Interaction of βL- and γ-Crystallin with Phospholipid Membrane Using Atomic Force Microscopy
Abstract
:1. Introduction
2. Results
2.1. Interaction of βL-Crystallin with Membrane
2.2. Effect of Chol in Membrane-βL-Crystallin Association
2.3. γ-Crystallin Association with Membrane
2.4. Chol Supressess Membrane-γ-Crystallin Association and Membrane Defect Formation
2.5. Mechanical Properties of the Membrane–Crystallin System
2.6. Distribution of βL- and γ-Crystallin in the Absence of Membrane
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. βL-and γ-Crystallin Isolation from Bovine Lens
4.3. Supported Lipid Membrane (SLM) Preparation and Interaction with βL-and γ-Crystallin
4.4. AFM Measurement and Hydrodynamic Radius Estimation
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delaye, M.; Tardieu, A. Short-Range Order of Crystallin Proteins Accounts for Eye Lens Transparency. Nature 1983, 302, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Vendra, V.P.R.; Khan, I.; Chandani, S.; Muniyandi, A.; Balasubramanian, D. Gamma Crystallins of the Human Eye Lens. Biochim. Biophys. Acta BBA-Gen. Subj. 2016, 1860, 333–343. [Google Scholar] [CrossRef]
- Slingsby, C.; Wistow, G.J.; Clark, A.R. Evolution of Crystallins for a Role in the Vertebrate Eye Lens. Protein Sci. Publ. Protein Soc. 2013, 22, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Derham, B.K.; Harding, J.J. Alpha-Crystallin as a Molecular Chaperone. Prog. Retin. Eye Res. 1999, 18, 463–509. [Google Scholar] [CrossRef] [PubMed]
- Hejtmancik, J.F.; Wingfield, P.T.; Sergeev, Y.V. β-Crystallin Association. Exp. Eye Res. 2004, 79, 377–383. [Google Scholar] [CrossRef]
- Lampi, K.J.; Wilmarth, P.A.; Murray, M.R.; David, L.L. Lens β-Crystallins: The Role of Deamidation and Related Modifications in Aging and Cataract. Prog. Biophys. Mol. Biol. 2014, 115, 21–31. [Google Scholar] [CrossRef]
- Liu, B.-F.; Liang, J.J.-N. Protein–Protein Interactions among Human Lens Acidic and Basic β-Crystallins. FEBS Lett. 2007, 581, 3936–3942. [Google Scholar] [CrossRef]
- Cooper, P.G.; Carver, J.A.; Truscott, R.J. 1h-Nmr Spectroscopy of Bovine Lens Beta-Crystallin. the Role of the Beta B2-Crystallin c-Terminal Extension in Aggregation. Eur. J. Biochem. 1993, 213, 321–328. [Google Scholar] [CrossRef]
- Li, M.; Liu, S.; Huang, W.; Zhang, J. Physiological and Pathological Functions of βB2-Crystallins in Multiple Organs: A Systematic Review. Aging 2021, 13, 15674–15687. [Google Scholar] [CrossRef]
- Costello, M.J.; Burette, A.; Weber, M.; Metlapally, S.; Gilliland, K.O.; Fowler, W.C.; Mohamed, A.; Johnsen, S. Electron Tomography of Fiber Cell Cytoplasm and Dense Cores of Multilamellar Bodies from Human Age-Related Nuclear Cataracts. Exp. Eye Res. 2012, 101, 72–81. [Google Scholar] [CrossRef]
- Costello, M.J.; Johnsen, S.; Gilliland, K.O.; Freel, C.D.; Fowler, W.C. Predicted Light Scattering from Particles Observed in Human Age-Related Nuclear Cataracts Using Mie Scattering Theory. Investig. Ophthalmol. Vis. Sci. 2007, 48, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, K.O.; Johnsen, S.; Metlapally, S.; Costello, M.J.; Ramamurthy, B.; Krishna, P.V.; Balasubramanian, D. Mie Light Scattering Calculations for an Indian Age-Related Nuclear Cataract with a High Density of Multilamellar Bodies. Mol. Vis. 2008, 14, 572–582. [Google Scholar]
