Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process
Abstract
:1. Introduction
2. Bronchial Asthma as One of the Precursors of Lung Fibrosis: Etiology, Pathogenesis, and Morphological Characteristics
2.1. Asthma Endotypes and Phenotypes
2.2. Etiology and Pathogenesis of Bronchial Asthma
2.3. Pathomorphological Changes in the Lungs during Asthma Development
3. Morphological Characteristics and Molecular Mechanisms of Asthma-Associated Airway Remodeling and Lung Fibrosis
3.1. Airway Remodeling
3.2. Subepitelial Fibrosis as Irreversible Component of Airway Remodeling
3.3. Molecular Mechanisms of Asthma-Associated Lung Fibrosis
3.3.1. TGF-β
3.3.2. STAT-3
3.3.3. NF-κB
3.3.4. Peroxisome Proliferator-Activated Receptors (PPARs)
3.3.5. Protease-Activated Receptor-2 (PAR-2)
3.3.6. Fibroblast-to-Myofibroblast Transition (FMT)
4. Murine Models of Asthma and Asthma-Associated Lung Fibrosis
4.1. Ovalbumin (OVA)-Induced Asthma
4.2. House Dust Mite (HDM) and Other Allergenic Extract-Induced Asthma
5. Molecular Markers of Asthma Progression and Post-Asthmatic Fibrosis Development
- IL-8 (CXCL8) is an anti-inflammatory chemokine produced by a wide range of cell populations, such as leukocytes, epithelial, and endothelial cells, together with fibroblasts. It takes part in many human diseases, such as atherosclerosis, inflammatory bowel disease, sepsis, acute lung injury, and asthma [150]. Vascular endothelial growth factor A (VEGFA) is a member of the VEGF protein family. It is primarily a major regulator of both physiological and pathological angiogenesis. However, VEGFA has many additional functions, including monocyte chemoattraction, osteoclast-mediated bone formation, and neuronal protection [151]. In asthma, it has been reported that IL-8 and VEGFA could be used in tandem as biomarkers to distinguish between asthma, COPD, and ACO, since IL-8 was highly sensitive, while VEGFA was highly specific to the difference between ACO and non-ACO patients [152];
- YKL-40, also known as the human cartilage glycoprotein-39, is a chitinase-like enzyme detectable in serum and airways. It plays a diverse role in cell proliferation, differentiation, survival, inflammation, and tissue remodeling [153,154]. Expression levels of YKL-40 were found to correlate with the probability of severe asthma and irreversible airway obstruction in asthmatic patients [155,156]. Moreover, it was reported that YKL-40 expression increases during asthma exacerbations and could predict a decline in lung function [157];
- Tissue inhibitor of metalloproteinases 1 (TIMP-1) is a protein with multiple functions, with the primary being the preservation of tissue integrity through controlling matrix metalloproteinases. Its other functions include, but are not limited to, the regulation of wound healing [158], regulation of cell proliferation, and signal transduction [159]. In asthma pathogenesis, TIMP-1 enhances eosinophilic inflammation and promotes macrophage polarization toward the M2 phenotype in the airways. It was also found that high levels of serum TIMP-1 were negatively correlated with FEV1 values in patients with severe asthma [160];
- Neutrophil gelatinase-associated lipocalin (NGAL), also known as oncogene 24p3 or lipocalin 2, is a member of the lipocalin family involved in the regulation of cell division, differentiation, cell-to-cell adhesion, and survival. Its small size, secreted nature, and relative stability led to its investigation as a diagnostic and prognostic biomarker in numerous diseases [161]. NGAL also functions as an innate antibacterial factor in sputum. There are several reports that expression levels of NGAL can be a distinguishing marker between asthma, COPD, and ACO [162,163];
- Hemopexin is a plasma glycoprotein with one of the highest binding affinities to heme, functioning as a heme scavenger and a second line of defense against hemoglobin-mediated oxidative damage during intravascular hemolysis, after haptoglobin. Moreover, it is an acute phase protein, expressing predominately in the liver, with its synthesis increasing mainly during inflammation [164]. Additionally, the role of hemopexin in the central and peripheral nervous systems is currently being investigated [165]. A recent report has shown that among hemoplexin, ceruloplasmin, and haptoglobin levels in the serum, hemopexin was the best-performing biomarker in differentiating between COPD and asthmatic patients [166];
- Ncf1 protein, also known as p47phox, is a principal component of the NADPH oxidase 2 complex, which mediates the induction of ROS in response to inflammatory stimuli. It is confirmed, that Ncf1 is associated with a variety of chronic inflammatory diseases both in animals and humans, such as rheumatoid arthritis and systemic lupus erythematosus [167]. Regarding the role of Ncf1 in lung diseases, it was reported that patients with primary non-small cell lung cancer achieve longer progression-free survival with higher levels of Ncf1 [168]. In asthmatic diseases, Ncf1 regulates the development of allergic inflammation through the induction of T-regulatory cells and control of T-cell-mediated inflammation, while the deficit of the Ncf1 gene ameliorates asthma development in the mice and is correlated with asthma severity, which points to the possible role of Ncf1 as a prognostic asthma biomarker [169].
