Sugarcane Light-Colored Lignin: A Renewable Resource for Sustainable Beauty
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical, Structural, and Thermal Analyses
2.2. Particle Size and Molecular Weight
2.3. Solubility
2.4. Total Phenolic Compounds (TPC) and Antioxidant Potential
2.5. Emulsion Stability Index (ESI)
2.6. Cytotoxicity, Mutagenicity, and Skin Sensitization
2.7. Accelerated Stability
3. Materials and Methods
3.1. Materials
3.2. Lignin Extraction and Color Reduction Process
3.3. Moisture, Ashes, Total Lignin, and Carbohydrates Content
3.4. Color
3.5. Structural Characterization
3.5.1. Attenuated Total Reflectance—Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
3.5.2. 31P Nuclear Magnetic Resonance (NMR)
3.6. Differential Scanning Calorimetry (DSC)
3.7. Particle Size
3.8. Gel Permeation Chromatography (GPC)
3.9. Solubility
3.10. Biological Activity
3.10.1. Total Phenolic Content (TPC)
3.10.2. Antioxidant Activity
3.11. Emulsion Stability Index (ESI)
3.12. Safety Assessment
3.12.1. Cytotoxicity
3.12.2. Mutagenicity
3.12.3. Skin Sensitization
3.13. Accelerated Stability
3.13.1. Oil-In-Water (o/w) Emulsion Preparation
3.13.2. Organoleptic Evaluation
3.13.3. Physico-Chemical Evaluation
3.13.4. Antioxidant Activity
3.13.5. Microbial Contamination
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lu, X.; Gu, X.; Shi, Y. A Review on Lignin Antioxidants: Their Sources, Isolations, Antioxidant Activities and Various Applications. Int. J. Biol. Macromol. 2022, 210, 716–741. [Google Scholar] [CrossRef] [PubMed]
- Gil-Chávez, G.J.; Padhi, S.S.P.; Pereira, C.V.; Guerreiro, J.N.; Matias, A.A.; Smirnova, I. Cytotoxicity and Biological Capacity of Sulfur-Free Lignins Obtained in Novel Biorefining Process. Int. J. Biol. Macromol. 2019, 136, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Vinardell, P.M.A.; Montserrat, M. Lignins and Their Derivatives with Beneficial Effects on Human Health. Int. J. Mol. Sci. 2017, 18, 1219. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Acosta, J.L.; Torres-Chávez, P.I.; Ramírez-Wong, B.; López-Saiz, C.M.; Montaño-Leyva, B. Antioxidant, Antimicrobial, and Antimutagenic Properties of Technical Lignins and Their Applications. Bioresources 2016, 11, 5452–5481. [Google Scholar] [CrossRef]
- Vinardell, M.P.; Ugartondo, V.; Mitjans, M. Potential Applications of Antioxidant Lignins from Different Sources. Ind. Crops Prod. 2008, 27, 220–223. [Google Scholar] [CrossRef]
- Ratanasumarn, N.; Chitprasert, P. Cosmetic Potential of Lignin Extracts from Alkaline-Treated Sugarcane Bagasse: Optimization of Extraction Conditions Using Response Surface Methodology. Int. J. Biol. Macromol. 2020, 153, 138–145. [Google Scholar] [CrossRef]
- Ajao, O.; Jeaidi, J.; Benali, M.; Restrepo, A.; El Mehdi, N.; Boumghar, Y. Quantification and Variability Analysis of Lignin Optical Properties for Colour-Dependent Industrial Applications. Molecules 2018, 23, 377. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, L.; Qiu, X.; Liu, Y.; Qin, Y. Structure Investigation of Light-Colored Lignin Extracted by Lewis Acid-Based Deep Eutectic Solvent from Softwood. Bioresour. Technol. 2023, 385, 129458. [Google Scholar] [CrossRef]
- Falkehag, S.I.; Moorer, H.H.; Bailey, C.W. Alkylene Chlorohydrin, Oxide or Carbonate Modified Sulfonated Lignins in a Disperse or Vat Dye Cake. U.S. Patent 3672817A, 27 June 1972. Available online: https://patentimages.storage.googleapis.com/6d/48/24/516ce9e694a38f/US3672817.pdf (accessed on 4 May 2023).
