Top–Down Proteomics of Human Saliva, Analyzed with Logistic Regression and Machine Learning Methods, Reveal Molecular Signatures of Ovarian Cancer
Abstract
:1. Introduction
2. Results
2.1. Proteome Profiling of Saliva Samples
2.2. Ionic Species Differentially Expressed in the Training Set
2.3. Ionic Species Differentially Expressed in the Testing Set
2.4. Logistic Regression (LR)
2.5. Machine Learning (ML)
3. Discussion
4. Materials and Methods
4.1. Recruitment and Participation of Human Subjects
- Women diagnosed with epithelial OC potentially undergoing radical surgery and who had not received previous chemotherapeutic or anti-hormonal treatments in the last four weeks;
- Women diagnosed with BC subjected to radical surgery and who had not yet started systemic treatments for the pathology.
4.2. Preparation of Training and Testing Sets
4.3. Collection of Saliva Samples
4.4. Surface-Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometry (SELDI-TOF-MS) Protein Profiling
4.5. Data Acquisition and Analysis
4.6. Logistic Regression (LR)
4.7. Variable Selection (VS) for Machine Learning (ML) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ovarian Cancer—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/ovary.html (accessed on 29 August 2023).
- Muinao, T.; Deka Boruah, H.P.; Pal, M. Diagnostic and Prognostic Biomarkers in Ovarian Cancer and the Potential Roles of Cancer Stem Cells–An Updated Review. Exp. Cell Res. 2018, 362, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Köbel, M.; Kalloger, S.E.; Boyd, N.; McKinney, S.; Mehl, E.; Palmer, C.; Leung, S.; Bowen, N.J.; Ionescu, D.N.; Rajput, A.; et al. Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies. PLoS Med. 2008, 5, 1749–1760. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, E. Ovarian Cancer Development and Metastasis. Am. J. Pathol. 2010, 177, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Holschneider, C.H.; Berek, J.S.; Chair, V. Ovarian Cancer: Epidemiology, Biology, and Prognostic Factors; John Wiley & Sons, Inc.: New York, NY, USA, 2000; Volume 19. [Google Scholar]
- Bast, R.C.; Han, C.Y.; Lu, Z.; Lu, K.H. Next Steps in the Early Detection of Ovarian Cancer. Commun. Med. 2021, 1, 36. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I.J.; Skates, S.J.; Macdonald, N.; Menon, U.; Rosenthal, A.N.; Davies, A.P.; Woolas, R.; Jeyarajah, A.R.; Sibley, K.; Lowe, D.G.; et al. Screening for ovarian cancer: A pilot randomised controlled trial. Lancet 1999, 353, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Menon, U.; Gentry-Maharaj, A.; Burnell, M.; Singh, N.; Ryan, A.; Karpinskyj, C.; Carlino, G.; Taylor, J.; Massingham, S.K.; Raikou, M.; et al. Ovarian Cancer Population Screening and Mortality after Long-Term Follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A Randomised Controlled Trial. Lancet 2021, 397, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Buys, S.S.; Partridge, E.; Black, A.; Johnson, C.C.; Lamerato, L.; Isaacs, C.; Reding, D.J.; Greenlee, R.T.; Yokochi, L.A.; Kessel, B.; et al. Effect of Screening on Ovarian Cancer Mortality: The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 2011, 305, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Grossman, D.C.; Curry, S.J.; Owens, D.K.; Barry, M.J.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; et al. Screening for Ovarian Cancer US Preventive Services Task Force Recommendation Statement. JAMA J. Am. Med. Assoc. 2018, 319, 588–594. [Google Scholar]
