Lack of Association between Serum Chitotriosidase Activity and Arterial Stiffness in Type 2 Diabetes without Cardiovascular Complications
Abstract
:1. Introduction
2. Results
2.1. Population Features
2.2. Chitotriosidase Activity and Parameters of Arterial Stiffness
3. Discussion
4. Materials and Methods
4.1. Research Design and Population
4.2. Clinical Assessment
4.3. Arterial Stiffness Measurement
4.4. Laboratory Evaluations
4.5. Statistical Analysis
Sample Size Calculation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.; Gomes, M.B.; Nicolucci, A.; Pocock, S.; Rathmann, W.; Shestakova, M.V.; Watada, H.; Shimomura, I.; Chen, H.; Cid-Ruzafa, J.; et al. Vascular complications in patients with type 2 diabetes: Prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovasc. Diabetol. 2018, 17, 150. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Grassi, D.; Ferri, C. Aortic stiffness, blood pressure and renal dysfunction. Intern. Emerg. Med. 2011, 6 (Suppl. S1), 111–114. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zuo, Y.; Chen, S.; Zhang, Y.; Zhang, X.; Xu, Q.; Wu, S.; Wang, A. Hypertension, Arterial Stiffness, and Diabetes: A Prospective Cohort Study. Hypertens 2022, 79, 1487–1496. [Google Scholar] [CrossRef]
- Maeda, Y.; Inoguchi, T.; Etoh, E.; Kodama, Y.; Sasaki, S.; Sonoda, N.; Nawata, H.; Shimabukuro, M.; Takayanagi, R. Brachial-ankle pulse wave velocity predicts all-cause mortality and cardiovascular events in patients with diabetes: The Kyushu Prevention Study of Atherosclerosis. Diabetes Care 2014, 37, 2383–2390. [Google Scholar] [CrossRef]
- Bruno, R.M.; Penno, G.; Daniele, G.; Pucci, L.; Lucchesi, D.; Stea, F.; Landini, L.; Cartoni, G.; Taddei, S.; Ghiadoni, L.; et al. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 2012, 55, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Van Aalten, D.M.F.; Komander, D.; Synstad, B.; Gåseidnes, S.; Peter, M.G.; Eijsink, V.G.H. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc. Natl. Acad. Sci. USA 2001, 98, 8979–8984. [Google Scholar] [CrossRef]
- Zurawska-Płaksej, E.; Ługowska, A.; Hetmañczyk, K.; Knapik-Kordecka, M.; Piwowar, A. Neutrophils as a Source of Chitinases and Chitinase-Like Proteins in Type 2 Diabetes. PLoS ONE 2015, 10, e141730. [Google Scholar] [CrossRef]
- Kuusk, S.; Sørlie, M.; Väljamäe, P. Human Chitotriosidase Is an Endo-Processive Enzyme. PLoS ONE 2017, 12, e171042. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, M.; Palermo, A.; D’Onofrio, L.; Vadalà, G.; Greto, V.; Di Stasio, E.; Maddaloni, E.; Di Rosa, M.; Tibullo, D.; Silvia, A.; et al. Serum chitotriosidase in postmenopausal women with severe osteoporosis. Osteoporos. Int. 2016, 27, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, L.; Rosa, M.D.; Zambito, A.M.; Dell’Ombra, N.; Marco, R.D.; Malaguarnera, M. Potential role of chitotriosidase gene in nonalcoholic fatty liver disease evolution. Am. J. Gastroenterol. 2006, 101, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Artieda, M.; Cenarro, A.; Gañán, A.; Jericó, I.; Gonzalvo, C.; Casado, J.M.; Vitoria, I.; Puzo, J.; Pocoví, M.; Civeira, F. Serum chitotriosidase activity is increased in subjects with atherosclerosis disease. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Turan, E.; Sozmen, B.; Eltutan, M.; Sozmen, E.Y. Serum chitotriosidase enzyme activity is closely related to HbA1c levels and the complications in patients with diabetes mellitus type 2. Diabetes Metab. Syndr. 2017, 11 (Suppl. S1), S503–S506. [Google Scholar] [CrossRef]
- Li, B.; Li, N.; Guo, S.; Zhang, M.; Li, J.; Zhai, N.; Wang, H.; Zhang, Y. The changing features of serum adropin, copeptin, neprilysin and chitotriosidase which are associated with vascular endothelial function in type 2 diabetic retinopathy patients. J. Diabetes Complicat. 2020, 34, 107686. [Google Scholar] [CrossRef]