- Falkehag, S. Modified Lignin Surfactants. U.S. Patent US3763139A, 2 October 1973. Available online: https://patentimages.storage.googleapis.com/25/3b/5a/d99a7c889348dd/US3763139.pdf (accessed on 4 May 2023).
- Lin, S.Y. Process for Reduction of Lignin Color. U.S. Patent 4184845A, 22 January 1980. Available online: https://patentimages.storage.googleapis.com/f4/0a/fe/816bfc1b2194bb/US4184845.pdf (accessed on 4 May 2023).
- Dilling, P.; Sarjeant, P. Reduction of Lignin Color. U.S. Patent 4454066, 12 June 1982. Available online: https://patentimages.storage.googleapis.com/77/fd/89/204cb7b9726ae3/US4454066.pdf (accessed on 4 May 2023).
- Zhang, H.; Bai, Y.; Zhou, W.; Chen, F. Color Reduction of Sulfonated Eucalyptus Kraft Lignin. Int. J. Biol. Macromol. 2017, 97, 201–208. [Google Scholar] [CrossRef]
- Li, R.; Huang, D.; Chen, S.; Lei, L.; Chen, Y.; Tao, J.; Zhou, W.; Wang, G. Insight into the Self-Assembly Process of Bamboo Lignin Purified by Solvent Fractionation to Form Uniform Nanospheres with Excellent UV Resistance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128652. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, S.; Chen, Y. Basic Understanding of the Color Distinction of Lignin and the Proper Selection of Lignin in Color-Depended Utilizations. Int. J. Biol. Macromol. 2020, 147, 607–615. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, Y.; Yu, B.; Liu, X.; Chen, F. A Practicable Process for Lignin Colour Reduction: Fractionation of Lignin Using Methanol/Water as a Solvent. Green. Chem. 2017, 19, 5152. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Qian, Y.; Qiu, X.; Ren, Y.; Yang, D. Reduction of Lignin Color via One-Step UV Irradiation. Green. Chem. 2016, 18, 695–699. [Google Scholar] [CrossRef]
- Saritha, V.; Maruthi, Y.A.; Mukkanti, K. Biological Decolourization of Higher Concentrations of Synthetic Lignin by Native Fungi. J. Environ. Resour. Manag. 2010, 1, 1–4. [Google Scholar]
- Jiang, B.; Zhang, Y.; Gu, L.; Wu, W.; Zhao, H.; Jin, Y. Structural Elucidation and Antioxidant Activity of Lignin Isolated from Rice Straw and Alkali-oxygen Black Liquor. Int. J. Biol. Macromol. 2018, 116, 513–519. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Ragauskas, A. Lignin as a UV Light Blocker—A Review. Polymers 2020, 12, 1134. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.H.; Phan, D.-P.; Lee, E.Y. Review on Lignin Modifications toward Natural UV Protection Ingredient for Lignin-Based Sunscreens. Green. Chem. 2021, 23, 4633–4646. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Fu, S.; Chen, Y. Fabrication of Light-Colored Lignin Microspheres for Developing Natural Sunscreens with Favorable UV Absorbability and Staining Resistance. Ind. Eng. Chem. Res. 2019, 58, 13858–13867. [Google Scholar] [CrossRef]
- Ahmad, Z.; Al Dajani, W.W.; Paleologou, M.; Xu, C. Sustainable Process for the Depolymerization/Oxidation of Softwood and Hardwood Kraft Lignins Using Hydrogen Peroxide under Ambient Conditions. Molecules 2020, 25, 2329. [Google Scholar] [CrossRef]
- Tripathi, S.; Sharma, N.; Alam, I.; Bhardwaj, N.K. Effectiveness of Different Green Chemistry Approaches during Mixed Hardwood Bamboo Pulp Bleaching and Their Impact on Environment. Int. J. Environ. Sci. Technol. 2019, 16, 4327–4338. [Google Scholar] [CrossRef]