- Gilliland, K.O.; Freel, C.D.; Lane, C.W.; Fowler, W.C.; Costello, M.J. Multilamellar Bodies as Potential Scattering Particles in Human Age-Related Nuclear Cataracts. Mol. Vis. 2001, 7, 120–130. [Google Scholar] [PubMed]
- Benedek, G.B. Cataract as a Protein Condensation Disease: The Proctor Lecture. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1911–1921. [Google Scholar]
- Sharma, K.K.; Santhoshkumar, P. Lens Aging: Effects of Crystallins. Biochim. Biophys. Acta 2009, 1790, 1095–1108. [Google Scholar] [CrossRef]
- Spector, A.; Garner, M.H.; Garner, W.H.; Roy, D.; Farnsworth, P.; Shyne, S. An Extrinsic Membrane Polypeptide Associated with High-Molecular-Weight Protein Aggregates in Human Cataract. Science 1979, 204, 1323–1326. [Google Scholar] [CrossRef]
- Chandrasekher, G.; Cenedella, R.J. Protein Associated with Human Lens ‘Native’ Membrane during Aging and Cataract Formation. Exp. Eye Res. 1995, 60, 707–717. [Google Scholar] [CrossRef]
- Cenedella, R.J.; Fleschner, C.R. Selective Association of Crystallins with Lens “native” Membrane during Dynamic Cataractogenesis. Curr. Eye Res. 1992, 11, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Bloemendal, H.; Berbers, G.A.; De Jong, W.W.; Ramaekers, F.C.; Vermorken, A.J.; Dunia, I.; Benedetti, E.L. Interaction of Crystallins with the Cytoskeletal-Plasma Membrane Complex of the Bovine Lens. Ciba Found. Symp. 1984, 106, 177–190. [Google Scholar] [CrossRef]
- Friedrich, M.G.; Truscott, R.J.W. Membrane Association of Proteins in the Aging Human Lens: Profound Changes Take Place in the Fifth Decade of Life. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4786–4793. [Google Scholar] [CrossRef]
- Truscott, R.J.W.; Comte-Walters, S.; Ablonczy, Z.; Schwacke, J.H.; Berry, Y.; Korlimbinis, A.; Friedrich, M.G.; Schey, K.L. Tight Binding of Proteins to Membranes from Older Human Cells. Age 2011, 33, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gaus, K.; Lu, Y.; Magenau, A.; Truscott, R.J.W.; Mitchell, T.W. α- and β-Crystallins Modulate the Head Group Order of Human Lens Membranes during Aging. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5162–5167. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, K.; Chaves, J.M.; Srivastava, O.P.; Kirk, M. Multi-Crystallin Complexes Exist in the Water-Soluble High Molecular Weight Protein Fractions of Aging Normal and Cataractous Human Lenses. Exp. Eye Res. 2008, 87, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Harrington, V.; McCall, S.; Huynh, S.; Srivastava, K.; Srivastava, O.P. Crystallins in Water Soluble-High Molecular Weight Protein Fractions and Water Insoluble Protein Fractions in Aging and Cataractous Human Lenses. Mol. Vis. 2004, 10, 476–489. [Google Scholar]
- Harrington, V.; Srivastava, O.P.; Kirk, M. Proteomic Analysis of Water Insoluble Proteins from Normal and Cataractous Human Lenses. Mol. Vis. 2007, 13, 1680–1694. [Google Scholar] [PubMed]
- Ghosh, K.S.; Chauhan, P. Crystallins and Their Complexes. Subcell. Biochem. 2019, 93, 439–460. [Google Scholar] [CrossRef]
