, C.; Xu, Z.; Huang, W. Cellular Senescence Affects Cardiac Regeneration and Repair in Ischemic Heart Disease. Aging Dis. 2021, 12, 552–569. [Google Scholar] [CrossRef] [PubMed]
- Ueno-Yokohata, H.; Okita, H.; Nakasato, K.; Kiyokawa, N. Hypermethylation of RASSF1A gene in pediatric rhabdoid tumor of the kidney and clear cell sarcoma of the kidney. Pediatr. Blood Cancer 2023, 70, e30058. [Google Scholar] [CrossRef]
- Liu, C.; Bai, J.; Dan, Q.; Yang, X.; Lin, K.; Fu, Z.; Lu, X.; Xie, X.; Liu, J.; Fan, L.; et al. Mitochondrial Dysfunction Contributes to Aging-Related Atrial Fibrillation. Oxid. Med. Cell. Longev. 2021, 2021, 5530293. [Google Scholar] [CrossRef]
- Lin, L.-C.; Tu, B.; Song, K.; Liu, Z.-Y.; Sun, H.; Zhou, Y.; Sha, J.-M.; Yang, J.-J.; Zhang, Y.; Zhao, J.-Y.; et al. Mitochondrial quality control in cardiac fibrosis: Epigenetic mechanisms and therapeutic strategies. Metabolism 2023, 145, 155626. [Google Scholar] [CrossRef]
- Sohns, C.; Marrouche, N.F. Atrial fibrillation and cardiac fibrosis. Eur. Heart J. 2020, 41, 1123–1131. [Google Scholar] [CrossRef]
- Tao, H.; Shi, P.; Zhao, X.-D.; Xuan, H.-Y.; Gong, W.-H.; Ding, X.-S. DNMT1 deregulation of SOCS3 axis drives cardiac fibroblast activation in diabetic cardiac fibrosis. J. Cell. Physiol. 2021, 236, 3481–3494. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-S.; Ding, J.-F.; Shi, P.; Shi, K.-H.; Tao, H. DNMT1-Induced miR-152-3p Suppression Facilitates Cardiac Fibroblast Activation in Cardiac Fibrosis. Cardiovasc. Toxicol. 2021, 21, 984–999. [Google Scholar] [CrossRef]
- Oba, T.; Yasukawa, H.; Hoshijima, M.; Sasaki, K.-I.; Futamata, N.; Fukui, D.; Mawatari, K.; Nagata, T.; Kyogoku, S.; Ohshima, H.; et al. Cardiac-Specific Deletion of SOCS-3 Prevents Development of Left Ventricular Remodeling after Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2012, 59, 838–852. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, H.; Wang, Z.; Li, X.; Wang, P.; Cao, X.; Xu, Z.; Lv, D.; Rong, Y.; Chen, M.; et al. Analysis of miR-203a-3p/SOCS3-mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes. Diabetes Res. Clin. Pract. 2023, 197, 110573. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-D.; Qin, R.-H.; Yang, J.-J.; Xu, S.-S.; Tao, H.; Ding, X.-S.; Shi, K.-H. DNMT3A controls miR-200b in cardiac fibroblast autophagy and cardiac fibrosis. Inflamm. Res. 2018, 67, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Shimojo, N.; Hashizume, R.; Kanayama, K.; Hara, M.; Suzuki, Y.; Nishioka, T.; Hiroe, M.; Yoshida, T.; Imanaka-Yoshida, K. Tenascin-C may accelerate cardiac fibrosis by activating macrophages via the integrin αVβ3/nuclear factor–κB/interleukin-6 axis. Hypertension 2015, 66, 757–766. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Liu, H.; Nam, S.W.; Kunos, G.; Lee, S.S. Mechanisms of TNFα-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNFα and endocannabinoids. J. Hepatol. 2010, 53, 298–306. [Google Scholar] [CrossRef]
- Fischer, M.A.; Chapski, D.J.; Soehalim, E.; Montoya, D.J.; Grogan, T.; Pellegrini, M.; Cai, H.; Shemin, R.J.; Vondriska, T.M. Longitudinal profiling in patients undergoing cardiac surgery reveals postoperative changes in DNA methylation. Clin. Epigenetics 2022, 14, 195. [Google Scholar] [CrossRef]
- Fischer, M.A.; Mahajan, A.; Cabaj, M.; Kimball, T.H.; Morselli, M.; Soehalim, E.; Chapski, D.J.; Montoya, D.; Farrell, C.P.; Scovotti, J.; et al. DNA Methylation-based prediction of post-operative atrial fibrillation. Front. Cardiovasc. Med. 2022, 9, 837725. [Google Scholar] [CrossRef]
- Lin, H.; Yin, X.; Xie, Z.; Lunetta, K.L.; Lubitz, S.A.; Larson, M.G.; Ko, D.; Magnani, J.W.; Mendelson, M.M.; Liu, C.; et al. Methylome-wide association study of atrial fibrillation in Framingham Heart Study. Sci. Rep. 2017, 7, 40377. [Google Scholar] [CrossRef] [PubMed]
