Persistent Hypogammaglobulinemia after Receiving Rituximab Post-HSCT Is Not Caused by an Intrinsic B Cell Defect
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. In Vitro Naive B Cell Stimulation to Induce Class Switch Recombination and Immunoglobulin Production
2.3. CXCR5+ Tfh Cells
3. Discussion
4. Materials and Methods
4.1. Patient Selection
4.2. In Vitro Stimulation of Naïve B Cells
4.3. The Expression of AID by Real-Time Quantitative RT-PCR (RT-qPCR)
4.4. Class Switching Analyzed by Flow Cytometry and ELISA
4.5. T and B Cell Subset Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kridin, K.; Ahmed, A.R. Post-rituximab immunoglobulin M (IgM) hypogammaglobulinemia. Autoimmun. Rev. 2020, 19, 102466. [Google Scholar] [CrossRef]
- Lee, D.S.W.; Rojas, O.L.; Gommerman, J.L. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights. Nat. Rev. Drug Discov. 2021, 20, 179–199. [Google Scholar] [CrossRef]
- Labrosse, R.; Barmettler, S.; Derfalvi, B.; Blincoe, A.; Cros, G.; Lacombe-Barrios, J.; Barsalou, J.; Yang, N.; Alrumayyan, N.; Sinclair, J.; et al. Rituximab-induced hypogammaglobulinemia and infection risk in pediatric patients. J. Allergy Clin. Immunol. 2021, 148, 523–532.e8. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.N.; Israelsen, R.B.; Williamson, K.; Hsieh, E.W. Hypogammaglobulinemia after rituximab therapy in children. Ann. Allergy Asthma Immunol. 2022, 128, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Minard-Colin, V.; Aupérin, A.; Pillon, M.; Burke, G.A.A.; Barkauskas, D.A.; Wheatley, K.; Delgado, R.F.; Alexander, S.; Uyttebroeck, A.; Bollard, C.M.; et al. Rituximab for High-Risk, Mature B-Cell Non-Hodgkin’s Lymphoma in Children. N. Engl. J. Med. 2020, 382, 2207–2219. [Google Scholar] [CrossRef] [PubMed]
- Guérin, V.; Yakouben, K.; Lescoeur, B.; Pédron, B.; Dalle, J.-H.; Baruchel, A.; Sterkers, G. Prolonged Agammaglobulinemia Despite Unaltered B-Cell Lymphopoiesis After Peritransplant-Rituximab Administration in a Child. Transplantation 2008, 86, 1322–1323. [Google Scholar] [CrossRef]
- Masjosthusmann, K.; Ehlert, K.; Eing, B.R.; Roth, J.; Koehler, G.; Juergens, H.; Fruehwald, M.; Groll, A.H. Delay in B-lymphocyte recovery and function following rituximab for EBV-associated lymphoproliferative disease early post-allogeneic hematopoietic SCT. Bone Marrow Transplant. 2009, 43, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Imashuku, S.; Teramura, T.; Morimoto, A.; Naya, M.; Kuroda, H. Prolonged hypogammaglobulinemia following rituximab treatment for post transplant Epstein–Barr virus-associated lymphoproliferative disease. Bone Marrow Transplant. 2004, 33, 129–130. [Google Scholar] [CrossRef]
- Lum, S.H.; Selvarajah, S.; Deya-Martinez, A.; McNaughton, P.; Sobh, A.; Waugh, S.; Burton-Fanning, S.; Newton, L.; Gandy, J.; Nademi, Z.; et al. Outcome of autoimmune cytopenia after hematopoietic cell transplantation in primary immunodeficiency. J. Allergy Clin. Immunol. 2020, 146, 406–416. [Google Scholar] [CrossRef]
- Luterbacher, F.; Bernard, F.; Baleydier, F.; Ranza, E.; Jandus, P.; Blanchard-Rohner, G. Case Report: Persistent Hypogammaglobulinemia More Than 10 Years After Rituximab Given Post-HSCT. Front. Immunol. 2021, 12, 773853. [Google Scholar] [CrossRef]