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez, C.A.; Qian, E.; Glendenning, L.M.; Reynero, K.M.; Kukan, E.N.; Cobb, B.A. Acute and chronic lung inflammation drives changes in epithelial glycans. Front. Immunol. 2023, 14, 1167908. [Google Scholar] [CrossRef] [PubMed]
- Salameh, L.; Mahmood, W.; Hamoudi, R.; Almazrouei, K.; Lochanan, M.; Seyhoglu, S.; Mahboub, B. The Role of Vitamin D Supplementation on Airway Remodeling in Asthma: A Systematic Review. Nutrients 2023, 15, 2477. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Choi, S. Gene-Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. Int. J. Mol. Sci. 2023, 24, 12266. [Google Scholar] [CrossRef] [PubMed]
- Colombo, S.A.P.; Brown, S.L.; Hepworth, M.R.; Hankinson, J.; Granato, F.; Kitchen, S.J.; Hussell, T.; Simpson, A.; Cook, P.C.; MacDonald, A.S. Comparative phenotype of circulating versus tissue immune cells in human lung and blood compartments during health and disease. Discov. Immunol. 2023, 2, kyad009. [Google Scholar] [CrossRef]
- Wieczfinska, J.; Pawliczak, R. Anti-fibrotic effect of ciglitazone in HRV-induced airway remodelling cell model. J. Cell. Mol. Med. 2023, 27, 1867–1879. [Google Scholar] [CrossRef]
- Rimkunas, A.; Januskevicius, A.; Vasyle, E.; Palacionyte, J.; Janulaityte, I.; Miliauskas, S.; Malakauskas, K. Blood Inflammatory-like and Lung Resident-like Eosinophils Affect Migration of Airway Smooth Muscle Cells and Their ECM-Related Proliferation in Asthma. Int. J. Mol. Sci. 2023, 24, 3469. [Google Scholar] [CrossRef]
- Abohalaka, R. Bronchial Epithelial and Airway Smooth Muscle Cell Interactions in Health and Disease. Heliyon 2023, 9, e19976. [Google Scholar] [CrossRef]
- Paw, M.; Wnuk, D.; Madeja, Z.; Michalik, M. PPARδ Agonist GW501516 Suppresses the TGF-β-Induced Profibrotic Response of Human Bronchial Fibroblasts from Asthmatic Patients. Int. J. Mol. Sci. 2023, 24, 7721. [Google Scholar] [CrossRef]
- Mauad, T.; Silva, L.F.F.; Santos, M.A.; Grinberg, L.; Bernardi, F.D.C.; Martins, M.A.; Saldiva, P.H.N.; Dolhnikoff, M. Abnormal alveolar attachments with decreased elastic fiber content in distal lung in fatal asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 857–862. [Google Scholar] [CrossRef]
- Pechkovsky, D.V.; Hackett, T.L.; An, S.S.; Shaheen, F.; Murray, L.A.; Knight, D.A. Human lung parenchyma but not proximal bronchi produces fibroblasts with enhanced TGF-β signaling and α-SMA expression. Am. J. Respir. Cell Mol. Biol. 2010, 43, 641–651. [Google Scholar] [CrossRef]
- Tsukui, T.; Sun, K.H.; Wetter, J.B.; Wilson-Kanamori, J.R.; Hazelwood, L.A.; Henderson, N.C.; Adams, T.S.; Schupp, J.C.; Poli, S.D.; Rosas, I.O.; et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 2020, 11, 1920. [Google Scholar] [CrossRef] [PubMed]
- Pascual, R.M.; Peters, S.P. The irreversible component of persistent asthma. J. Allergy Clin. Immunol. 2009, 124, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, J.; Espuela-Ortiz, A.; Lorenzo-Diaz, F.; Pino-Yanes, M. Pharmacogenetics of Pediatric Asthma: Current Perspectives. Pharmgenom. Pers. Med. 2020, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Sethi, G.S.; Naura, A.S. Progressive increase in allergen concentration abrogates immune tolerance in ovalbumin-induced murine model of chronic asthma. Int. Immunopharmacol. 2018, 60, 121–131. [Google Scholar] [CrossRef]
- Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; Abegaz, K.H.; Abolhassani, H.; Aboyans, V.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Stern, J.; Pier, J.; Litonjua, A.A. Asthma epidemiology and risk factors. Semin. Immunopathol. 2020, 42, 5–15. [Google Scholar] [CrossRef]
- Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of asthma in children and adults. Front. Pediatr. 2019, 7, 246. [Google Scholar] [CrossRef]
- Agache, I.; Akdis, C.A. Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine. Allergol. Int. 2016, 65, 243–252. [Google Scholar] [CrossRef]
- Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef]
- Borish, L. The immunology of asthma: Asthma phenotypes and their implications for personalized treatment. Ann. Allergy Asthma Immunol. 2016, 117, 108–114. [Google Scholar] [CrossRef]
- McIntyre, A.P.; Viswanathan, R.K. Phenotypes and Endotypes in Asthma. Adv. Exp. Med. Biol. 2023, 1426, 119–142. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; D’Agostino, R.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.; et al. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am. J. Respir. Crit. Care Med. 2010, 181, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Hastie, A.T.; Moore, W.C.; Meyers, D.A.; Vestal, P.L.; Li, H.; Peters, S.P.; Bleecker, E.R. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J. Allergy Clin. Immunol. 2010, 125, 1028–1036.e13. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, K.M.; Cahill, K.N.; Katz, H.R.; Murphy, K.C.; Feng, C.; Lee-Sarwar, K.; Lai, J.; Bhattacharyya, N.; Israel, E.; Boyce, J.A.; et al. Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 2016, 137, 1566–1576.e5. [Google Scholar] [CrossRef]
- Carr, T.F.; Kraft, M. Chronic Infection and Severe Asthma. Immunol. Allergy Clin. 2016, 36, 483–502. [Google Scholar] [CrossRef]
- Fitzpatrick, A.M.; Chipps, B.E.; Holguin, F.; Woodruff, P.G. T2-“Low” Asthma: Overview and Management Strategies. J. Allergy Clin. Immunol. Pract. 2020, 8, 452–463. [Google Scholar] [CrossRef]
- Mims, J.W. Asthma: Definitions and pathophysiology. Int. Forum Allergy Rhinol. 2015, 5, S2–S6. [Google Scholar] [CrossRef]
- Holloway, J.W.; Yang, I.A.; Holgate, S.T. Genetics of allergic disease. J. Allergy Clin. Immunol. 2010, 125, S81–S94. [Google Scholar] [CrossRef]
- Bunyavanich, S.; Schadt, E.E. Systems biology of asthma and allergic diseases: A multiscale approach. J. Allergy Clin. Immunol. 2015, 135, 31–42. [Google Scholar] [CrossRef]