- Puertas, R.D.; Meugnier, E.; Romestaing, C.; Rey, C.; Morel, E.; Lachuer, J.; Gadot, N.; Scridon, A.; Julien, C.; Tronc, F.; et al. Atrial fibrillation is associated with hypermethylation in human left atrium, and treatment with decitabine reduces atrial tachyarrhythmias in spontaneously hypertensive rats. Transl. Res. 2017, 184, 57–67.e5. [Google Scholar] [CrossRef]
- Mommersteeg, M.T.; Brown, N.A.; Prall, O.W.; Vries, C.d.G.-D.; Harvey, R.P.; Moorman, A.F.; Christoffels, V.M. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ. Res. 2007, 101, 902–909. [Google Scholar] [CrossRef]
- Bruneau, B.G. The developmental genetics of congenital heart disease. Nature 2008, 451, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Gudbjartsson, D.F.; Arnar, D.O.; Helgadottir, A.; Gretarsdottir, S.; Holm, H.; Sigurdsson, A.; Jonasdottir, A.; Baker, A.; Thorleifsson, G.; Kristjansson, K.; et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 2007, 448, 353–357. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Rice, K.M.; Arking, D.E.; Pfeufer, A.; van Noord, C.; Smith, A.V.; Schnabel, R.B.; Bis, J.C.; Boerwinkle, E.; Sinner, M.F.; et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat. Genet. 2009, 41, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Christophersen, I.E.; METASTROKE Consortium of the ISGC; Rienstra, M.; Roselli, C.; Yin, X.; Geelhoed, B.; Barnard, J.; Lin, H.; Arking, D.E.; Smith, A.V.; et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat. Genet. 2017, 49, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Ellinor, P.T.; Lunetta, K.L.; Albert, C.M.; Glazer, N.L.; Ritchie, M.D.; Smith, A.V.; Arking, D.E.; Müller-Nurasyid, M.; Krijthe, B.P.; Lubitz, S.A.; et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat. Genet. 2012, 44, 670–675. [Google Scholar] [CrossRef]
- Roselli, C.; Chaffin, M.D.; Weng, L.-C.; Aeschbacher, S.; Ahlberg, G.; Albert, C.M.; Almgren, P.; Alonso, A.; Anderson, C.D.; Aragam, K.G.; et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 2018, 50, 1225–1233. [Google Scholar] [CrossRef]
- Sinner, M.F.; Tucker, N.R.; Lunetta, K.L.; Ozaki, K.; Smith, J.D.; Trompet, S.; Bis, J.C.; Lin, H.; Chung, M.K.; Nielsen, J.B.; et al. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation 2014, 130, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Feghaly, J.; Zakka, P.; London, B.; MacRae, C.A.; Refaat, M.M. Genetics of atrial fibrillation. J. Am. Heart Assoc. 2018, 7, e009884. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.A.; Nieto, M. The crux of Cux genes in neuronal function and plasticity. Brain Res. 2019, 1705, 32–42. [Google Scholar] [CrossRef]
- Nader, M. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Eur. J. Pharmacol. 2019, 858, 172491. [Google Scholar] [CrossRef] [PubMed]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.J.; Mather, K.A.; Thalamuthu, A.; Wright, M.J.; Trollor, J.N.; Ames, D.; Brodaty, H.; Schofield, P.R.; Sachdev, P.S.; Kwok, J.B.; et al. Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. Epigenomics 2017, 9, 689–700. [Google Scholar] [CrossRef]
- Ma, B.; Wilker, E.H.; Willis-Owen, S.A.G.; Byun, H.-M.; Wong, K.C.C.; Motta, V.; Baccarelli, A.A.; Schwartz, J.; Cookson, W.O.C.M.; Khabbaz, K.; et al. Predicting DNA methylation level across human tissues. Nucleic Acids Res. 2014, 42, 3515–3528. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303–327. [Google Scholar] [CrossRef]
- Palma-Gudiel, H.; Fañanás, L.; Horvath, S.; Zannas, A.S. Psychosocial stress and epigenetic aging. Int. Rev. Neurobiol. 2020, 150, 107–128. [Google Scholar] [PubMed]
