Ahf-Caltide, a Novel Polypeptide Derived from Calpastatin, Protects against Oxidative Stress Injury by Stabilizing the Expression of CaV1.2 Calcium Channel
Abstract
:1. Introduction
2. Results
2.1. Protective Effect of Ahf-Caltide on H2O2-Induced Oxidative Stress Injury
2.2. Protective Effects of Ahf-Caltide on Cardiac IR Injury
2.3. Ahf-Caltide Alleviated Oxidative Stress Injury in H9c2 Cells by Inhibiting Protein Degradation
2.4. The Binding Characteristics of CSL to CaV1.2 Were Affected by Oxidative Stress
2.5. CSL54-64 Was the Binding Region of CSL to CaV1.2
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animal Model Preparation
4.3. Cell Culture and OS Model Preparation
4.4. Immunofluorescence
4.5. Cell Viability Assay
4.6. Detection of LDH, MDA and SOD
4.7. Determination of ROS
4.8. Western Blot Assay
4.9. GST Pull-Down Assay
4.10. Molecular Docking
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
[Ca2+] | Ca2+ concentration |
CaM | Calmodulin |
CAST | Calpastatin |
CHX | Cycloheximide |
CSL | CAST domain L |
CSL54-64 | Amino acid (a.a.) residues 54-64 of CSL |
CT | C terminus |
DCFH-DA | 2′,7′-dichlorofluorescin diacetate |
GST | Glutathione S-transferase |
IR | Ischemia-reperfusion |
K-H | Krebs–Henseleit |
LDH | Lactate dehydrogenase |
MDA | Malondialdehyde |
NT | N terminus |
OS | Oxidative stress |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
References
- Chen, C.L.; Zhang, L.; Jin, Z.; Kasumov, T.; Chen, Y.R. Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am. J. Physiol. Cell Physiol. 2022, 322, C12–C23. [Google Scholar] [CrossRef] [PubMed]
- Moens, A.L.; Claeys, M.J.; Timmermans, J.P.; Vrints, C.J. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int. J. Cardiol. 2005, 100, 179–190. [Google Scholar] [PubMed]
- Neri, M.; Fineschi, V.; Di Paolo, M.; Pomara, C.; Riezzo, I.; Turillazzi, E.; Cerretani, D. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vasc. Pharmacol. 2015, 13, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.; Cheng, Y.L.; Cheng, P.W.; Li, C.Y.; Li, C.J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Hori, M.; Nishida, K. Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc. Res. 2009, 81, 457–464. [Google Scholar]
- Shah, K.; Seeley, S.; Schulz, C.; Fisher, J.; Gururaja Rao, S. Calcium Channels in the Heart: Disease States and Drugs. Cells 2022, 11, 943. [Google Scholar] [CrossRef]
- Su, J.; Gao, Q.; Yu, L.; Sun, X.; Feng, R.; Shao, D.; Yuan, Y.; Zhu, Z.; Sun, X.; Kameyama, M.; et al. The LQT-associated calmodulin mutant E141G induces disturbed Ca2+-dependent binding and a flickering gating mode of the CaV1.2 channel. Am. J. Physiol. Cell Physiol. 2020, 318, C991–C1004. [Google Scholar] [CrossRef]
- Hu, X.Q.; Zhang, L. Oxidative regulation of vascular CaV1.2 channels triggers vascular dysfunction in hypertension-related disorders. Antioxidants 2022, 11, 2432. [Google Scholar]