- Dölle, K.; Honig, A. Laboratory Bleaching System for Oxygen and Ozone Bleaching. Asian J. Chem. Sci. 2018, 4, 1–12. [Google Scholar] [CrossRef]
- Kadla, J.F.; Chang, H. The Reactions of Peroxides with Lignin and Lignin Model Compounds. In Oxidative Delignification Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 785, pp. 108–129. ISBN 9780841237384. [Google Scholar]
- Li, Y.; Fu, Q.; Rojas, R.; Yan, M.; Lawoko, M.; Berglund, L. Lignin-Retaining Transparent Wood. ChemSusChem 2017, 10, 3445–3451. [Google Scholar] [CrossRef] [PubMed]
- Bisht, P.; Pandey, K.K.; Barshilia, H.C. Photostable Transparent Wood Composite Functionalized with an UV-Absorber. Polym. Degrad. Stab. 2021, 189, 109600. [Google Scholar] [CrossRef]
- Wachter, I.; Štefko, T.; Rantuch, P.; Martinka, J.; Pastierová, A. Effect of UV Radiation on Optical Properties and Hardness of Transparent Wood. Polymers 2021, 13, 2067. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, Z.; Liao, M.; Long, J.; Zhao, W.; Chen, Y.; Li, X. Catalytic Depolymerization of Organosolv Sugarcane Bagasse Lignin in Cooperative Ionic Liquid Pairs. Catal. Today 2017, 298, 168–174. [Google Scholar] [CrossRef]
- Antunes, F.; Mota, I.F.; Fangueiro, J.F.; Lopes, G.; Pintado, M.; Costa, P.S. From Sugarcane to Skin: Lignin as a Multifunctional Ingredient for Cosmetic Application. Int. J. Biol. Macromol. 2023, 234, 123592. [Google Scholar] [CrossRef]
- Costa, C.A.E.; Pinto, P.C.R.; Rodrigues, A.E. Evaluation of Chemical Processing Impact on E. globulus Wood Lignin and Comparison with Bark Lignin. Ind. Crops Prod. 2014, 61, 479–491. [Google Scholar] [CrossRef]
- Oliveira, L.; Evtuguin, D.; Cordeiro, N.; Silvestre, A.J.D. Structural Characterization of Stalk Lignin from Ba-nana Plant. Ind. Crops Prod. 2009, 29, 86–95. [Google Scholar] [CrossRef]
- Cequier, E. Extraction and Characterization of Lignin from Olive Pomace: A Comparison Study among Ionic Liquid, Sulfuric Acid, and Alkaline Treatments. Biomass Convers. Biorefinery 2019, 9, 241–252. [Google Scholar] [CrossRef]
- Antunes, F.; Mota, I.F.; Burgal, J.; Pintado, M.; Costa, P.S. A review on the valorization of lignin from sugarcane by-products: From extraction to application. Biomass Bioenergy. 2022, 166, 106603. [Google Scholar] [CrossRef]
- Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; van Dam, J.E.G. Charcaterization of structure-dependent functional properties of lignin with infrared spectroscospy. Ind. Crops Prod. 2004, 20, 205–218. [Google Scholar] [CrossRef]
- Li, M.; Jia, Z.; Wan, G.; Wang, S.; Min, D. Enhancing Isolation of P-Coumaric and Ferulic Acids from Sugarcane Bagasse by Sequential Hydrolysis. Chem. Pap. 2020, 74, 499–507. [Google Scholar] [CrossRef]
- Kaur, R.; Uppal, S.K. Structural Characterization and Antioxidant Activity of Lignin from Sugarcane Bagasse. Colloid Polym. Sci. 2015, 293, 2585–2592. [Google Scholar] [CrossRef]
- Heitner, C.; Dimmel, D.R.; Schmidt, J.A. (Eds.) Lignin and Lignans: Advances in Chemistry; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781574444865. [Google Scholar]