- Tohidinik, H.R.; Mallah, N.; Takkouche, B. History of allergic rhinitis and risk of asthma; a systematic review and meta-analysis. World Allergy Organ. J. 2019, 12, 100069. [Google Scholar] [CrossRef]
- Turek, E.M.; Cox, M.J.; Hunter, M.; Hui, J.; James, P.; Willis-Owen, S.A.G.; Cuthbertson, L.; James, A.; Musk, A.W.; Moffatt, M.F.; et al. Airway microbial communities, smoking and asthma in a general population sample. EBioMedicine 2021, 71, 103538. [Google Scholar] [CrossRef]
- Pfeffer, P.E.; Mudway, I.S.; Grigg, J. Air Pollution and Asthma: Mechanisms of Harm and Considerations for Clinical Interventions. Chest 2021, 159, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
- Miethe, S.; Karsonova, A.; Karaulov, A.; Renz, H. Obesity and asthma. J. Allergy Clin. Immunol. 2020, 146, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Bernstein, J.A. Occupational asthma: An overview topical collection on occupational allergies. Curr. Allergy Asthma Rep. 2014, 14, 431. [Google Scholar] [CrossRef] [PubMed]
- Malo, J.L.; Vandenplas, O. Definitions and Classification of Work-Related Asthma. Immunol. Allergy Clin. 2011, 31, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T.; Wenzel, S.; Postma, D.S.; Weiss, S.T.; Renz, H.; Sly, P.D. Asthma. Nat. Rev. Dis. Prim. 2015, 1, 15025. [Google Scholar] [CrossRef]
- Valero, A.; Quirce, S.; Dávila, I.; Delgado, J.; Domínguez-Ortega, J. Allergic respiratory disease: Different allergens, different symptoms. Allergy 2017, 72, 1306–1316. [Google Scholar] [CrossRef]
- Wu, L.C.; Zarrin, A.A. The production and regulation of IgE by the immune system. Nat. Rev. Immunol. 2014, 14, 247–259. [Google Scholar] [CrossRef]
- Sallmann, E.; Reininger, B.; Brandt, S.; Duschek, N.; Hoflehner, E.; Garner-Spitzer, E.; Platzer, B.; Dehlink, E.; Hammer, M.; Holcmann, M.; et al. High-Affinity IgE Receptors on Dendritic Cells Exacerbate Th2-Dependent Inflammation. J. Immunol. 2011, 187, 164–171. [Google Scholar] [CrossRef]
- Bax, H.J.; Keeble, A.H.; Gould, H.J. Cytokinergic IgE action in mast cell activation. Front. Immunol. 2012, 3, 229. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. The airway epithelium in asthma. Nat. Med. 2012, 18, 684–692. [Google Scholar] [CrossRef]
- Johansson, M.W. Activation states of blood eosinophils in asthma. Clin. Exp. Allergy 2014, 44, 482–498. [Google Scholar] [CrossRef]
- Broide, D. New perspectives on mechanisms underlying chronic allergic inflammation and asthma in 2007. J. Allergy Clin. Immunol. 2008, 122, 475–480. [Google Scholar] [CrossRef]
- Holt, P.G.; Strickland, D.H.; Bosco, A.; Jahnsen, F.L. Pathogenic mechanisms of allergic inflammation: Atopic asthma as a paradigm. Adv. Immunol. 2009, 104, 51–113. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, M.J. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J. Clin. Investig. 2012, 122, 2741–2748. [Google Scholar] [CrossRef] [PubMed]
- McGee, H.S.; Agrawal, D.K. Naturally Occurring and Inducible T-Regulatory Cells Modulating Immune Response in Allergic Asthma. Am. J. Respir. Crit. Care Med. 2012, 180, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.P. Asthma Phenotypes: Nonallergic (Intrinsic) Asthma. J. Allergy Clin. Immunol. Pract. 2014, 2, 650–652. [Google Scholar] [CrossRef]
- Matucci, A.; Vultaggio, A.; Maggi, E.; Kasujee, I. Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir. Res. 2018, 19, 113. [Google Scholar] [CrossRef]
- Green, B.J.; Wiriyachaiporn, S.; Grainge, C.; Rogers, G.B.; Kehagia, V.; Lau, R.; Carroll, M.P.; Bruce, K.D.; Howarth, P.H. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS ONE 2014, 9, e100645. [Google Scholar] [CrossRef]
- Peters, M.C.; Mekonnen, Z.K.; Yuan, S.; Bhakta, N.R.; Woodruff, P.G.; Fahy, J.V. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J. Allergy Clin. Immunol. 2014, 133, 388–394.e5. [Google Scholar] [CrossRef]
- Uddin, M.; Nong, G.; Ward, J.; Seumois, G.; Prince, L.R.; Wilson, S.J.; Cornelius, V.; Dent, G.; Djukanović, R. Prosurvival activity for airway neutrophils in severe asthma. Thorax 2010, 65, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Artis, D.; Colonna, M.; Diefenbach, A.; Di Santo, J.P.; Rard Eberl, G.; Koyasu, S.; Locksley, R.M.; Mckenzie, A.N.J.; Mebius, R.E.; et al. Leading Edge Review Innate Lymphoid Cells: 10 Years On. Cell 2018, 174, 1054–1066. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, S.; Schulz-Kuhnt, A.; Neurath, M.F.; Atreya, I. Functional Contribution and Targeted Migration of Group-2 Innate Lymphoid Cells in Inflammatory Lung Diseases: Being at the Right Place at the Right Time. Front. Immunol. 2021, 12, 688879. [Google Scholar] [CrossRef]
- Mikami, Y.; Takada, Y.; Hagihara, Y.; Kanai, T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev. 2018, 42, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Bittar, H.E.T.; Yousem, S.A.; Wenzel, S.E. Pathobiology of severe asthma. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 511–545. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.O.; Husain, A.N.; Charbeneau, J.; Krishnan, J.A.; Hogarth, D.K. Endobronchial biopsy: A guide for asthma therapy selection in the era of bronchial thermoplasty. J. Asthma 2013, 50, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Dunican, E.M.; Watchorn, D.C.; Fahy, J.V. Autopsy and imaging studies of mucus in asthma: Lessons learned about disease mechanisms and the role of mucus in airflow obstruction. Ann. Am. Thorac. Soc. 2018, 15, S184–S191. [Google Scholar] [CrossRef]
- Thomas, B.; Rutman, A.; Hirst, R.A.; Haldar, P.; Wardlaw, A.J.; Bankart, J.; Brightling, C.E.; O’Callaghan, C. Ciliary dysfunction and ultrastructural abnormalities are features of severe asthma. J. Allergy Clin. Immunol. 2010, 126, 722–729.e2. [Google Scholar] [CrossRef]