- Spector, A. The Search for a Solution to Senile Cataracts. Proctor Lecture. Investig. Ophthalmol. Vis. Sci. 1984, 25, 130–146. [Google Scholar]
- Friedrich, M.G.; Truscott, R.J.W. Large-Scale Binding of α-Crystallin to Cell Membranes of Aged Normal Human Lenses: A Phenomenon That Can Be Induced by Mild Thermal Stress. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5145–5152. [Google Scholar] [CrossRef]
- Fu, S.C.; Su, S.W.; Wagner, B.J.; Hart, R. Characterization of Lens Proteins. IV. Analysis of Soluble High Molecular Weight Protein Aggregates in Human Lenses. Exp. Eye Res. 1984, 38, 485–495. [Google Scholar] [CrossRef]
- Ma, Z.; Hanson, S.R.A.; Lampi, K.J.; David, L.L.; Smith, D.L.; Smith, J.B. Age-Related Changes in Human Lens Crystallins Identified by HPLC and Mass Spectrometry. Exp. Eye Res. 1998, 67, 21–30. [Google Scholar] [CrossRef]
- Srivastava, O.P.; Srivastava, K.; Silney, C. Levels of Crystallin Fragments and Identification of Their Origin in Water Soluble High Molecular Weight (HMW) Proteins of Human Lenses. Curr. Eye Res. 1996, 15, 511–520. [Google Scholar] [CrossRef]
- Timsina, R.; Mainali, L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. Membranes 2021, 11, 447. [Google Scholar] [CrossRef] [PubMed]
- Heys, K.R.; Friedrich, M.G.; Truscott, R.J.W. Presbyopia and Heat: Changes Associated with Aging of the Human Lens Suggest a Functional Role for the Small Heat Shock Protein, Alpha-Crystallin, in Maintaining Lens Flexibility. Aging Cell 2007, 6, 807–815. [Google Scholar] [CrossRef]
- Truscott, R.J.W. Age-Related Nuclear Cataract-Oxidation Is the Key. Exp. Eye Res. 2005, 80, 709–725. [Google Scholar] [CrossRef]
- Khadka, N.K.; Timsina, R.; Mainali, L. An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. Membranes 2022, 12, 522. [Google Scholar] [CrossRef]
- Timsina, R.; Trossi-Torres, G.; O’Dell, M.; Khadka, N.K.; Mainali, L. Cholesterol and Cholesterol Bilayer Domains Inhibit Binding of Alpha-Crystallin to the Membranes Made of the Major Phospholipids of Eye Lens Fiber Cell Plasma Membranes. Exp. Eye Res. 2021, 206, 108544. [Google Scholar] [CrossRef]
- Timsina, R.; Trossi-Torres, G.; Thieme, J.; O’Dell, M.; Khadka, N.K.; Mainali, L. Alpha-Crystallin Association with the Model of Human and Animal Eye Lens-Lipid Membranes Is Modulated by Surface Hydrophobicity of Membranes. Curr. Eye Res. 2022, 47, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Timsina, R.; Khadka, N.K.; Maldonado, D.; Mainali, L. Interaction of Alpha-Crystallin with Four Major Phospholipids of Eye Lens Membranes. Exp. Eye Res. 2021, 202, 108337. [Google Scholar] [CrossRef] [PubMed]
- Timsina, R.; Wellisch, S.; Haemmerle, D.; Mainali, L. Binding of Alpha-Crystallin to Cortical and Nuclear Lens Lipid Membranes Derived from a Single Lens. Int. J. Mol. Sci. 2022, 23, 11295. [Google Scholar] [CrossRef]
- Trossi-Torres, G.; Timsina, R.; Mainali, L. Alpha-Crystallin-Membrane Association Modulated by Phospholipid Acyl Chain Length and Degree of Unsaturation. Membranes 2022, 12, 455. [Google Scholar] [CrossRef] [PubMed]