- Kim, B.; Park, Y.; Kim, B.; Ahn, H.J.; Lee, K.A.; Chung, J.E.; Han, S.W. Diagnostic Performance of CA 125, HE4, and Risk of Ovarian Malignancy Algorithm for Ovarian Cancer. J. Clin. Lab. Anal. 2019, 33, e22624. [Google Scholar] [CrossRef]
- Patriotis, C.; Simmons, A.; Lu, K.H.; Bast, R.C.; Skates, S.J. Biomarkers in Cancer Screening and Early Detection; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Zurawski, V.R.; Orjaseter, H.; Andersen, A.; Jellum, E. elevated serum ca 125 levels prior to diagnosis of ovarian neoplasia: Relevance for early detection of ovarian cancer. Int. J. Cancer 1988, 42, 677–680. [Google Scholar] [CrossRef]
- Baron, A.T.; Boardman, C.H.; Lafky, J.M.; Rademaker, A.; Liu, D.; Fishman, D.A.; Podratz, K.C.; Maihle, N.J. Soluble Epidermal Growth Factor Receptor (SEG-FR) and Cancer Antigen 125 (CA125) as Screening and Diagnostic Tests for Epithelial Ovarian Cancer. Cancer Epidemiol. Biomark. Prev. 2005, 14, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Longo, D.L. Personalized Medicine for Primary Treatment of Serous Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2471–2474. [Google Scholar] [CrossRef] [PubMed]
- Drescher, C.W.; Anderson, G.L. The yet Unrealized Promise of Ovarian Cancer Screening. JAMA Oncol. 2018, 4, 456–457. [Google Scholar] [CrossRef] [PubMed]
- Menon, U.; Karpinskyj, C.; Gentry-Maharaj, A. Ovarian Cancer Prevention and Screening. Obstet. Gynecol. 2018, 131, 909–927. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I.; Menon, U. The Sine Qua Non of Discovering Novel Biomarkers for Early Detection of Ovarian Cancer: Carefully Selected Preclinical Samples. Cancer Prev. Res. 2011, 4, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.S.; Pinsky, P.F.; Cramer, D.W.; Ransohoff, D.F.; Hartge, P.; Pfeiffer, R.M.; Urban, N.; Mor, G.; Bast, R.C.; Moore, L.E.; et al. A Framework for Evaluating Biomarkers for Early Detection: Validation of Biomarker Panels for Ovarian Cancer. Cancer Prev. Res. 2011, 4, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic Potential of Saliva: Current State and Future Applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, S.; Arunkumar, J.S.; Krishna, N.B.; Shakunthala, G.K. Developments in Diagnostic Applications of Saliva in Oral and Systemic Diseases-A Comprehensive Review. J. Sci. Innov. Res. 2014, 3, 372–387. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Majem, B.; Muinelo-Romay, L.; López-López, R.; Suarez-Cunqueiro, M.M. Cancer Salivary Biomarkers for Tumours Distant to the Oral Cavity. Int. J. Mol. Sci. 2016, 17, 1531. [Google Scholar] [CrossRef]
- Tajmul, M.; Parween, F.; Singh, L.; Mathur, S.R.; Sharma, J.B.; Kumar, S.; Sharma, D.N.; Yadav, S. Identification and Validation of Salivary Proteomic Signatures for Non-Invasive Detection of Ovarian Cancer. Int. J. Biol. Macromol. 2018, 108, 503–514. [Google Scholar] [CrossRef]
- Robotti, M.; Scebba, F.; Angeloni, D. Circulating Biomarkers for Cancer Detection: Could Salivary MicroRNAs Be an Opportunity for Ovarian Cancer Diagnostics? Biomedicines 2023, 11, 652. [Google Scholar] [CrossRef] [PubMed]