- Lau, C.-H.E.; Robinson, O. DNA methylation age as a biomarker for cancer. Int. J. Cancer 2021, 148, 2652–2663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Deng, S.; Zhang, J.; Xu, W.; Xian, D.; Wang, Y.; Zhao, Q.; Liu, Y.; Zhu, X.; Peng, M.; et al. Causality between heart failure and epigenetic age: A bidirectional Mendelian randomization study. ESC Heart Fail. 2023. [CrossRef] [PubMed]
- Soriano-Tárraga, C.; Giralt-Steinhauer, E.; Mola-Caminal, M.; Vivanco-Hidalgo, R.M.; Ois, A.; Rodríguez-Campello, A.; Cuadrado-Godia, E.; Sayols-Baixeras, S.; Elosua, R.; Roquer, J.; et al. Ischemic stroke patients are biologically older than their chronological age. Aging 2016, 8, 2655–2665. [Google Scholar] [CrossRef]
- Zhou, A.; Wu, Z.; Zaw Phyo, A.Z.; Torres, D.; Vishwanath, S.; Ryan, J. Epigenetic aging as a biomarker of dementia and related outcomes: A systematic review. Epigenomics 2022, 14, 1125–1138. [Google Scholar] [CrossRef]
- Zhu, H.; Belcher, M.; Van Der Harst, P. Healthy aging and disease: Role for telomere biology? Clin. Sci. 2011, 120, 427. [Google Scholar] [CrossRef] [PubMed]
- Rich, T.; Allen, R.L.; Wyllie, A.H. Defying death after DNA damage. Nature 2000, 407, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Skulachev, V.P. The programmed death phenomena, aging, and the Samurai law of biology. Exp. Gerontol. 2001, 36, 995–1024. [Google Scholar] [CrossRef] [PubMed]
- Staerk, L.; Wang, B.; Lunetta, K.L.; Helm, R.H.; Ko, D.; Sherer, J.A.; Ellinor, P.T.; Lubitz, S.A.; McManus, D.D.; Vasan, R.S.; et al. Association between leukocyte telomere length and the risk of incident atrial fibrillation: The Framingham Heart Study. J. Am. Heart Assoc. 2017, 6, e006541. [Google Scholar] [CrossRef]
- Sinner, M.; Kupka, D.; Wilfert, W.; Waldenberger, M.; Peters, A.; Holdt, L.; Kaab, S. Telomere length is associated with atrial fibrillation. Eur. Heart J. 2020, 41, ehaa946.0499. [Google Scholar] [CrossRef]
- Vostatek, R.; Hohensinner, P.; Schmaldienst, S.; Lorenz, M.; Klauser-Braun, R.; Pabinger, I.; Säemann, M.; Ay, C.; Königsbrügge, O. Telomere length is associated with increased risk of cardiovascular events in hemodialysis patients. Hämostaseologie 2023, 43, S7–S8. [Google Scholar]
- Wang, Q.; Liu, Z.; Dong, Y.; Yang, X.; Chen, M.; Gao, Y. Leukocyte Telomere Length Predicts Progression From Paroxysmal to Persistent Atrial Fibrillation in the Long Term After Catheter Ablation. Front. Cardiovasc. Med. 2021, 8, 813390. [Google Scholar] [CrossRef]
- Roberts, J.D.; Dewland, T.A.; Longoria, J.; Fitzpatrick, A.L.; Ziv, E.; Hu, D.; Lin, J.; Glidden, D.V.; Psaty, B.M.; Burchard, E.G.; et al. Telomere length and the risk of atrial fibrillation: Insights into the role of biological versus chronological aging. Circ. Arrhythm. Electrophysiol. 2014, 7, 1026–1032. [Google Scholar] [CrossRef]
- Su, C.; Liu, Z.; Gao, Y.; Liu, Y.; Hu, R.; Liu, J.; Yang, X.; Li, S.; Zhang, Y.; Zuo, K.; et al. Study on the relationship between telomere length changes and recurrence of atrial fibrillation after radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 2019, 30, 1117–1124. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Liu, C.; Liu, Q. Longer Leukocyte Telomere Length Increases the Risk of Atrial Fibrillation: A Mendelian Randomization Study. Aging Dis. 2022, 13, 1311–1313. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.-L.; Hsiao, Y.-W.; Lin, Y.-J.; Lo, L.-W.; Hu, Y.-F.; Chung, F.-P.; Tsai, Y.-N.; Chao, T.-F.; Liao, J.-N.; Lin, C.-Y.; et al. Shorter Leukocyte Telomere Length Is Associated with Atrial Remodeling and Predicts Recurrence in Younger Patients with Paroxysmal Atrial Fibrillation After Radiofrequency Ablation. Circ. J. 2019, 83, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Saito, K.; Tanaka, S.; Horikawa, C.; Saito, A.; Heianza, Y.; Anasako, Y.; Nishigaki, Y.; Yachi, Y.; Iida, K.T.; et al. Alcohol consumption and risk of atrial fibrillation: A meta-analysis. J. Am. Coll. Cardiol. 2011, 57, 427–436. [Google Scholar] [CrossRef]