- Cobb, B.A.; Petrash, J.M. Alpha-Crystallin Chaperone-like Activity and Membrane Binding in Age-Related Cataracts. Biochemistry 2002, 41, 483–490. [Google Scholar] [CrossRef]
- Zhang, W.-Z.; Augusteyn, R. On the Interaction of Alpha-Crystallin with Membranes. Curr. Eye Res. 1994, 13, 225–230. [Google Scholar] [CrossRef]
- Mulders, J.W.; Stokkermans, J.; Leunissen, J.A.; Benedetti, E.L.; Bloemendal, H.; de Jong, W.W. Interaction of Alpha-Crystallin with Lens Plasma Membranes. Affinity for MP26. Eur. J. Biochem. 1985, 152, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Tang, D. Binding Capacity of Alpha-Crystallin to Bovine Lens Lipids. Exp. Eye Res. 1996, 63, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Ifeanyi, F.; Takemoto, L. Interaction of Lens Crystallins with Lipid Vesicles. Exp. Eye Res. 1991, 52, 535–538. [Google Scholar] [CrossRef]
- Hazen, P.; Trossi-Torres, G.; Khadka, N.K.; Timsina, R.; Mainali, L. Binding of βL-Crystallin with Models of Animal and Human Eye Lens-Lipid Membrane. Int. J. Mol. Sci. 2023, 24, 13600. [Google Scholar] [CrossRef]
- Fan, J.; Donovan, A.K.; Ledee, D.R.; Zelenka, P.S.; Fariss, R.N.; Chepelinsky, A.B. γE-Crystallin Recruitment to the Plasma Membrane by Specific Interaction between Lens MIP/Aquaporin-0 and γE-Crystallin. Investig. Ophthalmol. Vis. Sci. 2004, 45, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Fariss, R.N.; Purkiss, A.G.; Slingsby, C.; Sandilands, A.; Quinlan, R.; Wistow, G.; Chepelinsky, A.B. Specific Interaction between Lens MIP/Aquaporin-0 and Two Members of the Gamma-Crystallin Family. Mol. Vis. 2005, 11, 76–87. [Google Scholar] [PubMed]
- Moffat, B.A.; Landman, K.A.; Truscott, R.J.W.; Sweeney, M.H.J.; Pope, J.M. Age-Related Changes in the Kinetics of Water Transport in Normal Human Lenses. Exp. Eye Res. 1999, 69, 663–669. [Google Scholar] [CrossRef]
- Sweeney, M.H.; Truscott, R.J. An Impediment to Glutathione Diffusion in Older Normal Human Lenses: A Possible Precondition for Nuclear Cataract. Exp. Eye Res. 1998, 67, 587–595. [Google Scholar] [CrossRef]
- Subczynski, W.K.; Mainali, L.; Raguz, M.; O’Brien, W.J. Organization of of Lipids in Fiber-Cell Plasma Membranes of the Eye Lens. Exp. Eye Res. 2017, 156, 79–86. [Google Scholar] [CrossRef]
- Grami, V.; Marrero, Y.; Huang, L.; Tang, D.; Yappert, M.C.; Borchman, D. Alpha-Crystallin Binding in Vitro to Lipids from Clear Human Lenses. Exp Eye Res 2005, 81, 138–146. [Google Scholar] [CrossRef]
- Deeley, J.M.; Hankin, J.A.; Friedrich, M.G.; Murphy, R.C.; Truscott, R.J.; Mitchell, T.W.; Blanksby, S.J. Sphingolipid Distribution Changes with Age in the Human Lens. J. Lipid Res. 2010, 51, 2753–2760. [Google Scholar] [CrossRef]
- Mainali, L.; Raguz, M.; O’Brien, W.J.; Subczynski, W.K. Properties of Membranes Derived from the Total Lipids Extracted from the Human Lens Cortex and Nucleus. Biochim. Biophys. Acta-Biomembr. 2013, 1828, 1432–1440. [Google Scholar] [CrossRef]
- Mainali, L.; Raguz, M.; O’Brien, W.J.; Subczynski, W.K. Changes in the Properties and Organization of Human Lens Lipid Membranes Occurring with Age. Curr. Eye Res. 2017, 42, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Deeley, J.M.; Mitchell, T.W.; Wei, X.J.; Korth, J.; Nealon, J.R.; Blanksby, S.J.; Truscott, R.J.W. Human Lens Lipids Differ Markedly from Those of Commonly Used Experimental Animals. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2008, 1781, 288–298. [Google Scholar] [CrossRef]