- Cateni, S.; Colla, V.; Vannucci, M. Variable Selection through Genetic Algorithms for Classification Purposes. In Proceedings of the 10th IASTED International Conference on Artificial Intelligence and Applications, AIA 2010, Innsbruck, Austria, 15–17 February 2010; Acta Press: Calgary, AB, Canada, 2010; pp. 6–11. [Google Scholar]
- Cateni, S.; Colla, V.; Vannucci, M. A Genetic Algorithm-Based Approach for Selecting Input Variables and Setting Relevant Network Parameters of a SOM-Based Classifier. Int. J. Simul. Syst. Sci. Technol. 2011, 12, 30–37. [Google Scholar] [CrossRef]
- Ford, D.; Easton, D.F.; Stratton, M.; Narod, S.; Goldgar, D.; Devilee, P.; Bishop, D.T.; Weber, B.; Lenoir, G.; Chang-Claude, J.; et al. Genetic Heterogeneity and Penetrance Analysis of the BRCA1 and BRCA2 Genes in Breast Cancer Families. Am. J. Hum. Genet. 1998, 62, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W.; et al. A Strong Candidate for the Breast and Ovarian Cancer Susceptibility Gene BRCA1. Science 1994, 266, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wooster, R.; Bignell, G.; Lancaster, J.; Swift, S.; Seal, S.; Mangion, J.; Collins, N.; Gregory, S.; Gumbs, C.; Micklem, G.; et al. Identification of the Breast Cancer Susceptibility Gene BRCA2. Nature 1995, 378, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Cateni, S.; Colla, V. A Hybrid Variable Selection Approach for NN-Based Classification in Industrial Context. In Smart Innovation, Systems and Technologies; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2017; Volume 69, pp. 173–180. [Google Scholar]
- Xiao, C.; Guo, Y.; Zhao, K.; Liu, S.; He, N.; He, Y.; Guo, S.; Chen, Z. Prognostic Value of Machine Learning in Patients with Acute Myocardial Infarction. J. Cardiovasc. Dev. Dis. 2022, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine Learning in Medicine: A Practical Introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Jhee, J.H.; Lee, S.; Park, Y.; Lee, S.E.; Kim, Y.A.; Kang, S.W.; Kwon, J.Y.; Park, J.T. Prediction Model Development of Late-Onset Preeclampsia Using Machine Learning-Based Methods. PLoS ONE 2019, 14, e0221202. [Google Scholar] [CrossRef]
- Song, X.; Liu, X.; Liu, F.; Wang, C. Comparison of Machine Learning and Logistic Regression Models in Predicting Acute Kidney Injury: A Systematic Review and Meta-Analysis. Int. J. Med. Inform. 2021, 151, 104484. [Google Scholar] [CrossRef]
- Abu Alfeilat, H.A.; Hassanat, A.B.A.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.B.S. Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data 2019, 7, 221–248. [Google Scholar] [CrossRef]
- Liew, B.X.W.; Kovacs, F.M.; Rügamer, D.; Royuela, A. Machine Learning versus Logistic Regression for Prognostic Modelling in Individuals with Non-Specific Neck Pain. Eur. Spine J. 2022, 31, 2082–2091. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, X.; Luo, Y.; Ouyang, C.; Yu, Y.; Ma, Y.; Li, H.; Lou, J.; Liu, Y.; Chen, Y.; et al. Comparison of Logistic Regression and Machine Learning Methods for Predicting Postoperative Delirium in Elderly Patients: A Retrospective Study. CNS Neurosci. Ther. 2023, 29, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Sarno, L.; Ricci Lopes, R.; Song, K.; Qiao, C.; Zheng, D.; Hao, X.; Khan, M.; Wang, L.; Li, F.; Xiang, N.; et al. Comparison of Machine Learning and Logistic Regression as Predictive Models for Adverse Maternal and Neonatal Outcomes of Preeclampsia: A Retrospective Study. Front. Cardiovasc. Med. 2022, 9, 959649. [Google Scholar]
- Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A Systematic Review Shows No Performance Benefit of Machine Learning over Logistic Regression for Clinical Prediction Models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.M.; Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Analysis Tools on the ExPASy Server 571 571 From: The Proteomics Protocols Handbook Edited Protein Identification and Analysis Tools on the ExPASy Server; Humana Press: Totowa, NJ, USA, 2019. [Google Scholar]
- He, W.T.; Liang, B.C.; Shi, Z.Y.; Li, X.Y.; Li, C.W.; Shi, X.L. Weak Cation Exchange Magnetic Beads Coupled with Matrix-Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry in Screening Serum Protein Markers in Osteopenia. Springerplus 2016, 5, 679. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, M.C.; Hou, Y.; Harris, N.; Tarelli, E.; Coulton, G.R. Proteomic Analysis of Fast and Slow Muscles from Normal and Kyphoscoliotic Mice Using Protein Arrays, 2-DE and MS. Proteomics 2006, 6, 4646–4661. [Google Scholar] [CrossRef] [PubMed]
- Laheij, A.M.G.A.; Rasch, C.N.; Brandt, B.W.; de Soet, J.J.; Schipper, R.G.; Loof, A.; Silletti, E.; van Loveren, C. Proteins and Peptides in Parotid Saliva of Irradiated Patients Compared to That of Healthy Controls Using SELDI-TOF-MS. BMC Res. Notes 2015, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Loveday, C.; Turnbull, C.; Ramsay, E.; Hughes, D.; Ruark, E.; Frankum, J.R.; Bowden, G.; Kalmyrzaev, B.; Warren-Perry, M.; Snape, K.; et al. Germline Mutations in RAD51D Confer Susceptibility to Ovarian Cancer. Nat. Genet. 2011, 43, 879–882. [Google Scholar] [CrossRef]
- Malle, E.; Sodin-Semrl, S.; Wcislo-Dziadecka, A. Serum Amyloid A: An Acute-Phase Protein Involved in Tumour Pathogenesis. Cell. Mol. Life Sci. 2009, 66, 9–26. [Google Scholar] [CrossRef]
- Podzielinski, I.; Saunders, B.A.; Kimbler, K.D.; Branscum, A.J.; Fung, E.T.; Depriest, P.D.; Van Nagell, J.R.; Ueland, F.R.; Baron, A.T. Apolipoprotein Concentrations Are Elevated in Malignant Ovarian Cyst Fluids Suggesting That Lipoprotein Metabolism Is Dysregulated in Epithelial Ovarian Cancer. Cancer Investig. 2013, 31, 258–272. [Google Scholar] [CrossRef]
- Takahashi, N.; Nishihira, J.; Sato, Y.; Kondo, M.; Ogawa, H.; Ohshima, T.; Une, Y.; Todo, S. Involvement of Macrophage Migration Inhibitory Factor (MIF) in the Mechanism of Tumor Cell Growth. Mol. Med. 1998, 4, 707–714. [Google Scholar] [CrossRef]
- Bando, H.; Matsumoto, G.; Bando, M.; Muta, M.; Ogawa, T.; Funata, N.; Nishihira, J.; Koike, M.; Toi, M. Expression of Macrophage Migration Inhibitory Factor in Human Breast Cancer: Association with Nodal Spread. Jpn. J. Cancer Res. 2002, 93, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Siveen, K.S.; Kuttan, G. Role of Macrophages in Tumour Progression. Immunol. Lett. 2009, 123, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Verjans, E.; Noetzel, E.; Bektas, N.; Schütz, A.K.; Lue, H.; Lennartz, B.; Hartmann, A.; Dahl, E.; Bernhagen, J. Dual Role of Macrophage Migration Inhibitory Factor (MIF) in Human Breast Cancer. BMC Cancer 2009, 9, 230. [Google Scholar] [CrossRef] [PubMed]
