Exposure to Chlorpyrifos Alters Proliferation, Differentiation and Fatty Acid Uptake in 3T3-L1 Cells
Abstract
:1. Introduction
2. Results
2.1. Effect of CPF on Viability and Proliferation of 3T3-L1 Cells In Vitro
2.2. Effect of CPF on Differentiation of 3T3-L1 Cells to Adipocytes
2.3. Effect of CPF on Expression of Adipogenesis Promoting Genes
2.4. Effect of CPF on Free Fatty Acid Uptake in Adipocytes
2.4.1. Exposure of Fully Differentiated Adipocytes to CPF
2.4.2. Exposure of 3T3-L1 Cells to CPF during Differentiation
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Differentiation
4.2. Cell Viability and Proliferation Assessment—MTT Assay
4.3. Cell Viability and Proliferation Assessment—NR Assay
4.4. Cell Proliferation—BrdU Assay
4.5. Oil Red O Staining
4.6. Isolation of Total RNA
4.7. Real-Time RT-PCR Quantification of Gene Expression
4.8. Fatty Acid Uptake
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 1 September 2023).
- Meldrum, D.R.; Morris, M.A.; Gambone, J.C. Obesity pandemic: Causes, consequences, and solutions-but do we have the will? Fertil. Steril. 2017, 107, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.E.; Tchernof, A.; Després, J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef] [PubMed]
- Aras, M.; Tchang, B.G.; Pape, J. Obesity and Diabetes. Nurs. Clin. N. Am. 2021, 56, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Naughton, S.X.; Terry, A.V., Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018, 408, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Daroff, R.B.; Autrup, H.; Bridges, J.; Buffler, P.; Costa, L.G.; Coyle, J.; McKhann, G.; Mobley, W.C.; Nadel, L.; et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit. Rev. Toxicol. 2008, 38 (Suppl. 2), 1–125. [Google Scholar] [CrossRef]
- Saulsbury, M.D.; Heyliger, S.O.; Wang, K.; Johnson, D.J. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicology 2009, 259, 1–9. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, G.; Li, X.B.; Liu, S. Genotoxicity evaluation of chlorpyrifos to amphibian Chinese toad (Amphibian: Anura) by Comet assay and Micronucleus test. Mutat. Res. 2009, 680, 2–6. [Google Scholar] [CrossRef]
- Wang, X.; Shen, M.; Zhou, J.; Jin, Y. Chlorpyrifos disturbs hepatic metabolism associated with oxidative stress and gut microbiota dysbiosis in adult zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 216, 19–28. [Google Scholar] [CrossRef]
- Riaz, A.; Ulhaq, M.; Khan, I.A.; Khan, A.; Hussain, R.; Yousaf, A.; Muhammad, F. Chlorpyrifos Induced Dermal Toxicity in Albino Rabbits. Pak. Vet. J. 2018, 38, 91–95. [Google Scholar] [CrossRef]
- Darwiche, W.; Gay-Quéheillard, J.; Delanaud, S.; El Khayat El Sabbouri, H.; Khachfe, H.; Joumaa, W.; Bach, V.; Ramadan, W. Impact of chronic exposure to the pesticide chlorpyrifos on respiratory parameters and sleep apnea in juvenile and adult rats. PLoS ONE 2018, 13, e0191237. [Google Scholar] [CrossRef]
- Ezzi, L.; Belhadj Salah, I.; Haouas, Z.; Sakly, A.; Grissa, I.; Chakroun, S.; Kerkeni, E.; Hassine, M.; Mehdi, M.; Ben Cheikh, H. Histopathological and genotoxic effects of chlorpyrifos in rats. Environ. Sci. Pollut. Res. Int. 2016, 23, 4859–4867. [Google Scholar] [CrossRef]
- Aroonvilairat, S.; Tangjarukij, C.; Sornprachum, T.; Chaisuriya, P.; Siwadune, T.; Ratanabanangkoon, K. Effects of topical exposure to a mixture of chlorpyrifos, cypermethrin and captan on the hematological and immunological systems in male Wistar rats. Environ. Toxicol. Pharmacol. 2018, 59, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Uzun, F.G.; Demir, F.; Kalender, S.; Bas, H.; Kalender, Y. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem. Toxicol. 2010, 48, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.; Khatib, I.; Kasianchuk, N.; Lushchak, O.; Horyn, O.; Sokolova, I.M. Toxic effects and mechanisms of common pesticides (Roundup and chlorpyrifos) and their mixtures in a zebrafish model (Danio rerio). Sci. Total. Environ. 2022, 833, 155236. [Google Scholar] [CrossRef] [PubMed]