- Li, L.K.; So, L.; Spector, A. Membrane Cholesterol and Phospholipid in Consecutive Concentric Sections of Human Lenses. J. Lipid Res. 1985, 26, 600–609. [Google Scholar] [CrossRef]
- Li, L.-K.; So, L.; Spector, A. Age-Dependent Changes in the Distribution and Concentration of Human Lens Cholesterol and Phospholipids. Biochim. Biophys. Acta BBA-Lipids Lipid Metab. 1987, 917, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Raguz, M.; Widomska, J.; Dillon, J.; Gaillard, E.R.; Subczynski, W.K. Physical Properties of the Lipid Bilayer Membrane Made of Cortical and Nuclear Bovine Lens Lipids: EPR Spin-Labeling Studies. Biochim. Biophys. Acta 2009, 1788, 2380–2388. [Google Scholar] [CrossRef]
- Mainali, L.; Raguz, M.; O’Brien, W.J.; Subczynski, W.K. Properties of Membranes Derived from the Total Lipids Extracted from Clear and Cataractous Lenses of 61–70-Year-Old Human Donors. Eur. Biophys. J. 2015, 44, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Khadka, N.K.; Mortimer, M.-F.; Marosvari, M.; Timsina, R.; Mainali, L. Membrane Elasticity Modulated by Cholesterol in Model of Porcine Eye Lens-Lipid Membrane. Exp. Eye Res. 2022, 220, 109131. [Google Scholar] [CrossRef]
- Khadka, N.K.; Timsina, R.; Rowe, E.; O’Dell, M.; Mainali, L. Mechanical Properties of the High Cholesterol-Containing Membrane: An AFM Study. Biochim. Biophys. Acta BBA-Biomembr. 2021, 1863, 183625. [Google Scholar] [CrossRef]
- Grosas, A.B.; Carver, J.A. Eye Lens Crystallins: Remarkable Long-Lived Proteins. In Long-Lived Proteins in Human Aging and Disease; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2021; pp. 59–96. ISBN 978-3-527-82675-9. [Google Scholar]
- Jacob, R.F.; Cenedella, R.J.; Mason, R.P. Evidence for Distinct Cholesterol Domains in Fiber Cell Membranes from Cataractous Human Lenses. J. Biol. Chem. 2001, 276, 13573–13578. [Google Scholar] [CrossRef]
- Liu, C.; Pande, J.; Lomakin, A.; Ogun, O.; Benedek, G.B. Aggregation in Aqueous Solutions of Bovine Lens Gamma-Crystallins: Special Role of Gamma(s). Investig. Ophthalmol. Vis. Sci. 1998, 39, 1609–1619. [Google Scholar]
- Norledge, B.V.; Hay, R.E.; Bateman, O.A.; Slingsby, C.; Driessen, H.P.C. Towards a Molecular Understanding of Phase Separation in the Lens: A Comparison of the X-Ray Structures of Two HighTcγ-Crystallins, γE and γF, with Two LowTcγ-Crystallins, γB and γD. Exp. Eye Res. 1997, 65, 609–630. [Google Scholar] [CrossRef]
- Plesnar, E.; Subczynski, W.K.; Pasenkiewicz-Gierula, M. Saturation with Cholesterol Increases Vertical Order and Smoothes the Surface of the Phosphatidylcholine Bilayer: A Molecular Simulation Study. Biochim. Biophys. Acta 2012, 1818, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Stetter, F.W.S.; Hugel, T. The Nanomechanical Properties of Lipid Membranes Are Significantly Influenced by the Presence of Ethanol. Biophys. J. 2013, 104, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.J.; Sahoo, P.K.; Dalzini, A.; Hayati, Z.; Aryal, C.M.; Teng, P.; Cai, J.F.; Gutierrez, H.R.; Song, L.K. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy. J. Phys. Chem. B 2017, 121, 5058–5071. [Google Scholar] [CrossRef] [PubMed]