- Scebba, F.; Tognotti, D.; Presciuttini, G.; Gabellieri, E.; Cioni, P.; Angeloni, D.; Basso, B.; Morelli, E. A SELDI-TOF Approach to Ecotoxicology: Comparative Profiling of Low Molecular Weight Proteins from a Marine Diatom Exposed to CdSe/ZnS Quantum Dots. Ecotoxicol. Environ. Saf. 2016, 123, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Scebba, F.; Papale, M.; Rocchiccioli, S.; Ucciferri, N.; Bigazzi, F.; Sampietro, T.; Carpeggiani, C.; L’Abbate, A.; Coceani, F.; Angeloni, D. Differential Proteome Profile in Ischemic Heart Disease: Prognostic Value in Chronic Angina versus Myocardial Infarction. A Proof of Concept. Clin. Chim. Acta 2017, 471, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Ley, C.; Martin, R.K.; Pareek, A.; Groll, A.; Seil, R.; Tischer, T. Machine Learning and Conventional Statistics: Making Sense of the Differences. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Cateni, S.; Colla, V.; Vannucci, M. A Fuzzy System for Combining Filter Features Selection Methods. Int. J. Fuzzy Syst. 2017, 19, 1168–1180. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Logic. Comput. (Long Beach Calif) 1988, 21, 83–93. [Google Scholar] [CrossRef]
- Zhang, J.; Xiong, Y.; Min, S. A New Hybrid Filter/Wrapper Algorithm for Feature Selection in Classification. Anal. Chim. Acta 2019, 1080, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Sebban, M.; Nock, R. A Hybrid Filter/Wrapper Approach of Feature Selection Using Information Theory. Pattern Recognit. 2002, 35, 835–846. [Google Scholar] [CrossRef]
- Moslehi, F.; Haeri, A. A Novel Hybrid Wrapper–Filter Approach Based on Genetic Algorithm, Particle Swarm Optimization for Feature Subset Selection. Ambient. Intell. Humaniz. Comput. 2020, 11, 1105–1127. [Google Scholar] [CrossRef]
- Cateni, S.; Colla, V.; Vannucci, M. A Hybrid Feature Selection Method for Classification Purposes. In Proceedings of the Proceedings-UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation, EMS 2014, Pisa, Italy, 21–23 October 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 39–44. [Google Scholar]
- Peng, W.; Chen, J.; Zhou, H. An Implementation of IDE3—Decision Tree Learning Algorithm; Project of Comp 9417: Machine Learning; University of New South Wales: Sydney, NSW, Australia, 2009. [Google Scholar]
- Hssina, B.; Merbouha, A.; Ezzikouri, H.; Erritali, M. A Comparative Study of Decision Tree ID3 and C4.5. Int. J. Adv. Comput. Sci. Appl. 2014, 13, 13–19. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, P. Comparative Study ID3, Cart and C4.5 Decision Tree Algorithm: A Survey. Int. J. Adv. Inf. Sci. Technol. (IJAIST) 2014, 27, 97–103. [Google Scholar]
- Cateni, S.; Colla, V.; Nastasi, G. A Multivariate Fuzzy System Applied for Outliers Detection. J. Intell. Fuzzy Syst. 2013, 24, 889–903. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2009; Volume 27. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Srivastava, S.; Gupta, M.R.; Frigyik, B.A. Bayesian Quadratic Discriminant Analysis. J. Mach. Learn. Res. 2007, 8, 6. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification Algorithms and Regression Trees. In Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984; pp. 246–280. [Google Scholar]