- Minobe, E.; Hao, L.Y.; Saud, Z.A.; Xu, J.J.; Kameyama, A.; Maki, M.; Jewell, K.K.; Parr, T.; Bardsley, R.G.; Kameyama, M. A region of calpastatin domain L that reprimes cardiac L-type Ca2+ channels. Biochem. Biophys. Res. Commun. 2006, 348, 288–294. [Google Scholar] [CrossRef]
- Kameyama, A.; Hao, L.Y.; Takano, E.; Kameyama, M. Characterization and partial purification of the cytoplasmic factor that maintains cardiac Ca2+ channel activity. Pflugers. Arch. 1998, 435, 338–343. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, Y.; Su, J.; Xu, X.; Zhao, Y.; Liu, Y.; Hu, H.; Hao, L. Binding characteristics of calpastatin domain L to NaV1.5 sodium channel and its IQ motif mutants. Biochem. Biophys. Res. Commun. 2022, 627, 39–44. [Google Scholar] [CrossRef]
- Hao, L.Y.; Kameyama, A.; Kuroki, S.; Takano, J.; Takano, E.; Maki, M.; Kameyama, M. Calpastatin domain L is involved in the regulation of L-type Ca2+ channels in guinea pig cardiac myocytes. Biochem. Biophys. Res. Commun. 2000, 279, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.Y.; Kameyama, A.; Kuroki, S.; Nishimura, S.; Kameyama, M. Run-down of L-type Ca2+ channels occurs on the alpha 1 subunit. Biochem. Biophys. Res. Commun. 1998, 247, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.Y.; Kameyama, A.; Kameyama, M. A cytoplasmic factor, calpastatin and ATP together reverse run-down of Ca2+ channel activity in guinea-pig heart. J. Physiol. 1999, 514 Pt 3, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Feng, R.; Hu, H.; Guo, F.; Gao, Q.; Shao, D.; Yin, D.; Wang, H.; Sun, X.; Zhao, M.; et al. The Ca2+-dependent interaction of calpastatin domain L with the C-terminal tail of the CaV1.2 channel. FEBS Lett. 2014, 588, 665–671. [Google Scholar] [CrossRef]
- Minobe, E.; Asmara, H.; Saud, Z.A.; Kameyama, M. Calpastatin domain L is a partial agonist of the calmodulin-binding site for channel activation in CaV1.2 Ca2+ channels. J. Biol. Chem. 2011, 286, 39013–39022. [Google Scholar] [CrossRef]
- Tang, H.; Viola, H.M.; Filipovska, A.; Hool, L.C. CaV1.2 calcium channel is glutathionylated during oxidative stress in guinea pig and ischemic human heart. Free Radic. Biol. Med. 2011, 51, 1501–1511. [Google Scholar] [CrossRef]
- Johnstone, V.P.; Hool, L.C. Glutathionylation of the L-type Ca2+ channel in oxidative stress-induced pathology of the heart. Int. J. Mol. Sci. 2014, 15, 19203–19225. [Google Scholar] [CrossRef]
- Muralidharan, P.; Cserne Szappanos, H.; Ingley, E.; Hool, L. Evidence for redox sensing by a human cardiac calcium channel. Sci. Rep. 2016, 6, 19067. [Google Scholar] [CrossRef]
- Fernández-Morales, J.C.; Hua, W.; Yao, Y.; Morad, M. Regulation of Ca2+ signaling by acute hypoxia and acidosis in cardiomyocytes derived from human induced pluripotent stem cells. Cell Calcium. 2019, 78, 1–14. [Google Scholar] [CrossRef]