- Kosinski-Collins, M.S.; King, J. In Vitro Unfolding, Refolding, and Polymerization of Human γD Crystallin, a Protein Involved in Cataract Formation. Protein Sci. 2003, 12, 480–490. [Google Scholar] [CrossRef]
- Michiel, M.; Duprat, E.; Skouri-Panet, F.; Finet, S.; Tardieu, A.; Lampi, K.J. Aggregation of Deamidated Human βB2-Crystallin and Incomplete Rescue by α-Crystallin Chaperone. Exp. Eye Res. 2010, 90, 688–698. [Google Scholar] [CrossRef]
- Moreau, K.L.; King, J.A. Protein Misfolding and Aggregation in Cataract Disease and Prospects for Prevention. Trends Mol. Med. 2012, 18, 273–282. [Google Scholar] [CrossRef]
- Perissinotto, F.; Rondelli, V.; Parisse, P.; Tormena, N.; Zunino, A.; Almásy, L.; Merkel, D.G.; Bottyán, L.; Sajti, S.Z.; Casalis, L. GM1 Ganglioside Role in the Interaction of Alpha-Synuclein with Lipid Membranes: Morphology and Structure. Biophys. Chem. 2019, 255, 106272. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.J.; Dalzini, A.; Khadka, N.K.; Aryal, C.M.; Song, L.K. Lipid Extraction by Alpha-Synuclein Generates Semi-Transmembrane Defects and Lipoprotein Nanoparticles. ACS Omega 2018, 3, 9586–9597. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Nemec, K.N.; Khaled, A.R.; Tatulian, S.A. Transmembrane Pore Formation by the Carboxyl Terminus of Bax Protein. Biochim. Biophys. Acta BBA-Biomembr. 2013, 1828, 732–742. [Google Scholar] [CrossRef]
- Lee, M.-T.; Hung, W.-C.; Chen, F.-Y.; Huang, H.W. Mechanism and Kinetics of Pore Formation in Membranes by Water-Soluble Amphipathic Peptides. Proc. Natl. Acad. Sci. USA 2008, 105, 5087–5092. [Google Scholar] [CrossRef]
- Castellana, E.T.; Cremer, P.S. Solid Supported Lipid Bilayers: From Biophysical Studies to Sensor Design. Surf. Sci. Rep. 2006, 61, 429–444. [Google Scholar] [CrossRef]
- Khadka, N.K.; Teng, P.; Cai, J.F.; Pan, J.J. Modulation of Lipid Membrane Structural and Mechanical Properties by a Peptidomimetic Derived from Reduced Amide Scaffold. Biochim. Biophys. Acta-Biomembr. 2017, 1859, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Garner, M.H.; Roy, D.; Rosenfeld, L.; Garner, W.H.; Spector, A. Biochemical Evidence for Membrane Disintegration in Human Cataracts. Proc. Natl. Acad. Sci. USA 1981, 78, 1892–1895. [Google Scholar] [CrossRef]
- Fernández-Pérez, E.J.; Sepúlveda, F.J.; Peters, C.; Bascuñán, D.; Riffo-Lepe, N.O.; González-Sanmiguel, J.; Sánchez, S.A.; Peoples, R.W.; Vicente, B.; Aguayo, L.G. Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword. Front. Aging Neurosci. 2018, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Semple, S.C.; Chonn, A.; Cullis, P.R. Influence of Cholesterol on the Association of Plasma Proteins with Liposomes. Biochemistry 1996, 35, 2521–2525. [Google Scholar] [CrossRef]
- Slingsby, C.; Driessen, H.P.; Mahadevan, D.; Bax, B.; Blundell, T.L. Evolutionary and Functional Relationships between the Basic and Acidic Beta-Crystallins. Exp. Eye Res. 1988, 46, 375–403. [Google Scholar] [CrossRef]