- Alt, F.W.; Zhang, Y.; Meng, F.-L.; Guo, C.; Schwer, B. Mechanisms of Programmed DNA Lesions and Genomic Instability in the Immune System. Cell 2013, 152, 417–429. [Google Scholar] [CrossRef]
- Helfricht, A.; Thijssen, P.E.; Rother, M.B.; Shah, R.G.; Du, L.; Takada, S.; Rogier, M.; Moritz, J.; Ijspeert, H.; Stoepker, C.; et al. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J. Exp. Med. 2020, 217, e20191688. [Google Scholar] [CrossRef] [PubMed]
- Schatorjé, E.J.H.; Gemen, E.F.A.; Driessen, G.J.A.; Leuvenink, J.; van Hout, R.W.N.M.; de Vries, E. Paediatric Reference Values for the Peripheral T cell Compartment. Scand. J. Immunol. 2012, 75, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Khojah, A.M.; Miller, M.L.; Klein-Gitelman, M.S.; Curran, M.L.; Hans, V.; Pachman, L.M.; Fuleihan, R.L. Rituximab-associated Hypogammaglobulinemia in pediatric patients with autoimmune diseases. Rheumatology 2019, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Marzuillo, P.; Guarino, S.; Esposito, T.; Di Sessa, A.; Orsini, S.I.; Capalbo, D.; del Giudice, E.M.; La Manna, A. Rituximab-induced IgG hypogammaglobulinemia in children with nephrotic syndrome and normal pre-treatment IgG values. World J. Clin. Cases 2019, 7, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Ottaviano, G.; Marinoni, M.; Graziani, S.; Sibson, K.; Barzaghi, F.; Bertolini, P.; Chini, L.; Corti, P.; Cancrini, C.; D’Alba, I.; et al. Rituximab Unveils Hypogammaglobulinemia and Immunodeficiency in Children with Autoimmune Cytopenia. J. Allergy Clin. Immunol. Pract. 2020, 8, 273–282. [Google Scholar] [CrossRef]
- Nishio, M.; Fujimoto, K.; Yamamoto, S.; Endo, T.; Sakai, T.; Obara, M.; Kumano, K.; Minauchi, K.; Yamaguchi, K.; Takeda, Y.; et al. Hypogammaglobulinemia with a selective delayed recovery in memory B cells and an impaired isotype expression after rituximab administration as an adjuvant to autologous stem cell transplantation for non-Hodgkin lymphoma. Eur. J. Haematol. 2006, 77, 226–232. [Google Scholar] [CrossRef]
- Marzollo, A.; Serena, T.; Mainardi, C.; Calore, E.; Pillon, M.; Carraro, E.B.; Tosato, F.; Biffi, A.; Tumino, M. Hypogammaglobulinemia in Children after Hematopoietic Stem Cell Transplantation and Rituximab Treatment: Relevance of B Cell Subsets. J. Pediatr. Hematol. 2023, 45, e145–e149. [Google Scholar] [CrossRef]
- Reddy, V.; Cambridge, G.; Isenberg, D.A.; Glennie, M.J.; Cragg, M.S.; Leandro, M. Internalization of Rituximab and the Efficiency of B Cell Depletion in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Arthritis Rheumatol. 2015, 67, 2046–2055. [Google Scholar] [CrossRef]
- Morita, R.; Schmitt, N.; Bentebibel, S.-E.; Ranganathan, R.; Bourdery, L.; Zurawski, G.; Foucat, E.; Dullaers, M.; Oh, S.; Sabzghabaei, N.; et al. Human Blood CXCR5+CD4+ T Cells Are Counterparts of T Follicular Cells and Contain Specific Subsets that Differentially Support Antibody Secretion. Immunity 2011, 34, 108–121. [Google Scholar] [CrossRef]