- Hool, L.C. The L-type Ca2+ channel as a potential mediator of pathology during alterations in cellular redox state. Heart Lung Circ. 2009, 18, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Shinke, T.; Shite, J.; Takaoka, H.; Inoue, N.; Matsumoto, H.; Watanabe, S.; Yoshikawa, R.; Otake, H.; Matsumoto, D.; et al. Effects of human atrial natriuretic peptide on myocardial performance and energetics in heart failure due to previous myocardial infarction. J. Cardiol. 2015, 66, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Recio, C.; Maione, F.; Iqbal, A.J.; Mascolo, N.; De Feo, V. The Potential Therapeutic Application of Peptides and Peptidomimetics in Cardiovascular Disease. Front. Pharmacol. 2017, 7, 526. [Google Scholar] [CrossRef]
- Westhoff, M.; Dixon, R.E. Mechanisms and regulation of cardiac CaV1.2 trafficking. Int. J. Mol. Sci. 2021, 22, 5927. [Google Scholar] [CrossRef] [PubMed]
- Saud, Z.A.; Minobe, E.; Wang, W.Y.; Han, D.Y.; Horiuchi, M.; Hao, L.Y.; Kameyama, M. Calpastatin binds to a calmodulin-binding site of cardiac CaV1.2 Ca2+ channels. Biochem. Biophys. Res. Commun. 2007, 364, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Dick, I.E.; Tadross, M.R.; Liang, H.; Tay, L.H.; Yang, W.; Yue, D.T. A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 2008, 451, 830–834. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Moore, R.L.; Tillotson, D.L.; Cheung, J.Y. Calcium currents in postinfarction rat cardiac myocytes. Am. J. Physiol. 1995, 269 Pt 1, C1464–C1473. [Google Scholar] [CrossRef]
- Dixon, I.M.; Lee, S.L.; Dhalla, N.S. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ. Res. 1990, 66, 782–788. [Google Scholar] [CrossRef]
- Zucchi, R.; Ronca-Testoni, S.; Yu, G.; Galbani, P.; Ronca, G.; Mariani, M. Are dihydropyridine receptors downregulated in the ischemic myocardium? Cardiovasc Res. 1995, 30, 769–774. [Google Scholar] [CrossRef]
- Buraei, Z.; Yang, J. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. Biochim. Biophys. Acta 2013, 1828, 1530–1540. [Google Scholar] [CrossRef]
- Lao, Q.Z.; Kobrinsky, E.; Harry, J.B.; Ravindran, A.; Soldatov, N.M. New Determinant for the CaVbeta2 subunit modulation of the CaV1.2 calcium channel. J. Biol. Chem. 2008, 283, 15577–15588. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, M.; Liu, B.; Xu, H.; Ye, J.; Sun, X.; Sun, G. Calenduloside E protects against myocardial ischemia-reperfusion injury induced calcium overload by enhancing autophagy and inhibiting L-type Ca2+ channels through BAG3. Biomed. Pharmacother. 2022, 145, 112432. [Google Scholar] [CrossRef] [PubMed]
- Cholack, G.; Garfein, J.; Krallman, R.; Montgomery, D.; Kline-Rogers, E.; Rubenfire, M.; Bumpus, S.; Md, T.C.; Barnes, G.D. Trends in calcium channel blocker use in patients with heart failure with reduced ejection fraction and comorbid atrial fibrillation. Am. J. Med. 2021, 134, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Segreti, J.A.; Polakowski, J.S.; Blomme, E.A.; King, A.J. Simultaneous measurement of arterial and left ventricular pressure in conscious freely moving rats by telemetry. J. Pharmacol. Toxicol. Methods 2016, 79, 23–33. [Google Scholar] [CrossRef]