- Lam, M.; Lamanna, E.; Bourke, J.E. Regulation of Airway Smooth Muscle Contraction in Health and Disease. In Advances in Experimental Medicine and Biology; Springer New York LLC: New York, NY, USA, 2019; Volume 1124, pp. 381–422. [Google Scholar]
- James, A.L.; Noble, P.B.; Drew, S.A.; Mauad, T.; Bai, T.R.; Abramson, M.J.; McKay, K.O.; Green, F.H.Y.; Elliot, J.G. Airway smooth muscle proliferation and inflammation in asthma. J. Appl. Physiol. 2018, 125, 1090–1096. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; He, C.; Chen, R.; Wei, L.; Meng, L.; Zhang, C. Emodin ameliorates ovalbumin-induced airway remodeling in mice by suppressing airway smooth muscle cells proliferation. Int. Immunopharmacol. 2020, 88, 106855. [Google Scholar] [CrossRef]
- Elliot, J.G.; Noble, P.B.; Mauad, T.; Bai, T.R.; Abramson, M.J.; McKay, K.O.; Green, F.H.Y.; James, A.L. Inflammation-dependent and independent airway remodelling in asthma. Respirology 2018, 23, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Mottais, A.; Riberi, L.; Falco, A.; Soccal, S.; Gohy, S.; De Rose, V. Epithelial–Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int. J. Mol. Sci. 2023, 24, 12412. [Google Scholar] [CrossRef] [PubMed]
- Broekema, M.; Timens, W.; Vonk, J.M.; Volbeda, F.; Lodewijk, M.E.; Hylkema, M.N.; Ten Hacken, N.H.T.; Postma, D.S. Persisting remodeling and less airway wall eosinophil activation in complete remission of asthma. Am. J. Respir. Crit. Care Med. 2011, 183, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Rodney, D.; Britt, J.; Ruwanpathirana, A.; Ford, M.L.; Lewis, B.W. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int. J. Mol. Sci. 2023, 24, 10451. [Google Scholar] [CrossRef]
- Potaczek, D.P.; Miethe, S.; Schindler, V.; Alhamdan, F.; Garn, H. Role of airway epithelial cells in the development of different asthma phenotypes. Cell. Signal. 2020, 69, 109523. [Google Scholar] [CrossRef]
- Reeves, S.R.; Kolstad, T.; Lien, T.-Y.; Elliott, M.; Ziegler, S.F.; Wight, T.N.; Debley, J.S. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J. Allergy Clin. Immunol. 2014, 134, 663. [Google Scholar] [CrossRef]
- Chakraborty, A.; Mastalerz, M.; Ansari, M.; Schiller, H.B.; Staab-Weijnitz, C.A. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022, 11, 1050. [Google Scholar] [CrossRef]
- Harkness, L.M.; Weckmann, M.; Kopp, M.; Becker, T.; Ashton, A.W.; Burgess, J.K. Tumstatin regulates the angiogenic and inflammatory potential of airway smooth muscle extracellular matrix. J. Cell. Mol. Med. 2017, 21, 3288. [Google Scholar] [CrossRef]
- Koopmans, T.; Crutzen, S.; Menzen, M.H.; Halayko, A.J.; Hackett, T.; Knight, D.A.; Gosens, R. Selective targeting of CREB-binding protein/β-catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle. Br. J. Pharmacol. 2016, 173, 3327. [Google Scholar] [CrossRef]
- Al-Muhsen, S.; Johnson, J.R.; Hamid, Q. Remodeling in asthma. J. Allergy Clin. Immunol. 2011, 128, 451–462. [Google Scholar] [CrossRef]
- Hsieh, A.; Assadinia, N.; Hackett, T.L. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front. Physiol. 2023, 14, 1113100. [Google Scholar] [CrossRef] [PubMed]
- Hough, K.P.; Curtiss, M.L.; Blain, T.J.; Liu, R.M.; Trevor, J.; Deshane, J.S.; Thannickal, V.J. Airway Remodeling in Asthma. Front. Med. 2020, 7, 191. [Google Scholar] [CrossRef] [PubMed]
- Mostaço-Guidolin, L.B.B.; Osei, E.T.T.; Ullah, J.; Hajimohammadi, S.; Fouadi, M.; Li, X.; Li, V.; Shaheen, F.; Yang, C.X.X.; Chu, F.; et al. Defective Fibrillar Collagen Organization by Fibroblasts Contributes to Airway Remodeling in Asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.T.; Lourenço, J.D.; Righetti, R.F.; Tibério, I.F.L.C.; Prado, C.M.; Lopes, F.D.T.Q.S. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019, 8, 342. [Google Scholar] [CrossRef]
- Liu, G.; Cooley, M.A.; Nair, P.M.; Donovan, C.; Hsu, A.C.; Jarnicki, A.G.; Haw, T.J.; Hansbro, N.G.; Ge, Q.; Brown, A.C.; et al. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J. Pathol. 2017, 243, 510–523. [Google Scholar] [CrossRef]
- Singh, S.; Dutta, J.; Ray, A.; Karmakar, A.; Mabalirajan, U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics 2023, 13, 808. [Google Scholar] [CrossRef]
- Joseph, C.; Tatler, A.L. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J. Asthma Allergy 2022, 15, 595. [Google Scholar] [CrossRef]
- Bajbouj, K.; Ramakrishnan, R.K.; Hamid, Q. Role of Matrix Metalloproteinases in Angiogenesis and Its Implications in Asthma. J. Immunol. Res. 2021, 2021, 6645072. [Google Scholar] [CrossRef]
- Hong, G.H.; Park, S.Y.; Kwon, H.S.; Bang, B.R.; Lee, J.; Kim, S.Y.; Pack, C.G.; Kim, S.; Moon, K.A.; Kim, T.B.; et al. IL-32γ attenuates airway fibrosis by modulating the integrin-FAK signaling pathway in fibroblasts. Respir. Res. 2018, 19, 188. [Google Scholar] [CrossRef]
- Bergeron, C.; Tulic, M.K.; Hamid, Q. Airway Remodelling in Asthma: From Benchside to Clinical Practice. Can. Respir. J. 2010, 17, e85–e93. [Google Scholar] [CrossRef]
- Huang, D.; Liu, G.; Xu, Z.; Chen, S.; Wang, C.; Liu, D.; Cao, J.; Cheng, J.; Wu, B.; Wu, D. The multifaceted role of placental growth factor in the pathogenesis and progression of bronchial asthma and pulmonary fibrosis: Therapeutic implications. Genes Dis. 2023, 10, 1537. [Google Scholar] [CrossRef]
- Joglekar, M.M.; Nizamoglu, M.; Fan, Y.W.; Nemani, S.S.P.; Weckmann, M.; Pouwels, S.D.; Heijink, I.H.; Melgert, B.N.; Pillay, J.; Burgess, J.K. Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Front. Pharmacol. 2022, 13, 995051. [Google Scholar] [CrossRef] [PubMed]