- Cateni, S.; Colla, V.; Vannucci, M. Novel Resampling Method for the Classification of Imbalanced Datasets for Industrial and Other Real-World Problems. In Proceedings of the International Conference on Intelligent Systems Design and Applications, ISDA, Córdoba, Spain, 22–24 November 2011. [Google Scholar]
- Wang, G.; Sarkar, A.; Carbonetto, P.; Stephens, M. A Simple New Approach to Variable Selection in Regression, with Application to Genetic Fine Mapping. J. R. Stat. Soc. Ser. B 2020, 82, 1273–1300. [Google Scholar] [CrossRef]
- Ferrarow, S.; Braga, F.; Lanzoni, M.; Boracchi, P.; Biganzoli, E.M.; Panteghini, M. Serum Human Epididymis Protein 4 vs Carbohydrate Antigen 125 for Ovarian Cancer Diagnosis: A Systematic Review. J. Clin. Pathol. 2013, 66, 273–281. [Google Scholar] [CrossRef]
- Dochez, V.; Caillon, H.; Vaucel, E.; Dimet, J.; Winer, N.; Ducarme, G. Biomarkers and Algorithms for Diagnosis of Ovarian Cancer: CA125, HE4, RMI and ROMA, a Review. J. Ovarian Res. 2019, 12, 28. [Google Scholar] [CrossRef]
- Charkhchi, P.; Cybulski, C.; Gronwald, J.; Wong, F.O.; Narod, S.A.; Akbari, M.R. Ca125 and Ovarian Cancer: A Comprehensive Review. Cancers 2020, 12, 3730. [Google Scholar] [CrossRef]
Peak No. | m/z | N° | m/z | N° | m/z |
---|---|---|---|---|---|
1 | 2.117 | 26 | 5.269 | 52 | 11.514 |
2 | 2.237 | 27 | 5.292 | 53 | 11.602 |
3 | 2.377 | 28 | 5.368 | 54 | 11.767 |
4 | 2.509 | 29 | 5.385 | 55 | 12.193 |
5 | 2.625 | 30 | 5.431 | 56 | 12.345 |
6 | 2.654 | 31 | 5.801 | 57 | 12.713 |
7 | 2.788 | 32 | 6.355 | 58 | 13.211 |
8 | 3.018 | 33 | 6.675 | 59 | 13.319 |
9 | 3.163 | 34 | 6.739 | 60 | 13.485 |
10 | 3.297 | 35 | 6.920 | 61 | 13.865 |
11 | 3.376 | 36 | 7.143 | 62 | 14.342 |
12 | 3.449 | 37 | 7.167 | 63 | 14.725 |
13 | 3.492 | 38 | 7.892 | 64 | 15.164 |
14 | 3.671 | 39 | 8.002 | 65 | 15.927 |
15 | 3.720 | 40 | 8.290 | 66 | 17.555 |
16 | 4.041 | 41 | 8.581 | 67 | 20.966 |
17 | 4.127 | 42 | 9.990 | 68 | 21.692 |
18 | 4.139 | 43 | 10.116 | 69 | 22.395 |
19 | 4.370 | 44 | 10.213 | 70 | 23.578 |
20 | 4.426 | 45 | 10.304 | 71 | 24.346 |
21 | 4.547 | 46 | 10.467 | 72 | 25.333 |
22 | 4.577 | 47 | 10.683 | 73 | 25.709 |
23 | 4.929 | 48 | 10.864 | 74 | 26.056 |
24 | 5.226 | 49 | 11.038 | 75 | 27.855 |
25 | 5.244 | 50 | 11.253 | 76 | 28.169 |
51 | 11.382 | 77 | 28.816 |
Peak No. | OC vs. HS | OC vs. BC | BC vs. HS |
---|---|---|---|
2 | Ns | * OC > BC | Ns |
9 | ** OC > HS | ** OC > BC | Ns |
13 | * OC < HS | Ns | Ns |
16 | Ns | Ns | * BC < HS |
20 | ** OC < HS | Ns | **** BC < HS |
22 | * OC < HS | Ns (OC ≥ BC) | ** BC < HS |
27 | Ns | Ns | * BC < HS |
28 | * OC > HS | ** OC > BC | Ns |
29 | * OC > HS | * OC > BC | Ns |
32 | ** OC < HS | Ns | * BC < HS |
34 | *** OC < HS | Ns | ** BC < HS |
38 | Ns | * OC > BC | Ns |
41 | ** OC > HS | Ns | Ns |
43 | Ns | Ns | * BC < HS |
44 | ** OC < HS | Ns | ** BC < HS |
45 | * OC < HS | Ns | * BC < HS |
46 | ** OC < HS | Ns | ** BC < HS |
47 | * OC < HS | Ns | * BC < HS |
48 | ** OC < HS | * OC < BC | Ns |