- Carver, J.A. Probing the Structure and Interactions of Crystallin Proteins by NMR Spectroscopy. Prog. Retin. Eye Res. 1999, 18, 431–462. [Google Scholar] [CrossRef] [PubMed]
- Arsiccio, A.; McCarty, J.; Pisano, R.; Shea, J.-E. Effect of Surfactants on Surface-Induced Denaturation of Proteins: Evidence of an Orientation-Dependent Mechanism. J. Phys. Chem. B 2018, 122, 11390–11399. [Google Scholar] [CrossRef]
- D’Imprima, E.; Floris, D.; Joppe, M.; Sánchez, R.; Grininger, M.; Kühlbrandt, W. Protein Denaturation at the Air-Water Interface and How to Prevent It. eLife 2019, 8, e42747. [Google Scholar] [CrossRef]
- Kopp, M.R.G.; Grigolato, F.; Zürcher, D.; Das, T.K.; Chou, D.; Wuchner, K.; Arosio, P. Surface-Induced Protein Aggregation and Particle Formation in Biologics: Current Understanding of Mechanisms, Detection and Mitigation Strategies. J. Pharm. Sci. 2023, 112, 377–385. [Google Scholar] [CrossRef]
- Raguz, M.; Mainali, L.; Widomska, J.; Subczynski, W.K. Using Spin-Label Electron Paramagnetic Resonance (EPR) to Discriminate and Characterize the Cholesterol Bilayer Domain. Chem. Phys. Lipids 2011, 164, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Bassnett, S.; Shi, Y.; Vrensen, G.F. Biological Glass: Structural Determinants of Eye Lens Transparency. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1250–1264. [Google Scholar] [CrossRef]
- Borchman, D.; Delamere, N.A.; McCauley, L.A.; Paterson, C.A. Studies on the Distribution of Cholesterol, Phospholipid, and Protein in the Human and Bovine Lens. Lens Eye Toxic. Res. 1989, 6, 703–724. [Google Scholar] [PubMed]
- Su, S.-P.; McArthur, J.D.; Friedrich, M.G.; Truscott, R.J.W.; Aquilina, J.A. Understanding the α-Crystallin Cell Membrane Conjunction. Mol. Vis. 2011, 17, 2798–2807. [Google Scholar]
- Tang, D.; Borchman, D.; Schwarz, A.K.; Yappert, M.C.; Vrensen, G.F.J.M.; van Marle, J.; DuPré, D.B. Light Scattering of Human Lens Vesicles in Vitro. Exp. Eye Res. 2003, 76, 605–612. [Google Scholar] [CrossRef]
- Tang, D.; Borchman, D.; Yappert, M.C.; Vrensen, G.F.J.M.; Rasi, V. Influence of Age, Diabetes, and Cataract on Calcium, Lipid-Calcium, and Protein-Calcium Relationships in Human Lenses. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2059–2066. [Google Scholar] [CrossRef]
- Michael, R.; van Marle, J.; Vrensen, G.F.J.M.; van den Berg, T.J.T.P. Changes in the Refractive Index of Lens Fibre Membranes during Maturation—Impact on Lens Transparency. Exp. Eye Res. 2003, 77, 93–99. [Google Scholar] [CrossRef]
- Bettelheim, F.A.; Paunovic, M. Light Scattering of Normal Human Lens I. Application of Random Density and Orientation Fluctuation Theory. Biophys. J. 1979, 26, 85–99. [Google Scholar] [CrossRef]
- Tang, D.; Borchman, D.; Yappert, M.C.; Cenedella, R.J. Influence of Cholesterol on the Interaction of α-Crystallin with Phospholipids. Exp. Eye Res. 1998, 66, 559–567. [Google Scholar] [CrossRef]
- Amra, C.; Grèzes-Besset, C.; Bruel, L. Comparison of Surface and Bulk Scattering in Optical Multilayers. Appl. Opt. 1993, 32, 5492–5503. [Google Scholar] [CrossRef]
- Prieto-Bonete, G.; Perez-Carceles, M.D.; Luna, A. Morphological and Histological Changes in Eye Lens: Possible Application for Estimating Postmortem Interval. Leg. Med. 2015, 17, 437–442. [Google Scholar] [CrossRef]