- Cagigi, A.; Du, L.; Dang, L.V.P.; Grutzmeier, S.; Atlas, A.; Chiodi, F.; Pan-Hammarström, Q.; Nilsson, A. CD27− B-Cells Produce Class Switched and Somatically Hyper-Mutated Antibodies during Chronic HIV-1 Infection. PLoS ONE 2009, 4, e5427. [Google Scholar] [CrossRef] [PubMed]
UPN | 521 | 719 | 809 | 892 | |
---|---|---|---|---|---|
Underlying disease | primary HLH | preB-ALL | RAG1 deficiency | primary HLH | |
Donor type | 10/10 MUD-PBSC | 10/10 MUD-BM | 10/10 MUD-BM | 10/10 MUD-PBSC | |
Age (in years) at SCT | 2.9 | 2.1 | 3.1 | 1.4 | |
Number of RTX dosages (375 mg/m2) | 2 | 1 | 2 | 2 | |
Last RTX dose, days after SCT | 58 | 28 | 30 | 185 | |
Indication | EBV | EBV | AIHA+EBV | AIHA | |
Current duration hypogammaglobulinemia | 19 years | 13 years | 11 years | recovery after 6 years | |
IVIG dep. | IVIG indep. | ||||
Age (in years) at sample date | 21.5 | 2.9 | 12.4 | 3.3 | 7.8 |
IgA | <0.06 | <0.06 | <0.04 | 0.52 | 0.51 |
IgM | 1.76 | 0.68 | 9.99 | 0.52 | 2.08 |
IgG | 6.5 * | 3.57 | 9.7 * | 2.72 | 7.8 |
B cells (CD19+) | 269 | 438 | 215 | 325 | 450 |
B transitional (CD38hi/CD24hi) | 1 ↓ | 33 | 22 | 21 ↓ | 3 ↓ |
B naive mature (CD38dim/CD24dim/IgD+/CD27−) | 213 | 343 | 165 | 269 | 383 |
B natural effector (CD38dim/IgD+/CD27+) | 15 | 9 ↓ | 2 ↓ | 6 ↓ | 21 |
B memory (CD38dim/IgD−/CD27+) | 14 | 12 ↓ | 5 ↓ | 3 ↓ | 14 |
B memory IgM | 86 ↑ | 92 ↑ | 93 ↑ | 88 ↑ | 67 ↑ |
B memory IgG | 11 ↓ | 0 ↓ | 0 ↓ | 0 ↓ | 23 |
B memory IgA | 0 ↓ | 0 ↓ | 0 ↓ | 6 | 2 ↓ |
NK (CD56+) | 97 | 207 | 146 | 131 | 534 |
T cells (CD3+) | 1962 | 1340 | 1835 | 4161 | 2703 |
CD4+ T cells (T4) | 894 | 600 | 860 | 1115 | 1097 |
TfH (CXCR5+) | 89 | 49 | 30 | 21 | 59 |
CD8+ T cells | 834 | 641 | 691 | 2311 ↑ | 1227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ott de Bruin, L.M.; Pico-Knijnenburg, I.; van Ostaijen-ten Dam, M.M.; Weitering, T.J.; Berghuis, D.; Bredius, R.G.M.; Lankester, A.C.; van der Burg, M. Persistent Hypogammaglobulinemia after Receiving Rituximab Post-HSCT Is Not Caused by an Intrinsic B Cell Defect. Int. J. Mol. Sci. 2023, 24, 16012. https://doi.org/10.3390/ijms242116012
Ott de Bruin LM, Pico-Knijnenburg I, van Ostaijen-ten Dam MM, Weitering TJ, Berghuis D, Bredius RGM, Lankester AC, van der Burg M. Persistent Hypogammaglobulinemia after Receiving Rituximab Post-HSCT Is Not Caused by an Intrinsic B Cell Defect. International Journal of Molecular Sciences. 2023; 24(21):16012. https://doi.org/10.3390/ijms242116012
Chicago/Turabian StyleOtt de Bruin, Lisa M., Ingrid Pico-Knijnenburg, Monique M. van Ostaijen-ten Dam, Thomas J. Weitering, Dagmar Berghuis, Robbert G. M. Bredius, Arjan C. Lankester, and Mirjam van der Burg. 2023. "Persistent Hypogammaglobulinemia after Receiving Rituximab Post-HSCT Is Not Caused by an Intrinsic B Cell Defect" International Journal of Molecular Sciences 24, no. 21: 16012. https://doi.org/10.3390/ijms242116012
APA StyleOtt de Bruin, L. M., Pico-Knijnenburg, I., van Ostaijen-ten Dam, M. M., Weitering, T. J., Berghuis, D., Bredius, R. G. M., Lankester, A. C., & van der Burg, M. (2023). Persistent Hypogammaglobulinemia after Receiving Rituximab Post-HSCT Is Not Caused by an Intrinsic B Cell Defect. International Journal of Molecular Sciences, 24(21), 16012. https://doi.org/10.3390/ijms242116012