- Owumi, S.E.; Dim, U.J. Manganese suppresses oxidative stress, inflammation and caspase-3 activation in rats exposed to chlorpyrifos. Toxicol. Rep. 2019, 6, 202–209. [Google Scholar] [CrossRef]
- Ismail, A.A.; Hendy, O.; Abdel Rasoul, G.; Olson, J.R.; Bonner, M.R.; Rohlman, D.S. Acute and Cumulative Effects of Repeated Exposure to Chlorpyrifos on the Liver and Kidney Function among Egyptian Adolescents. Toxics 2021, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Karunanayake, C.P.; Spinelli, J.J.; McLaughlin, J.R.; Dosman, J.A.; Pahwa, P.; McDuffie, H.H. Hodgkin lymphoma and pesticides exposure in men: A Canadian case-control study. J. Agromed. 2012, 17, 30–39. [Google Scholar] [CrossRef]
- Watts, M. Chlorpyrifos as a Possible Global POP; Pesticide Action Network North America: Berkeley, CA, USA, 2012. [Google Scholar]
- Alavanja, M.C.; Samanic, C.; Dosemeci, M.; Lubin, J.; Tarone, R.; Lynch, C.F.; Knott, C.; Thomas, K.; Hoppin, J.A.; Barker, J.; et al. Use of agricultural pesticides and prostate cancer risk in the Agricultural Health Study cohort. Am. J. Epidemiol. 2003, 157, 800–814. [Google Scholar] [CrossRef]
- Gotoh, M.; Saito, I.; Huang, J.; Fukaya, Y.; Matsumoto, T.; Hisanaga, N.; Shibata, E.; Ichihara, G.; Kamijima, M.; Takeuchi, Y. Changes in cholinesterase activity, nerve conduction velocity, and clinical signs and symptoms in termite control operators exposed to chlorpyrifos. J. Occup. Health 2001, 43, 157–164. [Google Scholar] [CrossRef]
- Czajka, M.; Matysiak-Kucharek, M.; Jodłowska-Jędrych, B.; Sawicki, K.; Fal, B.; Drop, B.; Kruszewski, M.; Kapka-Skrzypczak, L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. Environ. Res. 2019, 178, 108685. [Google Scholar] [CrossRef]
- Pinos, H.; Carrillo, B.; Merchán, A.; Biosca-Brull, J.; Pérez-Fernández, C.; Colomina, M.T.; Sánchez-Santed, F.; Martín-Sánchez, F.; Collado, P.; Arias, J.L.; et al. Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7170. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.M.; Kuo, Y.; Blumberg, B. Agrochemicals and obesity. Mol. Cell Endocrinol. 2020, 515, 110926. [Google Scholar] [CrossRef] [PubMed]
- Collotta, M.; Bertazzi, P.A.; Bollati, V. Epigenetics and pesticides. Toxicology 2013, 307, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A.; Portincasa, P. Diet and Contaminants: Driving the Rise to Obesity Epidemics? Curr. Med. Chem. 2019, 26, 3471–3482. [Google Scholar] [CrossRef]
- Available online: https://www.atcc.org/products/cl-173 (accessed on 1 September 2023).
- Armani, A.; Mammi, C.; Marzolla, V.; Calanchini, M.; Antelmi, A.; Rosano, G.M.; Fabbri, A.; Caprio, M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J. Cell. Biochem. 2010, 110, 564–572. [Google Scholar] [CrossRef]
- Pereira-Fernandes, A.; Demaegdt, H.; Vandermeiren, K.; Hectors, T.L.; Jorens, P.G.; Blust, R.; Vanparys, C. Evaluation of a screening system for obesogenic compounds: Screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. PLoS ONE 2013, 8, e77481. [Google Scholar] [CrossRef]
- Pereira-Fernandes, A.; Vanparys, C.; Hectors, T.L.; Vergauwen, L.; Knapen, D.; Jorens, P.G.; Blust, R. Unraveling the mode of action of an obesogen: Mechanistic analysis of the model obesogen tributyltin in the 3T3-L1 cell line. Mol. Cell. Endocrinol. 2013, 370, 52–64. [Google Scholar] [CrossRef]
- Pereira-Fernandes, A.; Vanparys, C.; Vergauwen, L.; Knapen, D.; Jorens, P.G.; Blust, R. Toxicogenomics in the 3T3-L1 cell line, a new approach for screening of obesogenic compounds. Toxicol. Sci. 2014, 140, 352–363. [Google Scholar] [CrossRef]
- Morigny, P.; Boucher, J.; Arner, P.; Langin, D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 2021, 17, 276–295. [Google Scholar] [CrossRef]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef]
- Nakadai, A.; Li, Q.; Kawada, T. Chlorpyrifos induces apoptosis in human monocyte cell line U937. Toxicology 2006, 224, 202–209. [Google Scholar] [CrossRef]