- Sun, X.-F.; Wang, H.; Zhang, G.; Fowler, P.; Rajaratnam, M. Extraction and Characterization of Lignins from Maize Stem and Sugarcane Bagasse. J. Appl. Polym. Sci. 2011, 120, 3587–3595. [Google Scholar] [CrossRef]
- Ralph, J.; Lapierre, C.; Boerjan, W. Lignin Structure and Its Engineering. Curr. Opin. Biotechnol. 2019, 56, 240–249. [Google Scholar] [CrossRef]
- Yang, H.; Dong, Z.; Liu, B.; Chen, Y.; Gong, M.; Li, S.; Chen, H. A New Insight of Lignin Pyrolysis Mechanism Based on Functional Group Evolutions of Solid Char. Fuel 2021, 288, 119719. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal Degradation of Lignin—A Review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Domínguez, J.C.; Oliet, M.; Alonso, M.V.; Gilarranz, M.A.; Rodríguez, F. Thermal Stability and Pyrolysis Ki-netics of Organosolv Lignins Obtained from Eucalyptus Globulus. Ind. Crops Prod. 2008, 27, 150–156. [Google Scholar] [CrossRef]
- Ramezani, N.; Sain, M. Thermal and Physiochemical Characterization of Lignin Extracted from Wheat Straw by Organosolv Process. J. Polym. Environ. 2018, 26, 3109–3116. [Google Scholar] [CrossRef]
- Glasser, W.G.; Davé, V.; Frazier, C.E. Molecular Weight Distribution of (Semi-) Commercial Lignin Derivatives. J. Wood Chem. Technol. 1993, 13, 545–559. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, J.; Shen, D.; Xue, J.; Guan, S.; Gu, S.; Luo, K.H. Catalytic Oxidation of Lignin in Solvent Systems for Production of Renewable Chemicals: A Review. Polymers 2017, 9, 240. [Google Scholar] [CrossRef] [PubMed]
- Evstigneyev, E.I.; Shevchenko, S.M. Structure, Chemical Reactivity and Solubility of Lignin: A Fresh Look. Wood Sci. Technol. 2019, 53, 7–47. [Google Scholar] [CrossRef]
- Ponnuchamy, V.; Gordobil, O.; Diaz, R.H.; Sandak, A.; Sandak, J. Fractionation of Lignin Using Organic Sol-vents: A Combined Experimental and Theoretical Study. Int. J. Biol. Macromol. 2021, 168, 792–805. [Google Scholar] [CrossRef]
- Cesari, L.; Mutelet, F.; Canabady-Rochelle, L. Antioxidant Properties of Phenolic Surrogates of Lignin De-polymerisation. Ind. Crops Prod. 2019, 129, 480–487. [Google Scholar] [CrossRef]
- Kaur, R.; Uppal, S.K.; Sharma, P. Antioxidant and Antibacterial Activities of Sugarcane Bagasse Lignin and Chemically Modified Lignins. Sugar Tech 2017, 19, 675–680. [Google Scholar] [CrossRef]
- Brenelli, L.B.; Mariutti, L.R.B.; Villares Portugal, R.; de Farias, M.A.; Bragagnolo, N.; Mercadante, A.Z.; Franco, T.T.; Rabelo, S.C.; Squina, F.M. Modified Lignin from Sugarcane Bagasse as an Emulsifier in Oil-in-Water Nanoemulsions. Ind. Crops Prod. 2021, 167, 113532. [Google Scholar] [CrossRef]
- Bai, L.; Greca, L.G.; Xiang, W.; Lehtonen, J.; Huan, S.; Nugroho, R.W.N.; Tardy, B.L.; Rojas, O.J. Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir 2019, 35, 571–588. [Google Scholar] [CrossRef]
- Kreiling, R.; Gehrke, H.; Broschard, T.H.; Dreeßen, B.; Eigler, D.; Hart, D.; Höpflinger, V.; Kleber, M.; Kupny, J.; Li, Q.; et al. In Chemico, in Vitro and in Vivo Comparison of the Skin Sensitizing Potential of Eight Unsatu-rated and One Saturated Lipid Compounds. Regul. Toxicol. Pharmacol. 2017, 90, 262–276. [Google Scholar] [CrossRef]
- ISO 22716:2007; Cosmetics—Good Manufacturing Practices (GMP) Guidelines on Good Manufacturing Practices. ISO: Geneva, Switzerland, 2007.