- Sonmez, A.; Haymana, C.; Tapan, S.; Safer, U.; Celebi, G.; Ozturk, O.; Genc, H.; Dogru, T.; Tasci, I.; Erdem, G.; et al. Chitotriosidase activity predicts endothelial dysfunction in type-2 diabetes mellitus. Endocrine 2010, 37, 455–459. [Google Scholar] [CrossRef]
- Prenner, S.B.; Chirinos, J.A. Arterial stiffness in diabetes mellitus. Atherosclerosis 2015, 238, 370–379. [Google Scholar] [CrossRef]
- Ravikumar, R.; Deepa, R.; Shanthirani, C.S.; Mohan, V. Comparison of carotid intima-media thickness, arterial stiffness, and brachial artery flow mediated dilatation in diabetic and nondiabetic subjects (The Chennai Urban Population Study [CUPS-9]). Am. J. Cardiol. 2002, 90, 702–707. [Google Scholar] [CrossRef]
- Ho, H.C.H.; Maddaloni, E.; Buzzetti, R. Risk factors and predictive biomarkers of early cardiovascular disease in obese youth. Diabetes. Metab. Res. Rev. 2019, 35, e3134. [Google Scholar] [CrossRef]
- Maddaloni, E.; Coraggio, L.; Amendolara, R.; Baroni, M.G.; Cavallo, M.G.; Copetti, M.; Cossu, E.; D’Angelo, P.; D’Onofrio, L.; Cosmo, S.; et al. Association of osteocalcin, osteoprotegerin, and osteopontin with cardiovascular disease and retinopathy in type 2 diabetes. Diabetes. Metab. Res. Rev. 2023, 39, e3632. [Google Scholar] [CrossRef]
- D’Onofrio, L.; Maddaloni, E.; Buzzetti, R. Osteocalcin and sclerostin: Background characters or main actors in cardiovascular disease? Diabetes. Metab. Res. Rev. 2020, 36, e3217. [Google Scholar] [CrossRef] [PubMed]
- Naka, K.K.; Papathanassiou, K.; Bechlioulis, A.; Pappas, K.; Tigas, S.; Makriyiannis, D.; Antoniou, S.; Kazakos, N.; Margeli, A.; Papassotiriou, I.; et al. Association of vascular indices with novel circulating biomarkers as prognostic factors for cardiovascular complications in patients with type 2 diabetes mellitus. Clin. Biochem. 2018, 53, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kucukali Turkyilmaz, A.; Devrimsel, G.; Serdaroglu Beyazal, M.; Kirbas, A.; Cicek, Y.; Capkin, E.; Karkucak, M.; Gokmen, F. The relationship between serum YKL-40 levels and arterial stiffness in patients with ankylosing spondylitis. Acta Reumatol. Port. 2017, 42, 183–190. [Google Scholar] [PubMed]
- Ma, W.H.; Wang, X.L.; Du, Y.M.; Wang, Y.B.; Zhang, Y.; Wei, D.E.; Guo, L.L.; Bu, P.L. Association between human cartilage glycoprotein 39 (YKL-40) and arterial stiffness in essential hypertension. BMC Cardiovasc. Disord. 2012, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, A.K.; Devrimsel, G.; Kirbas, A.; Cicek, Y.; Karkucak, M.; Capkin, E.; Gokmen, F. Relationship between pulse wave velocity and serum YKL-40 level in patients with early rheumatoid arthritis. Rheumatol. Int. 2013, 33, 2751–2756. [Google Scholar] [CrossRef]
- Kurt, I.; Abasli, D.; Cihan, M.; Serdar, M.A.; Olgun, A.; Saruhan, E.; Erbil, M.K. Chitotriosidase levels in healthy elderly subjects. Ann. N. Y. Acad. Sci. 2007, 1100, 185–188. [Google Scholar] [CrossRef]
- Boot, R.G.; Renkema, G.H.; Verhoek, M.; Strijland, A.; Bliek, J.; de Meulemeester, T.M.A.; Mannens, M.M.; Aerts, J.M. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J. Biol. Chem. 1998, 273, 25680–25685. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 2014, 37 (Suppl. S1), S14–S80. [Google Scholar] [CrossRef]