56 | * OC < HS | Ns | ** BC < HS |
57 | *** OC < HS | ** OC < BC | Ns |
58 | ** OC < HS | Ns | ** BC < HS |
59 | * OC < HS | Ns | ** BC < HS |
60 | ** OC < HS | Ns | ** BC < HS |
63 | Ns | Ns | * BC < HS |
64 | * OC < HS | Ns | Ns |
67 | *** OC < HS | Ns | ** BC < HS |
68 | ** OC < HS | Ns | * BC < HS |
70 | Ns | Ns | * BC < HS |
71 | ** OC < HS | Ns | ** BC < HS |
72 | *** OC < HS | Ns | ** BC < HS |
73 | Ns | Ns | * BC < HS |
74 | * OC < HS | Ns | ** BC < HS |
Peak No. | OC vs. HS | OC vs. BC | BC vs. HS |
---|---|---|---|
17 | Ns | Ns | * BC < HS |
20 | Ns | Ns | * BC < HS |
22 | Ns (OC < HS) | Ns | Ns |
25 | Ns | Ns | * BC > HS |
30 | Ns | Ns | * BC > HS |
33 | ** OC < HS | Ns | ** BC < HS |
34 | *** OC < HS | Ns | * BC < HS |
38 | Ns | Ns | * BC < HS |
48 | Ns | * OC < BC | Ns |
49 | Ns | * OC < BC | Ns |
54 | Ns | * OC < BC | ** BC > HS |
56 | Ns (OC < HS) | Ns | * BC < HS |
58 | * OC < HS | Ns | **** BC < HS |
59 | * OC < HS | Ns | **** BC < HS |
60 | * OC < HS | Ns | * BC < HS |
63 | * OC > HS | Ns | Ns |
65 | Ns | ** OC < BC | Ns |
66 | Ns | ** OC < BC | Ns |
Classifier | Index | VS Approach | |||
---|---|---|---|---|---|
Filter | Wrapper | Embedded | Hybrid (Filter/Wrapper) | ||
Bayes | BCR/devStd Sensitivity Specificity AUC | 0.64/0.06 0.85 0.42 0.65 | 0.54/0.08 0.36 0.72 0.51 | 0.57/0.08 0.42 0.68 0.72 | 0.54/0.04 0.95 0.12 0.55 |
SVM | BCR/devStd Sensitivity Specificity AUC | 0.59/0.05 0.95 0.22 0.69 | 0.60/0.07 0.95 0.26 0.69 | 0.55/0.06 0.89 0.21 0.77 | 0.59/0.03 0.98 0.04 0.62 |
DA | BCR/devStd Sensitivity Specificity AUC | 0.61/0.07 0.91 0.31 0.68 | 0.51/0.03 0.96 0.06 0.63 | 0.58/0.07 0.89 0.26 0.78 | 0.60/0.06 0.93 0.27 0.68 |
DT | BCR/devStd Sensitivity Specificity AUC | 0.62/0.08 0.78 0.45 0.67 | 0.65/0.06 0.79 0.51 0.62 | 0.74/0.08 0.85 0.63 0.72 | 0.59/0.08 0.78 0.39 0.68 |
Classifier | Index | VS Approach | |||
---|---|---|---|---|---|
Filter | Wrapper | Embedded | Hybrid (Filter/Wrapper) | ||
Bayes | BCR/devStd Sensitivity Specificity AUC | 0.67/0.08 0.84 0.49 0.70 | 0.51/0.09 0.55 0.47 0.54 | 0.65/0.09 0.61 0.69 0.76 | 0.62/0.10 0.83 0.42 0.61 |
SVM | BCR/devStd Sensitivity Specificity AUC | 0.71/0.09 0.82 0.60 0.75 | 0.59/0.07 0.57 0.60 0.52 | 0.69/0.08 0.75 0.63 0.81 | 0.63/0.08 0.80 0.46 0.72 |
DA | BCR/devStd Sensitivity Specificity AUC | 0.68/0.08 0.80 0.56 0.76 | 0.66/0.08 0.56 0.75 0.54 | 0.69/0.08 0.76 0.62 0.86 | 0.64/0.09 0.80 0.47 0.77 |
DT | BCR/devStd Sensitivity Specificity AUC | 0.65/0.10 0.65 0.65 0.70 | 0.62/0.10 0.62 0.62 0.65 | 0.73/0.07 0.73 0.73 0.77 | 0.64/0.08 0.61 0.67 0.65 |
Classifier | Index | VS approach | |||
---|---|---|---|---|---|
Filter | Wrapper | Embedded | Hybrid (Filter/Wrapper) | ||
Bayes | BCR/devStd Sensitivity Specificity AUC | 0.65/0.07 0.46 0.83 0.78 | 0.61/0.08 0.44 0.78 0.50 | 0.66/0.08 0.49 0.83 0.66 | 0.59/0.07 0.24 0.94 0.75 |
SVM | BCR/devStd Sensitivity Specificity AUC | 0.66/0.08 0.59 0.74 0.82 | 0.53/0.08 0.52 0.54 0.58 | 0.76/0.07 0.71 0.80 0.70 | 0.65/0.08 0.55 0.76 0.77 |
DA | BCR/devStd Sensitivity Specificity AUC | 0.66/0.09 0.56 0.77 0.80 | 0.50/0.09 0.46 0.53 0.71 | 0.70/0.09 0.60 0.79 0.68 | 0.63/0.09 0.52 0.74 0.77 |
DT | BCR/devStd Sensitivity Specificity AUC | 0.70/0.10 0.67 0.72 0.69 | 0.78/0.09 0.75 0.81 0.62 | 0.79/0.07 0.79 0.78 0.70 | 0.65/0.09 0.63 0.67 0.65 |