- Fangueiro, J.F.; de Carvalho, N.M.; Antunes, F.; Mota, I.F.; Pintado, M.E.; Madureira, A.R.; Costa, P.S. Lignin from Sugarcane Bagasse as a Prebiotic Additive for Poultry Feed. Int. J. Biol. Macromol. 2023, 239, 124262. [Google Scholar] [CrossRef]
- Mota, I.F.; Pinto, P.R.; Ribeiro, A.M.; Loureiro, J.M.; Rodrigues, A.E. Downstream Processing of an Oxidized Industrial Kraft Liquor by Membrane Fractionation for Vanillin and Syringaldehyde Recovery. Sep. Purif. Technol. 2018, 197, 360–371. [Google Scholar] [CrossRef]
- Vilas-Boas, A.A.; Campos, D.A.; Nunes, C.; Ribeiro, S.; Nunes, J.; Oliveira, A.; Pintado, M. Polyphenol Extrac-tion by Different Techniques for Valorisation of Non-Compliant Portuguese Sweet Cherries towards a Novel Antioxidant Extract. Sustainability 2020, 12, 5556. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Hernández-Ledesma, B.; Amigo, L.; Martín-Álvarez, P.J.; Recio, I. Production of Anti-oxidant Hydrolyzates from a Whey Protein Concentrate with Thermolysin: Optimization by Response Surface Methodology. Lwt 2011, 44, 9–15. [Google Scholar] [CrossRef]
- Goncalves, B.; Falco, V.; Moutinho-Pereira, J.; Bacelar, E.; Peixoto, F.; Correia, C. Effects of Elevated CO2 on Grapevine (Vitis vinifera L.): Volatile Composition, Phenolic Content, and in Vitro Antioxidant Activity of Red Wine. J. Agric. Food Chem. 2009, 57, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Won, J.W.; Park, K.M.; Chang, P.-S. A New Method for Determining the Emulsion Stability Index by Backscattering Light Detection. J. Food Process Eng. 2014, 37, 229–236. [Google Scholar] [CrossRef]
- ISO/TR 18811:2018; Cosmetics—Guidelines on the Stability Testing of Cosmetic Products. ISO: Geneva, Switzerland, 2018.
- ISO 11930:2019; Cosmetics—Microbiology—Evaluation of the Antimicrobial Protection of a Cosmetic Product. ISO: Geneva, Switzerland, 2019.
- ISO 17516:2014; Microbiological Limits for Cosmetics. ISO: Geneva, Switzerland, 2014.