- Shirai, K.; Utino, J.; Otsuka, K.; Takata, M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J. Atheroscler. Thromb. 2006, 13, 101–107. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New equation to estimate glomerular filtration rate. FMC Form. Medica Contin. Aten. Primaria 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Hollak, C.E.; van Weely, S.M.H.J.; Van Oers, M.H.; Aerts, J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J. Clin. Investig. 1994, 93, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Leto, G.; Tartaglione, L.; Rotondi, S.; Pasquali, M.; Maddaloni, E.; Mignogna, C.; D’onofrio, L.; Zampetti, S.; Carlone, A.; Muci, M.L.; et al. Diastolic Pressure and ACR Are Modifiable Risk Factors of Arterial Stiffness in T2DM Without Cardiovascular Disease. J. Clin. Endocrinol. Metab. 2022, 107, E3857–E3865. [Google Scholar] [CrossRef]
Low PWV (n = 40) | High PWV(n = 35) | p-Value | |
Age, y | 52.3 ± 4.4 | 57.9 ± 5 | <0.001 |
Males, n (%) | 24 (60) | 24 (69) | 0.440 |
Duration of diabetes, y | 5 [2–7] | 6 [3–9] | 0.029 |
BMI, kg/m2 | 30 [27.6–35.4] | 27.1 [26–31.1] | 0.013 |
SBP, mmHg | 140 [129–153] | 148 [140–165] | 0.002 |
DBP, mmHg | 86.1 ± 8.5 | 91.9 ± 9 | 0.005 |
haPWV, m/sec | 7 ± 0.6 | 9.1 ± 0.6 | <0.001 |
ABI | 1.06 ± 0.1 | 1.1 ± 0.06 | 0.04 |
HbA1c, % | 6.1 [5.6–6.5] | 6.6 [6–7] | 0.005 |
FBG, mg/dL | 113 [102–129] | 130 [113–139] | 0.008 |
Total cholesterol, mg/dL | 175.2 ± 31.9 | 169 ± 34.9 | 0.424 |
HDL-c, mg/dL | 50.1 ± 11.7 | 51.1 ± 14.1 | 0.729 |
LDL-c, mg/dL | 100.6 ± 25.8 | 93.4 ± 25.8 | 0.236 |
Triglycerides, mg/dL | 115 [82–156] | 104 [71–127] | 0.256 |
Ca, mg/dL | 9.6 ± 0.4 | 9.5 ± 0.5 | 0.514 |
P, mg/dL | 3.5 ± 0.6 | 3.3 ± 0.5 | 0.229 |
Vitamin D, ng/mL | 26 [16–34] | 23 [13–30] | 0.087 |
PTH, pg/mL | 68 [59–97] | 70 [55–95] | 0.776 |
CRP, mg/L | 0.13 [0.04–0.4] | 0.15 [0.07–0.4] | 0.555 |
Albumin (g/dL) | 4.3 ± 0.3 | 4.4 ± 0.2 | 0.126 |
Creatinine (mg/dL) | 0.8 [0.7–0.9] | 0.8 [0.7–1] | 0.483 |
eGFR (mL/min/1.73 m2) | 98.3 [93.9–101] | 94 [84–100] | 0.030 |
Uric acid (mg/dL) | 5.6 ± 1.4 | 5.4 ± 1.2 | 0.581 |
Chit activity (nmol/mL/h) | 12.7 [9.6–17.9] | 11.4 [8.8–15] | 0.230 |
Smoking status, n (%) | |||
Current smoker | 10 (25) | 9 (26) | 0.995 |
Former smoker | 10 (26) | 9 (28) | |
Never | 20 (50) | 17 (46) | |
Past medical history, n (%) | |||
History of hypertension | 21 (51) | 29 (83) | 0.005 |
Dyslipidemia | 17 (43) | 17 (49) | 0.598 |
Obesity | 21 (51) | 13 (37) | 0.246 |
Ongoing glucose-lowering therapy, n (%) | |||
Metformin | 26 (65) | 27 (77) | 0.313 |
Metformin + others | 6 (15) | 4 (11) | 0.745 |
Dipeptidyl peptidase-4 | 0 (0) | 2 (6) | 0.209 |
Pioglitazone | 0 (0) | 1 (3) | 0.461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Onofrio, L.; Amendolara, R.; Mignogna, C.; Leto, G.; Tartaglione, L.; Mazzaferro, S.; Maddaloni, E.; Buzzetti, R. Lack of Association between Serum Chitotriosidase Activity and Arterial Stiffness in Type 2 Diabetes without Cardiovascular Complications. Int. J. Mol. Sci. 2023, 24, 15809. https://doi.org/10.3390/ijms242115809
D’Onofrio L, Amendolara R, Mignogna C, Leto G, Tartaglione L, Mazzaferro S, Maddaloni E, Buzzetti R. Lack of Association between Serum Chitotriosidase Activity and Arterial Stiffness in Type 2 Diabetes without Cardiovascular Complications. International Journal of Molecular Sciences. 2023; 24(21):15809. https://doi.org/10.3390/ijms242115809
Chicago/Turabian StyleD’Onofrio, Luca, Rocco Amendolara, Carmen Mignogna, Gaetano Leto, Lida Tartaglione, Sandro Mazzaferro, Ernesto Maddaloni, and Raffaella Buzzetti. 2023. "Lack of Association between Serum Chitotriosidase Activity and Arterial Stiffness in Type 2 Diabetes without Cardiovascular Complications" International Journal of Molecular Sciences 24, no. 21: 15809. https://doi.org/10.3390/ijms242115809
APA StyleD’Onofrio, L., Amendolara, R., Mignogna, C., Leto, G., Tartaglione, L., Mazzaferro, S., Maddaloni, E., & Buzzetti, R. (2023). Lack of Association between Serum Chitotriosidase Activity and Arterial Stiffness in Type 2 Diabetes without Cardiovascular Complications. International Journal of Molecular Sciences, 24(21), 15809. https://doi.org/10.3390/ijms242115809