- Chakir, J.; Shannon, J.; Molet, S.; Fukakusa, M.; Elias, J.; Laviolette, M.; Boulet, L.P.; Hamid, Q. Airway remodeling-associated mediators in moderate to severe asthma: Effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol. 2003, 111, 1293–1298. [Google Scholar] [CrossRef]
- Firszt, R.; Francisco, D.; Church, T.D.; Thomas, J.M.; Ingram, J.L.; Kraft, M. Interleukin-13 induces collagen type-1 expression through matrix metallo-proteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma. Eur. Respir. J. 2014, 43, 464. [Google Scholar] [CrossRef] [PubMed]
- Thiam, F.; Yazeedi, S.A.; Feng, K.; Phogat, S.; Demirsoy, E.; Brussow, J.; Abokor, F.A.; Osei, E.T. Understanding fibroblast-immune cell interactions via co-culture models and their role in asthma pathogenesis. Front. Immunol. 2023, 14, 1128023. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.F.; Peiró, T.; Shoemark, A.; Akthar, S.; Walker, S.A.; Grabiec, A.M.; Jackson, P.L.; Hussell, T.; Gaggar, A.; Xu, X.; et al. An extracellular matrix fragment drives epithelial remodeling and airway hyperresponsiveness. Sci. Transl. Med. 2018, 10, 693. [Google Scholar] [CrossRef]
- Lam, M.; Royce, S.G.; Samuel, C.S.; Bourke, J.E. Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. Pharmacol. Ther. 2018, 187, 61–70. [Google Scholar] [CrossRef]
- Singla, A.; Reuter, S.; Taube, C.; Peters, M.; Peters, K. The molecular mechanisms of remodeling in asthma, COPD and IPF with a special emphasis on the complex role of Wnt5A. Inflamm. Res. 2023, 72, 577. [Google Scholar] [CrossRef]
- Bergeron, C.; Tulic, M.K.; Hamid, Q. Tools used to measure airway remodelling in research. Eur. Respir. J. 2007, 29, 596–604. [Google Scholar] [CrossRef]
- Stewart, N.J.; Smith, L.J.; Chan, H.F.; Eaden, J.A.; Rajaram, S.; Swift, A.J.; Weatherley, N.D.; Biancardi, A.; Collier, G.J.; Hughes, D.; et al. Lung MRI with hyperpolarised gases: Current & future clinical perspectives. Br. J. Radiol. 2022, 95, 20210207. [Google Scholar] [CrossRef]
- Rifkin, D.; Sachan, N.; Singh, K.; Sauber, E.; Tellides, G.; Ramirez, F. The role of LTBPs in TGF beta signaling. Dev. Dyn. 2022, 251, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.E. The role of the epithelium in airway remodeling in asthma. Proc. Am. Thorac. Soc. 2009, 6, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Ramazani, Y.; Knops, N.; Elmonem, M.A.; Nguyen, T.Q.; Arcolino, F.O.; van den Heuvel, L.; Levtchenko, E.; Kuypers, D.; Goldschmeding, R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol. 2018, 68–69, 44–66. [Google Scholar] [CrossRef]
- Athari, S.S. Targeting cell signaling in allergic asthma. Signal Transduct. Target. Ther. 2019, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Nikolskii, A.A.; Shilovskiy, I.P.; Barvinskaia, E.D.; Korneev, A.V.; Sundukova, M.S.; Khaitov, M.R. Role of STAT3 Transcription Factor in Pathogenesis of Bronchial Asthma. Biochemistry 2021, 86, 1489–1501. [Google Scholar] [CrossRef]
- Lee, I.T.; Yang, C.M. Inflammatory signalings involved in airway and pulmonary diseases. Mediat. Inflamm. 2013, 2013, 791231. [Google Scholar] [CrossRef]
- Poynter, M.E.; Irvin, C.G.; Janssen-Heininger, Y.M.W. Rapid Activation of Nuclear Factor-κB in Airway Epithelium in a Murine Model of Allergic Airway Inflammation. Am. J. Pathol. 2002, 160, 1325–1334. [Google Scholar] [CrossRef]
- Kandhare, A.D.; Liu, Z.; Mukherjee, A.A.; Bodhankar, S.L. Therapeutic Potential of Morin in Ovalbumin-induced Allergic Asthma Via Modulation of SUMF2/IL-13 and BLT2/NF-kB Signaling Pathway. Curr. Mol. Pharmacol. 2019, 12, 122–138. [Google Scholar] [CrossRef]
- Belvisi, M.G.; Mitchell, J.A. Targeting PPAR receptors in the airway for the treatment of inflammatory lung disease. Br. J. Pharmacol. 2009, 158, 994–1003. [Google Scholar] [CrossRef]
- Ward, J.E.; Tan, X. Peroxisome proliferator activated receptor ligands as regulators of airway inflammation and remodelling in chronic lung disease. PPAR Res. 2007, 2007, 14983. [Google Scholar] [CrossRef]
- Banno, A.; Reddy, A.T.; Lakshmi, S.P.; Reddy, R.C. PPARs: Key Regulators of Airway Inflammation and Potential Therapeutic Targets in Asthma. Nucl. Recept. Res. 2018, 5, 101306. [Google Scholar] [CrossRef]
- Gandhi, V.D.; Shrestha Palikhe, N.; Vliagoftis, H. Protease-activated receptor-2: Role in asthma pathogenesis and utility as a biomarker of disease severity. Front. Med. 2022, 9, 954990. [Google Scholar] [CrossRef] [PubMed]
- Asaduzzaman, M.; Nadeem, A.; Arizmendi, N.; Davidson, C.; Nichols, H.L.; Abel, M.; Ionescu, L.I.; Puttagunta, L.; Thebaud, B.; Gordon, J.; et al. Functional inhibition of PAR2 alleviates allergen-induced airway hyperresponsiveness and inflammation. Clin. Exp. Allergy 2015, 45, 1844–1855. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.; Tufvesson, E.; Malmström, J.; Mörgelin, M.; Wildt, M.; Andersson, A.; Lindström, A.; Malmström, A.; Löfdahl, C.G.; Marko-Varga, G.; et al. Presence of activated mobile fibroblasts in bronchoalveolar lavage from patients with mild asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Malmström, J.; Tufvesson, E.; Löfdahl, C.G.; Hansson, L.; Marko-Varga, G.; Westergren-Thorsson, G. Activation of platelet-derived growth factor pathway in human asthmatic pulmonary-derived mesenchymal cells. Electrophoresis 2003, 24, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Michalik, M.; Wójcik-Pszczoła, K.; Paw, M.; Wnuk, D.; Koczurkiewicz, P.; Sanak, M.; Pękala, E.; Madeja, Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell. Mol. Life Sci. 2018, 75, 3943–3961. [Google Scholar] [CrossRef]
- Holmes, A.M.; Solari, R.; Holgate, S.T. Animal models of asthma: Value, limitations and opportunities for alternative approaches. Drug Discov. Today 2011, 16, 659–670. [Google Scholar] [CrossRef]