- Chang, S.H.; Chan, Y.H.; Chen, W.J.; Chang, G.J.; Lee, J.L.; Yeh, Y.H. Tachypacing-induced CREB/CD44 signaling contributes to the suppression of L-type calcium channel expression and the development of atrial remodeling. Heart Rhythm. 2021, 18, 1760–1771. [Google Scholar] [CrossRef]
- Hasbrouck, M.; Nguyen, T.T. Acute management of atrial fibrillation in congestive heart failure with reduced ejection fraction in the emergency department. Am. J. Emerg. Med. 2022, 58, 39–42. [Google Scholar] [CrossRef]
- Ezzaher, A.; el Houda Bouanani, N.; Su, J.B.; Hittinger, L.; Crozatier, B. Increased negative inotropic effect of calcium-channel blockers in hypertrophied and failing rabbit heart. J. Pharmacol. Exp. Ther. 1991, 257, 466–471. [Google Scholar]
- Ullrich, N.D.; Koschak, A.; MacLeod, K.T. Oestrogen directly inhibits the cardiovascular L-type Ca2+ channel CaV1.2. Biochem Biophys Res Commun. 2007, 361, 522–527. [Google Scholar] [CrossRef]
- Murphy, J.G.; Crosby, K.C.; Dittmer, P.J.; Sather, W.A.; Dell’Acqua, M.L. AKAP79/150 recruits the transcription factor NFAT to regulate signaling to the nucleus by neuronal L-type Ca2+ channels. Mol. Biol. Cell 2019, 30, 1743–1756. [Google Scholar] [CrossRef]
- Graef, I.A.; Mermelstein, P.G.; Stankunas, K.; Neilson, J.R.; Deisseroth, K.; Tsien, R.W.; Crabtree, G.R. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 1991, 401, 703–708. [Google Scholar] [CrossRef]
- Hu, H.H.; Li, S.J.; Wang, P.; Yan, H.C.; Cao, X.; Hou, F.Q.; Fang, Y.Y.; Zhu, X.H.; Gao, T.M. An L-type calcium channel agonist, bay K8644, extends the window of intervention against ischemic neuronal injury. Mol. Neurobiol. 2013, 47, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Yang, J.M.; Hu, D.H.; Hou, F.Q.; Zhao, M.; Zhu, X.H.; Wang, Y.; Li, J.G.; Hu, P.; Chen, L.; et al. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion. J. Neurosci. 2007, 27, 5249–5259. [Google Scholar] [CrossRef] [PubMed]
- Nakao, H.; Sugimoto, Y.; Ikeda, K.; Saito, H.; Nakano, M. Structural feature of lipid scrambling model transmembrane peptides: Same-side positioning of hydrophilic residues and their deeper position. J. Phys. Chem. Lett. 2020, 11, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Nakao, H.; Hayashi, C.; Ikeda, K.; Saito, H.; Nagao, H.; Nakano, M. Effects of hydrophilic residues and hydrophobic length on flip-flop promotion by transmembrane peptides. J. Phys. Chem. B 2018, 122, 4318–4324. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.E.; Liu, B.; Zhao, C.X. Modulation of Ca2+-induced Ca2+ release by ubiquitin protein ligase E3 component n-recognin UBR3 and 6 in cardiac myocytes. Channels 2020, 14, 326–335. [Google Scholar] [CrossRef] [PubMed]
- French, J.P.; Quindry, J.C.; Falk, D.J.; Staib, J.L.; Lee, Y.; Wang, K.K.; Powers, S.K. Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H128–H136. [Google Scholar] [CrossRef] [PubMed]
- De Tullio, R.; Averna, M.; Salamino, F.; Pontremoli, S.; Melloni, E. Differential degradation of calpastatin by mu- and m-calpain in Ca2+-enriched human neuroblastoma LAN-5 cells. FEBS Lett. 2000, 475, 17–21. [Google Scholar] [CrossRef]