- Horwitz, J.; Huang, Q.-L.; Ding, L.; Bova, M.P. [30] Lens α-Crystallin: Chaperone-like Properties. In Methods in Enzymology; Molecular Chaperones; Academic Press: Cambridge, MA, USA, 1998; Volume 290, pp. 365–383. [Google Scholar]
- Biswas, A.; Das, K.P. Differential Recognition of Natural and Nonnatural Substrate by Molecular Chaperone Alpha-Crystallin-A Subunit Exchange Study. Biopolymers 2007, 85, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Das, K.P. Role of ATP on the Interaction of Alpha-Crystallin with Its Substrates and Its Implications for the Molecular Chaperone Function. J. Biol. Chem. 2004, 279, 42648–42657. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Springer Protocols Handbooks; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. ISBN 978-1-59259-890-8. [Google Scholar]
- Cafolla, C.; Voïtchovsky, K. Impact of Water on the Lubricating Properties of Hexadecane at the Nanoscale. Nanoscale 2020, 12, 14504–14513. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.-S.; Huefner, N.D.; Chan, W.S.; Dryden, P.; Hagenhoff, B.; Beebe, T.P. Organic and Inorganic Contamination on Commercial AFM Cantilevers. Langmuir 1999, 15, 6522–6526. [Google Scholar] [CrossRef]
- Miller, E.J.; Trewby, W.; Farokh Payam, A.; Piantanida, L.; Cafolla, C.; Voïtchovsky, K. Sub-Nanometer Resolution Imaging with Amplitude-Modulation Atomic Force Microscopy in Liquid. J. Vis. Exp. JoVE 2016, 118, 54924. [Google Scholar] [CrossRef]
- Stark, M.; Möller, C.; Müller, D.J.; Guckenberger, R. From Images to Interactions: High-Resolution Phase Imaging in Tapping-Mode Atomic Force Microscopy. Biophys. J. 2001, 80, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Bloemendal, H. (Ed.) Molecular and Cellular Biology of the Eye Lens; Wiley-Interscience: New York, NY, USA, 1981; p. 469. ISBN 0-471-05171-3. [Google Scholar]
- Bloemendal, H.; de Jong, W.; Jaenicke, R.; Lubsen, N.H.; Slingsby, C.; Tardieu, A. Ageing and Vision: Structure, Stability and Function of Lens Crystallins. Prog. Biophys. Mol. Biol. 2004, 86, 407–485. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadka, N.K.; Hazen, P.; Haemmerle, D.; Mainali, L. Interaction of βL- and γ-Crystallin with Phospholipid Membrane Using Atomic Force Microscopy. Int. J. Mol. Sci. 2023, 24, 15720. https://doi.org/10.3390/ijms242115720
Khadka NK, Hazen P, Haemmerle D, Mainali L. Interaction of βL- and γ-Crystallin with Phospholipid Membrane Using Atomic Force Microscopy. International Journal of Molecular Sciences. 2023; 24(21):15720. https://doi.org/10.3390/ijms242115720
Chicago/Turabian StyleKhadka, Nawal K., Preston Hazen, Dieter Haemmerle, and Laxman Mainali. 2023. "Interaction of βL- and γ-Crystallin with Phospholipid Membrane Using Atomic Force Microscopy" International Journal of Molecular Sciences 24, no. 21: 15720. https://doi.org/10.3390/ijms242115720
APA StyleKhadka, N. K., Hazen, P., Haemmerle, D., & Mainali, L. (2023). Interaction of βL- and γ-Crystallin with Phospholipid Membrane Using Atomic Force Microscopy. International Journal of Molecular Sciences, 24(21), 15720. https://doi.org/10.3390/ijms242115720