Total Lignin (wt%) | Carbohydrates (wt%) | Ash (wt%) | Color CIELAB L*/a*/b* | Appearance |
---|---|---|---|---|
81.60 ± 3.60 | 3.50 ± 0.40 | 6.03 ± 0.01 | 73/2.5/24.5 |
Aliphatic OH (mmol/g lignin) | Carboxylic Acids (mmol/g lignin) | Phenolic Units (mmol/g lignin) | Total | |||
---|---|---|---|---|---|---|
Condensed | Non-Condensed | |||||
S | G | H | ||||
δ 146.4–150.8 mg/L | δ 135.6–133.6 mg/L | δ 145.8–143.8 and 142.2–140.2 mg/L | δ 143.8–142.2 mg/L | δ 140.2–137.4 mg/L | δ 137.4–136.9 mg/L | |
3.73 | 1.76 | 0.13 | 0.10 | 0.63 | 0.04 | 0.89 |
Sample | Peak Max (°C) | Enthalpy (J/g) | Peak Height (mW/mg) |
---|---|---|---|
LCLig | 74.9 | −65.76 | −0.6585 |
159.2 | −8.367 | −8.367 |
Sample | Particle Size (μm) | Mw (g/mol) | Mn (g/mol) | PD | ||||
---|---|---|---|---|---|---|---|---|
D[4,5] | D[3,4] | Dv(10) | Dv(50) | Dv(90) | ||||
LCLig | 13.88 ± 0.15 | 6.00 ± 0.02 | 2.83 ± 0.01 | 8.07 ± 0.02 | 27.24 ± 0.32 | 14,300 ± 2059 | 10,598 ± 1577 | 1.35 |
Lignin | TPC (mg GAE/g) | ORAC (µmol TE/g) | ABTS * IC50 (mg/mL) |
---|---|---|---|
LCLig | 169.3 ± 40.9 | 2571.5 ± 826 | 1.28 ± 0.13 |
LCLig (wt%) | ESI (%) |
---|---|
1.0 | 57.39 ± 1.33 |
2.5 | 65.49 ± 0.04 |
5.0 | 79.59 ± 2.56 |
7.5 | 85.52 ± 6.34 |
10.0 | 100.00 ± 0.00 |
Sample | Conc. (mg/mL) | Cys % Depletion | Cys and Lys % Depletion | Reactivity (Cys) | Reactivity Class | DPRA Prediction |
---|---|---|---|---|---|---|
Cinnamaldehyde (Positive control) | 13.2 | 76 ± 3 | 66 ± 1 | Moderate | High reactivity | Sensitizer |
LCLig | 1.40 | 6.0 ± 0.8 | 3.4 ± 0.4 | Minimal | Minimal | No Sensitizer |
0.75 | 5.7 ± 0.6 | 2.8 ± 0.3 | ||||
0.35 | 5.9 ± 0.4 | 2.8 ± 0.2 |
Parameter | T (°C) | Blank o/w Emulsion | 5 wt% LCLig o/w Emulsion | ||||||
---|---|---|---|---|---|---|---|---|---|
Initial | 1 Month | 2 Months | 3 Months | Initial | 1 Month | 2 Months | 3 Months | ||
Physical appearance | 4 | Homogeneous and smooth consistency; good spreadability | Homogeneous and smooth consistency | ||||||
25 | |||||||||
40 | |||||||||
Color L* a* b* | 4 | 90.42 −0.68 2.88 | 81.65 | 82.92 | 87.43 | 55.1 7.4 25.7 | 53.00 | 52.54 | 53.13 |
−0.84 | −0.37 | −0.68 | 5.70 | 5.38 | 7.19 | ||||
3.32 | 2.00 | 2.46 | 20.46 | 23.29 | 23.48 | ||||
25 | 83.53 | 84.99 | 86.8 | 52.54 | 52.60 | 52.74 | |||
−0.96 | −0.48 | 1–0.6 | 5.38 | 7.02 | 6.76 | ||||
4.05 | 2.85 | 3.51 | 20.38 | 23.29 | 21.47 | ||||
40 | 81.87 | 84.43 | 88.07 | 51.74 | 52.13 | 52.77 | |||
−0.83 | −0.53 | −0.97 | 5.33 | 6.88 | 6.84 | ||||
3.68 | 2.89 | 3.42 | 19.66 | 21.28 | 20.87 | ||||
pH | 4 | 5.33 ± 0.02 | 3.89 ± 0.02 | 4.13 ± 0.02 | 4.40 ± 0.02 | 5.4 ± 0.07 | 5.34 ± 0.07 | 5.26 ± 0.07 | 5.41 ± 0.07 |
25 | 3.74 ± 0.02 | 3.87 ± 0.02 | 4.28 ± 0.02 | 5.31 ± 0.07 | 5.26 ± 0.07 | 5.33 ± 0.07 | |||