- Li, Q.; Kobayashi, M.; Kawada, T. Chlorpyrifos induces apoptosis in human T cells. Toxicology 2009, 255, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Raszewski, G.; Lemieszek, M.K.; Łukawski, K.; Juszczak, M.; Rzeski, W. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin. Pharmacol. Toxicol. 2015, 116, 158–167. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Bhanwer, A.J.; Puri, S. Retinoic acid exacerbates chlorpyrifos action in ensuing adipogenic differentiation of C3H10T½ cells in a GSK3β dependent pathway. PLoS ONE 2017, 12, e0173031. [Google Scholar] [CrossRef]
- Thakur, S.; Dhiman, M.; Mantha, A.K. APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol. Cell. Biochem. 2018, 441, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Želježić, D.; Mladinić, M.; Žunec, S.; Lucić Vrdoljak, A.; Kašuba, V.; Tariba, B.; Živković, T.; Marjanović, A.M.; Pavičić, I.; Milić, M.; et al. Cytotoxic, genotoxic and biochemical markers of insecticide toxicity evaluated in human peripheral blood lymphocytes and an HepG2 cell line. Food Chem. Toxicol. 2016, 96, 90–106. [Google Scholar] [CrossRef]
- Goel, A.; Dani, V.; Dhawan, D.K. Chlorpyrifos-induced alterations in the activities of carbohydrate metabolizing enzymes in rat liver: The role of zinc. Toxicol. Lett. 2006, 163, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Narra, M.R.; Begum, G.; Rajender, K.; Rao, J.V. Toxic impact of two organophosphate insecticides on biochemical parameters of a food fish and assessment of recovery response. Toxicol. Ind. Health 2012, 28, 343–352. [Google Scholar] [CrossRef]
- Blanco, J.; Guardia-Escote, L.; Mulero, M.; Basaure, P.; Biosca-Brull, J.; Cabré, M.; Colomina, M.T.; Domingo, J.L.; Sánchez, D.J. Obesogenic effects of chlorpyrifos and its metabolites during the differentiation of 3T3-L1 preadipocytes. Food Chem. Toxicol. 2020, 137, 111171. [Google Scholar] [CrossRef]
- Ventura, C.; Núñez, M.; Miret, N.; Martinel Lamas, D.; Randi, A.; Venturino, A.; Rivera, E.; Cocca, C. Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicol. Lett. 2012, 213, 184–193. [Google Scholar] [CrossRef]
- Garrido-Pascual, P.; Alonso-Varona, A.; Castro, B.; Burón, M.; Palomares, T. H2O2-preconditioned human adipose-derived stem cells (HC016) increase their resistance to oxidative stress by overexpressing Nrf2 and bioenergetic adaptation. Stem Cell Res. Ther. 2020, 11, 335. [Google Scholar] [CrossRef]
- Ventura, C.; Venturino, A.; Miret, N.; Randi, A.; Rivera, E.; Núñez, M.; Cocca, C. Chlorpyrifos inhibits cell proliferation through ERK1/2 phosphorylation in breast cancer cell lines. Chemosphere 2015, 120, 343–350. [Google Scholar] [CrossRef]
- Lee, J.E.; Park, J.H.; Shin, I.C.; Koh, H.C. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol. Appl. Pharmacol. 2012, 263, 148–162. [Google Scholar] [CrossRef]
- Shou, L.; Bei, Y.; Song, Y.; Wang, L.; Ai, L.; Yan, Q.; He, W. Nrf2 mediates the protective effect of edaravone after chlorpyrifos-induced nervous system toxicity. Environ. Toxicol. 2019, 34, 626–633. [Google Scholar] [CrossRef]
- Amani, N.; Soodi, M.; Daraei, B.; Dashti, A. Chlorpyrifos Toxicity in Mouse Cultured Cerebellar Granule Neurons at Different Stages of Development: Additive Effect on Glutamate-Induced Excitotoxicity. Cell J. 2016, 18, 464–472. [Google Scholar] [CrossRef]
- Gupta, S.C.; Mishra, M.; Sharma, A.; Deepak Balaji, T.G.; Kumar, R.; Mishra, R.K.; Chowdhuri, D.K. Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicol. Environ. Saf. 2010, 73, 1415–1423. [Google Scholar] [CrossRef]
- Mesbahzadeh, B.; Salarjavan, H.; Samarghandian, S.; Farkhondeh, T. Chlorpyrifos with Age-Dependent Effects in Cardiac Tissue of Male Rats. Curr. Mol. Pharmacol. 2021, 14, 894–899. [Google Scholar] [CrossRef]
- Meggs, W.J.; Brewer, K.L. Weight gain associated with chronic exposure to chlorpyrifos in rats. J. Med. Toxicol. 2007, 3, 89–93. [Google Scholar] [CrossRef]