- Azman, S.; Sekar, M.; Bonam, S.R.; Gan, S.H.; Wahidin, S.; Lum, P.T.; Dhadde, S.B. Traditional Medicinal Plants Conferring Protection Against Ovalbumin-Induced Asthma in Experimental Animals: A Review. J. Asthma Allergy 2021, 14, 641. [Google Scholar] [CrossRef]
- Alessandrini, F.; Musiol, S.; Schneider, E.; Blanco-Pérez, F.; Albrecht, M. Mimicking Antigen-Driven Asthma in Rodent Models—How Close Can We Get? Front. Immunol. 2020, 11, 575936. [Google Scholar] [CrossRef]
- Casaro, M.; Souza, V.R.; Oliveira, F.A.; Ferreira, C.M. OVA-Induced Allergic Airway Inflammation Mouse Model. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2019; Volume 1916, pp. 297–301. [Google Scholar]
- Won, J.; Gil, C.H.; Jo, A.; Kim, H.J. Inhaled delivery of Interferon-lambda restricts epithelial-derived Th2 inflammation in allergic asthma. Cytokine 2019, 119, 32–36. [Google Scholar] [CrossRef]
- Shin, Y.S.; Takeda, K.; Gelfand, E.W. Understanding asthma using animal models. Allergy Asthma Immunol. Res. 2009, 1, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Alper, S.; Janssen, W.J.; Gorska, M.M. Mouse Models of Asthma. Methods Mol. Biol. 2018, 1809, 351–362. [Google Scholar] [CrossRef]
- Post, S.; Nawijn, M.C.; Hackett, T.L.; Baranowska, M.; Gras, R.; Van Oosterhout, A.J.M.; Heijink, I.H. The composition of house dust mite is critical for mucosal barrier dysfunction and allergic sensitisation. Thorax 2012, 67, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Niikura, Y.; Kurata, K.; Muroi, M.; Tanamoto, K.; Nagase, T.; Sakaguchi, M.; Yamashita, N. Time-dependent distinct roles of Toll-like receptor 4 in a house dust mite-induced asthma mouse model. Scand. J. Immunol. 2018, 87, e12641. [Google Scholar] [CrossRef]
- Goplen, N.; Karim, M.Z.; Liang, Q.; Gorska, M.M.; Rozario, S.; Guo, L.; Alam, R. Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J. Allergy Clin. Immunol. 2009, 123, 925–932.e11. [Google Scholar] [CrossRef]
- Ho, K.; Weimar, D.; Torres-Matias, G.; Lee, H.; Shamsi, S.; Shalosky, E.; Yaeger, M.; Hartzler-Lovins, H.; Dunigan-Russell, K.; Jelic, D.; et al. Ozone impairs endogenous compensatory responses in allergic asthma. Toxicol. Appl. Pharmacol. 2023, 459, 116341. [Google Scholar] [CrossRef]
- Savin, I.A.; Markov, A.V.; Zenkova, M.A.; Sen’kova, A.V. Asthma and Post-Asthmatic Fibrosis: A Search for New Promising Molecular Markers of Transition from Acute Inflammation to Pulmonary Fibrosis. Biomedicines 2022, 10, 1017. [Google Scholar] [CrossRef]
- Bevelander, M.; Mayette, J.; Whittaker, L.A.; Paveglio, S.A.; Jones, C.C.; Robbins, J.; Hemenway, D.; Akira, S.; Uematsu, S.; Poynter, M.E. Nitrogen dioxide promotes allergic sensitization to inhaled antigen. J. Immunol. 2007, 179, 3680–3688. [Google Scholar] [CrossRef]
- Ghabdian, S.; Parandeh Shirvan, S.; Maleki, M.; Borji, H. The mouse model of chronic asthma: Airway remodelling and disease exacerbation by somatic antigen of Echinococcus granulosus. Parasite Immunol. 2023, 45, e12985. [Google Scholar] [CrossRef]
- Fattouh, R.; Pouladi, M.A.; Alvarez, D.; Johnson, J.R.; Walker, T.D.; Goncharova, S.; Inman, M.D.; Jordana, M. House dust mite facilitates ovalbumin-specific allergic sensitization and airway inflammation. Am. J. Respir. Crit. Care Med. 2005, 172, 314–321. [Google Scholar] [CrossRef]
- Haczku, A.; Atochina, E.N.; Tomer, Y.; Cao, Y.; Campbell, C.; Scanlon, S.T.; Russo, S.J.; Enhorning, G.; Beers, M.F. The late asthmatic response is linked with increased surface tension and reduced surfactant protein B in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 283, L755–L765. [Google Scholar] [CrossRef] [PubMed]
- James, A.L.; Wenzel, S. Clinical relevance of airway remodelling in airway diseases. Eur. Respir. J. 2007, 30, 134–155. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.H.T.; Cojocaru, A.; Haverkamp, H.C.; Rinaldi, L.M.; Irvin, C.G. The synergistic interactions of allergic lung inflammation and intratracheal cationic protein. Am. J. Respir. Crit. Care Med. 2008, 177, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Sim, D.W.; Lee, S.C.; Moon, S.; Choe, E.; Shin, H.; Kim, S.R.; Lee, J.H.; Park, H.H.; Park, J.W. Effects of Air Purifiers on Patients with Allergic Rhinitis: A Multicenter, Randomized, Double-Blind, and Placebo-Controlled Study. Yonsei Med. J. 2020, 61, 689. [Google Scholar] [CrossRef]
- Calderón, M.A.; Linneberg, A.; Kleine-Tebbe, J.; De Blay, F.; De Rojas, D.H.F.; Virchow, J.C.; Demoly, P. Respiratory allergy caused by house dust mites: What do we really know? J. Allergy Clin. Immunol. 2015, 136, 38–48. [Google Scholar] [CrossRef]
- Abu Khweek, A.; Kim, E.; Joldrichsen, M.R.; Amer, A.O.; Boyaka, P.N. Insights Into Mucosal Innate Immune Responses in House Dust Mite-Mediated Allergic Asthma. Front. Immunol. 2020, 11, 2416. [Google Scholar] [CrossRef]
- Woo, L.N.; Guo, W.Y.; Wang, X.; Young, A.; Salehi, S.; Hin, A.; Zhang, Y.; Scott, J.A.; Chow, C.W. A 4-Week Model of House Dust Mite (HDM) Induced Allergic Airways Inflammation with Airway Remodeling. Sci. Rep. 2018, 8, 6925. [Google Scholar] [CrossRef]
- Klimov, P.; Molva, V.; Nesvorna, M.; Pekar, S.; Shcherbachenko, E.; Erban, T.; Hubert, J. Dynamics of the microbial community during growth of the house dust mite Dermatophagoides farinae in culture. FEMS Microbiol. Ecol. 2019, 95, fiz153. [Google Scholar] [CrossRef]
- Do, D.C.; Zhao, Y.; Gao, P. Cockroach allergen exposure and risk of asthma. Allergy 2016, 71, 463–474. [Google Scholar] [CrossRef]
- Liu, S.-H.; Kazemi, S.; Karrer, G.; Bellaire, A.; Weckwerth, W.; Damkjaer, J.; Hoffmann, O.; Epstein, M.M. Influence of the environment on ragweed pollen and their sensitizing capacity in a mouse model of allergic lung inflammation. Front. Allergy 2022, 3, 854038. [Google Scholar] [CrossRef]