- Larsson, S.C.; Drca, N.; Wolk, A. Alcohol consumption and risk of atrial fibrillation: A prospective study and dose-response meta-analysis. J. Am. Coll. Cardiol. 2014, 64, 281–289. [Google Scholar] [CrossRef]
- Samokhvalov, A.V.; Irving, H.M.; Rehm, J. Alcohol consumption as a risk factor for atrial fibrillation: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2010, 17, 706–712. [Google Scholar] [CrossRef]
- von Falkenhausen, A.S.; Freudling, R.; Waldenberger, M.; Gieger, C.; Peters, A.; Müller-Nurasyid, M.; Kääb, S.; Sinner, M.F. Common electrocardiogram measures are not associated with telomere length. Aging 2022, 14, 5620–5627. [Google Scholar] [CrossRef]
- Carlquist, J.F.; Knight, S.; Cawthon, R.M.; Le, V.T.; Bunch, T.J.; Horne, B.D.; Rollo, J.S.; Huntinghouse, J.A.; Muhlestein, J.B.; Anderson, J.L. Shortened telomere length is associated with paroxysmal atrial fibrillation among cardiovascular patients enrolled in the Intermountain Heart Collaborative Study. Heart Rhythm 2016, 13, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gao, Y.; Zhao, L.; Hu, R.; Yang, X.; Liu, Y. Shortened leukocyte telomere length as a potential biomarker for predicting the progression of atrial fibrillation from paroxysm to persistence in the short-term. Medicine 2021, 100, e26020. [Google Scholar] [CrossRef] [PubMed]
- Siland, J.E.; Geelhoed, B.; van Gelder, I.C.; van der Harst, P.; Rienstra, M. Telomere length and incident atrial fibrillation—Data of the PREVEND cohort. PLoS ONE 2017, 12, e0171545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Fan, C.; Gong, M.; Liang, X.; Zhang, W.; Li, G.; Tse, G.; Liu, T. Leucocyte telomere length and paroxysmal atrial fibrillation: A prospective cohort study and systematic review with meta-analysis. J. Clin. Lab. Anal. 2018, 32, e22599. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, N.; Wang, Y.; Wang, F.; Li, G.; Tse, G.; Liu, T. Association between leucocyte telomere length and the risk of atrial fibrillation: An updated systematic review and meta-analysis. Ageing Res. Rev. 2022, 81, 101707. [Google Scholar] [CrossRef]
- Sha, Z.; Hou, T.; Zhou, T.; Dai, Y.; Bao, Y.; Jin, Q.; Ye, J.; Lu, Y.; Wu, L. Causal relationship between atrial fibrillation and leukocyte telomere length: A two sample, bidirectional Mendelian randomization study. Front. Cardiovasc. Med. 2023, 10, 1093255. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Kirkwood, G.; Dibb, K.; Garratt, C.J. Comparison of atrial fibrillation in the young versus that in the elderly: A review. Cardiol. Res. Pract. 2013, 2013, 976976. [Google Scholar] [CrossRef] [PubMed]
- Roake, C.M.; Artandi, S.E. Regulation of human telomerase in homeostasis and disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 384–397. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzeczka, A.; Graczyk, S.; Kordowitzki, P. DNA Methylation and Telomeres—Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging. Int. J. Mol. Sci. 2023, 24, 15699. https://doi.org/10.3390/ijms242115699
Grzeczka A, Graczyk S, Kordowitzki P. DNA Methylation and Telomeres—Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging. International Journal of Molecular Sciences. 2023; 24(21):15699. https://doi.org/10.3390/ijms242115699
Chicago/Turabian StyleGrzeczka, Arkadiusz, Szymon Graczyk, and Pawel Kordowitzki. 2023. "DNA Methylation and Telomeres—Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging" International Journal of Molecular Sciences 24, no. 21: 15699. https://doi.org/10.3390/ijms242115699
APA StyleGrzeczka, A., Graczyk, S., & Kordowitzki, P. (2023). DNA Methylation and Telomeres—Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging. International Journal of Molecular Sciences, 24(21), 15699. https://doi.org/10.3390/ijms242115699