Classifier | HS/OC + BC | HS/OC | HS/BC | |
---|---|---|---|---|
Bayes | BCR DevSt Sens. Spec. AUC | 0.61 0.07 0.56 0.66 0.65 | 0.56 0.08 0.51 0.61 0.63 | 0.60 0.08 0.50 0.67 0.57 |
SVM | BCR DevSt Sens. Spec. AUC | 0.63 0.07 0.76 0.50 0.70 | 0.61 0.09 0.58 0.63 0.66 | 0.72 0.07 0.69 0.75 0.76 |
DA | BCR DevSt Sens. Spec. AUC | 0.56 0.08 0.73 0.40 0.62 | 0.50 0.10 0.51 0.49 0.51 | 0.55 0.11 0.57 0.54 0.55 |
DT | BCR DevSt Sens. Spec. AUC | 0.64 0.08 0.80 0.49 0.68 | 0.64 0.1 0.64 0.64 0.69 | 0.71 0.10 0.74 0.67 0.72 |
Dataset | Selected Variables | BCR (Embedded–DT) | BCR (All Variables) | % Gain |
---|---|---|---|---|
OC + BC/HS | 2-3-12-14-16-17-18-19-20-21-22-34-41-46-49-54-68-72 | 0.74 | 0.64 | 13.5% |
OC/HS | 3-7-20-34-40 | 0.73 | 0.64 | 12.3% |
BC/HS | 19-20-21-22-30-34-49-54-59 | 0.79 | 0.71 | 0.10% |
Total Numerosity | Numerosity of the Training Set | Numerosity of the Testing Set | |
---|---|---|---|
Healthy Women (HS) | 48 | 33 | 15 |
Age (range) | 45–73 | 45–73 | 49–73 |
Age (mean) | 61.67 | 60.54 | 62.80 |
Ovarian Cancer (OC) Patients | 50 | 35 | 15 |
Age (range) | 43–84 | 43–84 | 49–80 |
Age (mean) | 62.49 | 62.18 | 62.80 |
Serous | 23 | 7 | |
Other (see Supplementary Table S1) | 12 | 7 | |
Metastasis at diagnosis | 12 | 8 | |
Breast Cancer (BC) Patients | 49 | 34 | 15 |
Age (range) | 34–87 | 34–87 | 46–77 |
Age (mean) | 61.26 | 59.71 | 62.80 |
Ductal | 22 | 9 | |
Lobular | 6 | 3 | |
Other (see Supplementary Table S1) | 5 | 3 | |
Metastasis at diagnosis | 14 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scebba, F.; Salvadori, S.; Cateni, S.; Mantellini, P.; Carozzi, F.; Bisanzi, S.; Sani, C.; Robotti, M.; Barravecchia, I.; Martella, F.; et al. Top–Down Proteomics of Human Saliva, Analyzed with Logistic Regression and Machine Learning Methods, Reveal Molecular Signatures of Ovarian Cancer. Int. J. Mol. Sci. 2023, 24, 15716. https://doi.org/10.3390/ijms242115716
Scebba F, Salvadori S, Cateni S, Mantellini P, Carozzi F, Bisanzi S, Sani C, Robotti M, Barravecchia I, Martella F, et al. Top–Down Proteomics of Human Saliva, Analyzed with Logistic Regression and Machine Learning Methods, Reveal Molecular Signatures of Ovarian Cancer. International Journal of Molecular Sciences. 2023; 24(21):15716. https://doi.org/10.3390/ijms242115716
Chicago/Turabian StyleScebba, Francesca, Stefano Salvadori, Silvia Cateni, Paola Mantellini, Francesca Carozzi, Simonetta Bisanzi, Cristina Sani, Marzia Robotti, Ivana Barravecchia, Francesca Martella, and et al. 2023. "Top–Down Proteomics of Human Saliva, Analyzed with Logistic Regression and Machine Learning Methods, Reveal Molecular Signatures of Ovarian Cancer" International Journal of Molecular Sciences 24, no. 21: 15716. https://doi.org/10.3390/ijms242115716
APA StyleScebba, F., Salvadori, S., Cateni, S., Mantellini, P., Carozzi, F., Bisanzi, S., Sani, C., Robotti, M., Barravecchia, I., Martella, F., Colla, V., & Angeloni, D. (2023). Top–Down Proteomics of Human Saliva, Analyzed with Logistic Regression and Machine Learning Methods, Reveal Molecular Signatures of Ovarian Cancer. International Journal of Molecular Sciences, 24(21), 15716. https://doi.org/10.3390/ijms242115716