- Farzaneh, P.; Hassan, Z.M.; Pourpak, Z.; Hoseini, A.Z.; Hogan, S.P. A Latex-Induced Allergic Airway Inflammation Model in Mice. Basic Clin. Pharmacol. Toxicol. 2006, 99, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Goode, E.-J.; Marczylo, E. A scoping review: What are the cellular mechanisms that drive the allergic inflammatory response to fungal allergens in the lung epithelium? Clin. Transl. Allergy 2023, 13, e12252. [Google Scholar] [CrossRef]
- Fergeson, J.E.; Patel, S.S.; Lockey, R.F. Acute asthma, prognosis, and treatment. J. Allergy Clin. Immunol. 2017, 139, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Habib, N.; Pasha, M.A.; Tang, D.D. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022, 11, 2764. [Google Scholar] [CrossRef]
- Landry, V.; Coburn, P.; Kost, K.; Liu, X.; Li-Jessen, N.Y.K. Diagnostic Accuracy of Liquid Biomarkers in Airway Diseases: Toward Point-of-Care Applications. Front. Med. 2022, 9, 855250. [Google Scholar] [CrossRef] [PubMed]
- Granger, V.; Zerimech, F.; Arab, J.; Siroux, V.; De Nadai, P.; Tsicopoulos, A.; Matran, R.; Akiki, Z.; Nadif, R. Blood eosinophil cationic protein and eosinophil-derived neurotoxin are associated with different asthma expression and evolution in adults. Thorax 2022, 77, 552–562. [Google Scholar] [CrossRef]
- Koh, G.C.H.; Shek, L.P.C.; Goh, D.Y.T.; Van Bever, H.; Koh, D.S.Q. Eosinophil cationic protein: Is it useful in asthma? A systematic review. Respir. Med. 2007, 101, 696–705. [Google Scholar] [CrossRef]
- Godson, C.; Guiry, P.; Brennan, E. Lipoxin Mimetics and the Resolution of Inflammation. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 429–448. [Google Scholar] [CrossRef]
- Kazani, S.; Planaguma, A.; Ono, E.; Bonini, M.; Zahid, M.; Marigowda, G.; Wechsler, M.E.; Levy, B.D.; Israel, E. Exhaled breath condensate eicosanoid levels associate with asthma and its severity. J. Allergy Clin. Immunol. 2013, 132, 547–553. [Google Scholar] [CrossRef]
- Ono, E.; Dutile, S.; Kazani, S.; Wechsler, M.E.; Yang, J.; Hammock, B.D.; Douda, D.N.; Tabet, Y.; Khaddaj-Mallat, R.; Sirois, M.; et al. Lipoxin generation is related to soluble epoxide hydrolase activity in severe asthma. Am. J. Respir. Crit. Care Med. 2014, 190, 886–897. [Google Scholar] [CrossRef]
- Silkoff, P.E.; Laviolette, M.; Singh, D.; FitzGerald, J.M.; Kelsen, S.; Backer, V.; Porsbjerg, C.M.; Girodet, P.O.; Berger, P.; Kline, J.N.; et al. Identification of airway mucosal type 2 inflammation by using clinical biomarkers in asthmatic patients. J. Allergy Clin. Immunol. 2017, 140, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Kierbiedź-Guzik, N.; Sozańska, B. miRNAs as Modern Biomarkers in Asthma Therapy. Int. J. Mol. Sci. 2023, 24, 11499. [Google Scholar] [CrossRef] [PubMed]
- Kierbiedź-Guzik, N.; Sozańska, B. The Potential Role of Serum and Exhaled Breath Condensate miRNAs in Diagnosis and Predicting Exacerbations in Pediatric Asthma. Biomedicines 2023, 11, 763. [Google Scholar] [CrossRef] [PubMed]
- ElKashef, S.M.M.A.E.; Ahmad, S.E.A.; Soliman, Y.M.A.; Mostafa, M.S. Role of microRNA-21 and microRNA-155 as biomarkers for bronchial asthma. Innate Immun. 2021, 27, 61–69. [Google Scholar] [CrossRef]
- Lambert, K.A.; Roff, A.N.; Panganiban, R.P.; Douglas, S.; Ishmael, F.T. MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids. PLoS ONE 2018, 13, e0205434. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo-Muñoz, J.M.; Gil-Martínez, M.; Lorente-Sorolla, C.; García-Latorre, R.; Valverde-Monge, M.; Quirce, S.; Sastre, J.; del Pozo, V. miR-144-3p Is a Biomarker Related to Severe Corticosteroid-Dependent Asthma. Front. Immunol. 2022, 13, 858722. [Google Scholar] [CrossRef]
- Vaz Fragoso, C.A.; Murphy, T.E.; Agogo, G.O.; Allore, H.G.; McAvay, G.J. Asthma-COPD overlap syndrome in the US: A prospective population-based analysis of patient-reported outcomes and health care utilization. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 517–527. [Google Scholar] [CrossRef]
- Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; Amaral, F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 2014, 10, 593–619. [Google Scholar] [CrossRef]
- Bates, D.O. Vascular endothelial growth factors and vascular permeability. Cardiovasc. Res. 2010, 87, 262–271. [Google Scholar] [CrossRef]
- Ding, Q.; Sun, S.; Zhang, Y.; Tang, P.; Lv, C.; Ma, H.; Yu, Y.; Xu, S.; Deng, Z. Serum IL-8 and VEGFA are two promising diagnostic biomarkers of asthma-COPD overlap syndrome. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 357–365. [Google Scholar] [CrossRef]
- Tizaoui, K.; Yang, J.W.; Lee, K.H.; Kim, J.H.; Kim, M.; Yoon, S.; Jung, Y.; Park, J.B.; An, K.; Choi, H.; et al. The role of YKL-40 in the pathogenesis of autoimmune diseases: A comprehensive review. Int. J. Biol. Sci. 2022, 18, 3731–3746. [Google Scholar] [CrossRef] [PubMed]
- Bara, I.; Ozier, A.; Girodet, P.O.; Carvalho, G.; Cattiaux, J.; Begueret, H.; Thumerel, M.; Ousova, O.; Kolbeck, R.; Coyle, A.J.; et al. Role of YKL-40 in bronchial smooth muscle remodeling in asthma. Am. J. Respir. Crit. Care Med. 2012, 185, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Declercq, J.; Hammad, H.; Lambrecht, B.N.; Smole, U. Chitinases and chitinase-like proteins in asthma. Semin. Immunol. 2023, 67, 101759. [Google Scholar] [CrossRef] [PubMed]
- Vianello, A.; Guarnieri, G.; Achille, A.; Lionello, F.; Lococo, S.; Zaninotto, M.; Caminati, M.; Senna, G. Serum biomarkers of remodeling in severe asthma with fixed airway obstruction and the potential role of KL-6. Clin. Chem. Lab. Med. 2023, 61, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Song, J.; Xu, F.; Zhang, D.; He, J.; Zheng, J.; Zhang, Y.; Li, J.; Guo, Y.; Xu, M.; et al. Association between YKL-40 and asthma: A systematic meta-analysis. Sleep Breath. 2022, 26, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Caley, M.P.; Martins, V.L.C.; O’Toole, E.A. Metalloproteinases and Wound Healing. Adv. Wound Care 2015, 4, 225–234. [Google Scholar] [CrossRef]