- Suriyo, T.; Tachachartvanich, P.; Visitnonthachai, D.; Watcharasit, P.; Satayavivad, J. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway. Toxicology 2015, 338, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Madsen, M.S.; Siersbæk, R.; Boergesen, M.; Nielsen, R.; Mandrup, S. Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol. Cell. Biol. 2014, 34, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Ntambi, J.M.; Young-Cheul, K. Adipocyte differentiation and gene expression. J. Nutr. 2000, 130, 3122S–3126S. [Google Scholar] [CrossRef]
- Rosen, E.D. The transcriptional basis of adipocyte development. Prostaglandins Leukot. Essent. Fatty Acids 2005, 73, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Taxvig, C.; Dreisig, K.; Boberg, J.; Nellemann, C.; Schelde, A.B.; Pedersen, D.; Boergesen, M.; Mandrup, S.; Vinggaard, A.M. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation. Mol. Cell. Endocrinol. 2012, 361, 106–115. [Google Scholar] [CrossRef]
- Martini, C.N.; Gabrielli, M.; Vila Mdel, C. A commercial formulation of glyphosate inhibits proliferation and differentiation to adipocytes and induces apoptosis in 3T3-L1 fibroblasts. Toxicol. Vitr. 2012, 26, 1007–1013. [Google Scholar] [CrossRef]
- Martini, C.N.; Gabrielli, M.; Brandani, J.N.; Vila Mdel, C. Glyphosate Inhibits PPAR Gamma Induction and Differentiation of Preadipocytes and is able to Induce Oxidative Stress. J. Biochem. Mol. Toxicol. 2016, 30, 404–413. [Google Scholar] [CrossRef]
- Howell, G.E., 3rd; Mulligan, C.; Young, D.; Kondakala, S. Exposure to chlorpyrifos increases neutral lipid accumulation with accompanying increased de novo lipogenesis and decreased triglyceride secretion in McArdle-RH7777 hepatoma cells. Toxicol. Vitr. 2016, 32, 181–189. [Google Scholar] [CrossRef]
- He, W.; Guo, W.; Qian, Y.; Zhang, S.; Ren, D.; Liu, S. Synergistic hepatotoxicity by cadmium and chlorpyrifos: Disordered hepatic lipid homeostasis. Mol. Med. Rep. 2015, 12, 303–308. [Google Scholar] [CrossRef]
- Howell, G., 3rd; Mangum, L. Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells. Toxicol. Vitr. 2011, 25, 394–402. [Google Scholar] [CrossRef]
- Donato, M.M.; Antunes-Madeira, M.C.; Jurado, A.S.; Madeira, V.M. Partition of DDT and DDE into membranes and extracted lipids of Bacillus stearothermophilus. Bull. Environ. Contam. Toxicol. 1997, 59, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Donato, M.M.; Jurado, A.S.; Antunes-Madeira, M.C.; Madeira, V.M. Effects of a lipophilic environmental pollutant (DDT) on the phospholipid and fatty acid contents of Bacillus stearothermophilus. Arch. Environ. Contam. Toxicol. 1997, 33, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.atcc.org/resources/technical-documents/chemically-induced-method-of-adipogenesis (accessed on 9 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czajka, M.; Sawicki, K.; Matysiak-Kucharek, M.; Kruszewski, M.; Kurzepa, J.; Wojtyła-Buciora, P.; Kapka-Skrzypczak, L. Exposure to Chlorpyrifos Alters Proliferation, Differentiation and Fatty Acid Uptake in 3T3-L1 Cells. Int. J. Mol. Sci. 2023, 24, 16038. https://doi.org/10.3390/ijms242216038
Czajka M, Sawicki K, Matysiak-Kucharek M, Kruszewski M, Kurzepa J, Wojtyła-Buciora P, Kapka-Skrzypczak L. Exposure to Chlorpyrifos Alters Proliferation, Differentiation and Fatty Acid Uptake in 3T3-L1 Cells. International Journal of Molecular Sciences. 2023; 24(22):16038. https://doi.org/10.3390/ijms242216038
Chicago/Turabian StyleCzajka, Magdalena, Krzysztof Sawicki, Magdalena Matysiak-Kucharek, Marcin Kruszewski, Jacek Kurzepa, Paulina Wojtyła-Buciora, and Lucyna Kapka-Skrzypczak. 2023. "Exposure to Chlorpyrifos Alters Proliferation, Differentiation and Fatty Acid Uptake in 3T3-L1 Cells" International Journal of Molecular Sciences 24, no. 22: 16038. https://doi.org/10.3390/ijms242216038
APA StyleCzajka, M., Sawicki, K., Matysiak-Kucharek, M., Kruszewski, M., Kurzepa, J., Wojtyła-Buciora, P., & Kapka-Skrzypczak, L. (2023). Exposure to Chlorpyrifos Alters Proliferation, Differentiation and Fatty Acid Uptake in 3T3-L1 Cells. International Journal of Molecular Sciences, 24(22), 16038. https://doi.org/10.3390/ijms242216038