- Shi, Y.; Melnikov, V.Y.; Schrier, R.W.; Edelstein, C.L. Downregulation of the calpain inhibitor protein calpastatin by caspases during renal ischemia-reperfusion. Am. J. Physiol. Renal Physiol. 2000, 279, F509–F517. [Google Scholar] [CrossRef]
- De Jongh, K.S.; Warner, C.; Colvin, A.A.; Catterall, W.A. Characterization of the two size forms of the alpha 1 subunit of skeletal muscle L-type calcium channels. Proc. Natl. Acad. Sci. USA 1991, 881, 0778–10782. [Google Scholar] [CrossRef]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Stone, J.R.; Yang, S. Hydrogen peroxide: A signaling messenger. Antioxid. Redox. Signal. 2006, 8, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Marban, E.; Kitakaze, M.; Koretsune, Y.; Yue, D.T.; Chacko, V.P.; Pike, M.M. Quantification of [Ca2+]i in perfused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ. Res. 1990, 66, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C.; Lien, C.F.; Lee, W.S.; Chang, H.R.; Hsu, Y.C.; Luo, Y.P.; Jeng, J.R.; Hsieh, J.C.; Yang, K.T. Intermittent Hypoxia Prevents Myocardial Mitochondrial Ca2+ Overload and Cell Death during Ischemia/Reperfusion: The Role of Reactive Oxygen Species. Cells 2019, 8, 564. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.L.; Kupershmidt, S.; Zhang, R.; Stepanovic, S.; Roden, D.M.; Wilde, A.A.; Anderson, M.E.; Balser, J.R. A calcium sensor in the sodium channel modulates cardiac excitability. Nature 2002, 415, 442–447. [Google Scholar] [CrossRef]
- Jia, W.; Liu, J.; Yu, Z.; Zhang, X.; Xu, X.; Wang, Y.; Gao, Q.; Feng, R.; Wan, Y.; Xu, J.; et al. Properties of calmodulin binding to NaV1.2 IQ motif and its autism-associated mutation R1902C. Neurochem. Res. 2021, 46, 523–534. [Google Scholar] [CrossRef]
- Bartels, P.; Yu, D.; Huang, H.; Hu, Z.; Herzig, S.; Soong, T.W. Alternative splicing at N terminus and domain I modulates CaV1.2 inactivation and surface expression. Biophys. J. 2018, 114, 2095–2106. [Google Scholar] [CrossRef]
- Van Petegem, F.; Chatelain, F.C.; Minor, D.L., Jr. Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-Ca2+/calmodulin complex. Nat. Struct. Mol. Biol. 2005, 12, 1108–1115. [Google Scholar] [CrossRef]
- Asmara, H.; Minobe, E.; Saud, Z.A.; Kameyama, M. Interactions of calmodulin with the multiple binding sites of CaV1.2 Ca2+ channels. J. Pharmacol. Sci. 2010, 112, 397–404. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc. 2022, 17, 2326–2353. [Google Scholar] [CrossRef]
GST-CT1 + CSL | GST-PreIQ + CSL | GST-IQ + CSL | GST-NT + CSL | |||
---|---|---|---|---|---|---|
[Ca2+] | 25 nM | 10 μM | 1 mM | 10 μM | 10 μM | 10 μM |
[H2O2] | ||||||
0 M | 0.21 ± 0.01 | 0.52 ± 0.02 | 0.65 ± 0.25 | 0.16 ± 0.01 | 0.15 ± 0.02 | 0.46 ± 0.01 |
10−2 M | 0.65 ± 0.02 | 1.12 ± 0.03 | 1.34 ± 0.10 | 0.16 ± 0.01 | 0.34 ± 0.01 | 0.46 ± 0.01 |
10−1 M | 0.31 ± 0.01 | 0.68 ± 0.05 | 0.99 ± 0.05 | 0.16 ± 0.01 | 0.26 ± 0.05 | 0.46 ± 0.01 |
GST-NT + CSL | |||