40 | 3.73 ± 0.02 | 3.87 ± 0.02 | 4.59 ± 0.02 | 5.34 ± 0.07 | 5.27 ± 0.07 | 5.43 ± 0.07 | |||
Viscosity (mPa s) | 4 | 1561 ± 8 | 1957 ± 93 | 1961 ± 83 | 1628 ± 54 | 1414 ± 17 | 1507 ±1 | 1870 ± 14 | 1491 ± 13 |
25 | 1991 ± 95 | 1968 ± 43 | 1883 ± 06 | 1768 ±1 | 1730 ± 2 | 1815 ± 4 | |||
40 | 1715 ± 127 | 1961 ± 83 | 1628 ± 54 | 1507 ± 1 | 1870 ± 14 | 1491 ± 13 | |||
Antioxidant activity ABTS, IC50 (mg/mL) | 4 | Not detected | 0.64 ± 0.07 | 0.91 ± 0.03 | 0.91 ± 0.15 | 0.67 ± 0.03 | |||
25 | 0.89 ± 0.05 | 0.83 ± 0.05 | 0.73 ± 0.09 | ||||||
40 | 0.93 ± 0.04 | 0.55 ± 0.04 | 0.60 ± 0.03 | ||||||
Total counts of yeast and mold (CFU/g) | 4 | Absent | <10 | ||||||
25 | |||||||||
40 | |||||||||
Total viable aerobic count (CFU/g) | 4 | <10 | <10 | ||||||
25 | |||||||||
40 |
Commercial Name | INCI | Function | Blank (%) | LCLig (%) |
---|---|---|---|---|
Part A (aqueous phase) | ||||
Deionized water | Aqua | Solvent | 79.6 | 74.6 |
Glycerin | Glycerin | Humectant | 5 | 5 |
SolagumTM AX | Acacia Senegal Gum; Xanthan Gum | Thickening and stabilizing agent | 0.9 | 0.9 |
LCLig | - | Active ingredient | - | 5 |
Part B (oily phase) | ||||
Lanette | Cetyl stearyl alcohol | Emulsifier | 2.5 | 2.5 |
Tego® Care PBS 6 MB | Polyglyceryl-6 Distearate; Polyglyceryl-6 Behenate | Emulsifier | 4 | 4 |
Shea butter | Butyrospermum parkii butter | Emollient | 2 | 2 |
Squalane | Squalane | Emollient | 5 | 5 |
Part C | ||||
Euxyl PE 9010 | Phenoxyethanol and Ethylhexylglycerin | Preservative | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota, I.F.; Antunes, F.; Fangueiro, J.F.; Costa, C.A.E.; Rodrigues, A.E.; Pintado, M.E.; Costa, P.S. Sugarcane Light-Colored Lignin: A Renewable Resource for Sustainable Beauty. Int. J. Mol. Sci. 2023, 24, 15941. https://doi.org/10.3390/ijms242115941
Mota IF, Antunes F, Fangueiro JF, Costa CAE, Rodrigues AE, Pintado ME, Costa PS. Sugarcane Light-Colored Lignin: A Renewable Resource for Sustainable Beauty. International Journal of Molecular Sciences. 2023; 24(21):15941. https://doi.org/10.3390/ijms242115941
Chicago/Turabian StyleMota, Inês F., Filipa Antunes, Joana F. Fangueiro, Carina A. E. Costa, Alírio E. Rodrigues, Manuela E. Pintado, and Patrícia S. Costa. 2023. "Sugarcane Light-Colored Lignin: A Renewable Resource for Sustainable Beauty" International Journal of Molecular Sciences 24, no. 21: 15941. https://doi.org/10.3390/ijms242115941
APA StyleMota, I. F., Antunes, F., Fangueiro, J. F., Costa, C. A. E., Rodrigues, A. E., Pintado, M. E., & Costa, P. S. (2023). Sugarcane Light-Colored Lignin: A Renewable Resource for Sustainable Beauty. International Journal of Molecular Sciences, 24(21), 15941. https://doi.org/10.3390/ijms242115941