- Dong, J.; Ma, Q. TIMP1 promotes multi-walled carbon nanotube-induced lung fibrosis by stimulating fibroblast activation and proliferation. Nanotoxicology 2017, 11, 41–51. [Google Scholar] [CrossRef]
- Cao, T.B.T.; Quoc, Q.L.; Yang, E.M.; Moon, J.Y.; Shin, Y.S.; Ryu, M.S.; Choi, Y.; Park, H.S. Tissue Inhibitor of Metalloproteinase-1 Enhances Eosinophilic Airway Inflammation in Severe Asthma. Allergy Asthma Immunol. Res. 2023, 15, 451–472. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kaur, S.; Guha, S.; Batra, S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta Rev. Cancer 2012, 1826, 129–169. [Google Scholar] [CrossRef]
- Babu, A.; Narayanswamy, H.; Baburao, A. Sputum Neutrophil Gelatinase-Associated Lipocalin as a Biomarker in Asthma-COPD Overlap. J. Assoc. Physicians India 2023, 71, 34–38. [Google Scholar] [CrossRef]
- Mihaylov, M.; Bilyukov, R.; Hristova, J.; Dimitrova, D.; Youroukova, V. Neutrophil gelatinase-associated lipocalin and interleukin-6: Potential biomarker for asthma-COPD overlap, differentiation from asthma and COPD. Biotechnol. Biotechnol. Equip. 2021, 35, 2039–2045. [Google Scholar] [CrossRef]
- Tolosano, E.; Altruda, F. Hemopexin: Structure, Function, and Regulation. DNA Cell Biol. 2002, 21, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.A.; Dani, M.; So, P.W. Low Cerebrospinal Fluid Levels of Hemopexin Are Associated With Increased Alzheimer’s Pathology, Hippocampal Hypometabolism, and Cognitive Decline. Front. Mol. Biosci. 2020, 7, 590979. [Google Scholar] [CrossRef]
- Winter, N.A.; Gibson, P.G.; Fricker, M.; Simpson, J.L.; Wark, P.A.; McDonald, V.M. Hemopexin: A novel anti-inflammatory marker for distinguishing COPD from Asthma. Allergy Asthma Immunol. Res. 2021, 13, 450–467. [Google Scholar] [CrossRef] [PubMed]
- Olsson, L.M.; Johansson, Å.C.; Gullstrand, B.; Jönsen, A.; Saevarsdottir, S.; Rönnblom, L.; Leonard, D.; Wetterö, J.; Sjöwall, C.; Svenungsson, E.; et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann. Rheum. Dis. 2017, 76, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yang, M.; Li, K.; Li, J.; Xu, L.; Xu, F.; Xu, Y.; Ren, D.; Zhang, J.; Liu, L. Immune-related genes and gene sets for predicting the response to anti-programmed death 1 therapy in patients with primary or metastatic non-small cell lung cancer. Oncol. Lett. 2021, 22, 540. [Google Scholar] [CrossRef]
- Li, M.; Zhang, W.; Zhang, J.; Li, X.; Zhang, F.; Zhu, W.; Meng, L.; Holmdahl, R.; Lu, S. Ncf1 Governs Immune Niches in the Lung to Mediate Pulmonary Inflammation in Mice. Front. Immunol. 2021, 12, 783944. [Google Scholar] [CrossRef]
Model | Histological Characteristics | Modeling Object | Advantages and Disadvantages | References |
---|---|---|---|---|
Ovalbumin (OVA)-induced asthma Inducing agent: Sensitization–OVA/aluminum hydroxide intraperitoneal injection; Challenge–OVA inhalation (short duration in acute asthma, long duration in chronic asthma) | Acute asthma:
| Acute asthma: Airways inflammation, typical for early stages and exacerbations of asthma Chronic asthma: Irreversible changes in the lungs, typical for long-term, chronic asthma | Acute asthma: +Simplicity +Reproducibility +Short experiment duration −No airways remodeling −High variability of other asthma parameters (airways hypersensitivity/hyperreactivity, inflammation intensity) Chronic asthma: +Reflection of some key asthma characteristics in humans (goblet cells hyperplasia/metaplasia, local smooth muscle cells proliferation; peribronchial and perivascular fibrosis) −Long induction time −Relevancy of inducing agent regarding human asthma | Acute asthma: [109,110,111,112,113] Chronic asthma: [14,114] |
Household dust mite (HDM)-induced asthma Inducing agent: Sensitization–HDM extract intratracheal instillation; Challenge–HDM extract intranasal instillation |
| Airways inflammation characterizing mild asthma | +Clinical relevancy +Simplicity +Presence of airways hyperresponsiveness −Dependence on activity and concentration of HDM extract leading to reproducibility issues | [114,115,116] |
House dust mite, ragweed, and Aspergillus fumigatus extracts mixture (DRA)-induced chronic asthma Inducing agent: Sensitization and challenge–intranasal instillation of DRA solution |
| Chronic asthmatic inflammation, resistant to therapy with cytokine antibodies, thus closely mimicking human chronic asthma | +Presence of human chronic asthma characteristics, such as airway hyperresponsiveness and resistance to cytokine antibodies therapy +Lack of developed tolerance to the inducing allergens −Long duration of the model −Dependence on the purity and concentration of extracts mixture, result in reproducibility issues | [117,118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savin, I.A.; Zenkova, M.A.; Sen’kova, A.V. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. Int. J. Mol. Sci. 2023, 24, 16042. https://doi.org/10.3390/ijms242216042
Savin IA, Zenkova MA, Sen’kova AV. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. International Journal of Molecular Sciences. 2023; 24(22):16042. https://doi.org/10.3390/ijms242216042
Chicago/Turabian StyleSavin, Innokenty A., Marina A. Zenkova, and Aleksandra V. Sen’kova. 2023. "Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process" International Journal of Molecular Sciences 24, no. 22: 16042. https://doi.org/10.3390/ijms242216042
APA StyleSavin, I. A., Zenkova, M. A., & Sen’kova, A. V. (2023). Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. International Journal of Molecular Sciences, 24(22), 16042. https://doi.org/10.3390/ijms242216042