---|---|---|---|
[Ca2+] | 25 nM | 10 μM | 1 mM |
Bmax, mol/mol | 0.59 | 0.68 | 0.65 |
Kd, μM | 1.11 | 1.48 | 1.32 |
R2 | 0.98 | 0.98 | 0.98 |
Count | Score | Residue List | |
---|---|---|---|
CSL + PreIQ | |||
1 | 41 | −7.85 | K56 K58 H60 E62 P63 E112 S113 A115 |
2 | 2 | −6.25 | E36 K37 E54 G55 S87 A88 Q91 P92 |
3 | 1 | −5.70 | E59 K68 Q69 D72 N76 H79 |
4 | 2 | −5.65 | Q53 E54 K56 A88 E89 Q91 P92 |
5 | 1 | −5.49 | E36 Q40 T42 S85 T94 K95 D105 |
CSL + IQ | |||
1 | 20 | −7.17 | K56 P57 K58 H60 E62 P63 A115 |
2 | 1 | −6.14 | K68 Q69 N76 H79 A83 E94 K95 |
3 | 1 | −5.91 | E36 S39 Q40 K43 K51 E98 T91 |
4 | 3 | −5.55 | Q40 T42 L44 K100 T101 K102 D105 |
5 | 1 | −5.41 | S39 T42 K43 E98 K100 T101 K102 |
CSL + NT | |||
1 | 2 | −6.46 | E62 P63 K64 S65 K68 E112 A115 |
2 | 4 | −6.29 | E36 K37 S39 Q40 K83 S85 K102 |
3 | 1 | −6.10 | G55 K56 K58 E59 Q89 S93 |
4 | 1 | −6.05 | E59 E62 D72 T73 N76 N90 K95 |
5 | 2 | −5.96 | T61 K68 Q69 N76 H79 S93 E94 |
Groups | CSL54-65 | CaV1.2 Channel | Interaction Types | E (kcal/mol) |
---|---|---|---|---|
CSL54-65 + PreIQ | Lys 64 | Lys 1620 | Ionic | −4.70 |
Pro 63 | Arg 1624 | H-acceptor | −3.60 | |
Lys 58 | Glu 1612 | H-donor/Ionic | −2.40 | |
Gly 55 | Glu 1612 | H-donor | −2.30 | |
CSL54-65 + IQ | Lys 56 | Glu 1655 | Ionic | −8.10 |
Thr 61 | Arg 1663 | H-acceptor | −3.40 | |
Lys 64 | Lys 1661 | H-donor | −0.50 | |
CSL54-65 + NT | Glu 54 | Cys 136 | H-donor | −1.80 |
Glu 54 | Thr 138 | H-acceptor | −0.90 | |
Lys 64 | Ser 123 | H-donor | −0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Zhou, S.; Yan, L.; Li, Y.; Xu, X.; Wang, X.; Minobe, E.; Kameyama, M.; Hao, L.; Hu, H. Ahf-Caltide, a Novel Polypeptide Derived from Calpastatin, Protects against Oxidative Stress Injury by Stabilizing the Expression of CaV1.2 Calcium Channel. Int. J. Mol. Sci. 2023, 24, 15729. https://doi.org/10.3390/ijms242115729
Xue Y, Zhou S, Yan L, Li Y, Xu X, Wang X, Minobe E, Kameyama M, Hao L, Hu H. Ahf-Caltide, a Novel Polypeptide Derived from Calpastatin, Protects against Oxidative Stress Injury by Stabilizing the Expression of CaV1.2 Calcium Channel. International Journal of Molecular Sciences. 2023; 24(21):15729. https://doi.org/10.3390/ijms242115729
Chicago/Turabian StyleXue, Yingchun, Shi Zhou, Ling Yan, Yuelin Li, Xingrong Xu, Xianghui Wang, Etsuko Minobe, Masaki Kameyama, Liying Hao, and Huiyuan Hu. 2023. "Ahf-Caltide, a Novel Polypeptide Derived from Calpastatin, Protects against Oxidative Stress Injury by Stabilizing the Expression of CaV1.2 Calcium Channel" International Journal of Molecular Sciences 24, no. 21: 15729. https://doi.org/10.3390/ijms242115729
APA StyleXue, Y., Zhou, S., Yan, L., Li, Y., Xu, X., Wang, X., Minobe, E., Kameyama, M., Hao, L., & Hu, H. (2023). Ahf-Caltide, a Novel Polypeptide Derived from Calpastatin, Protects against Oxidative Stress Injury by Stabilizing the Expression of CaV1.2 Calcium Channel. International Journal of Molecular Sciences, 24(21), 15729. https://doi.org/10.3390/ijms242115729