A Multi-Omics Approach Revealed Common Dysregulated Pathways in Type One and Type Two Endometrial Cancers
Abstract
:1. Introduction
2. Results
2.1. Metabolomics
2.2. Proteomics
2.3. Western Blotting
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Patients
4.3. Polar and Non-Polar Metabolite Extraction
4.4. Polar Metabolome Analysis
4.5. Data Analysis
4.6. Proteome Analysis
4.7. Western Blotting
4.8. Bioinformatic Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.; Bsc, M.F.B.; Me, J.F.; Soerjomataram, M.I.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed]
- Saed, L.; Varse, F.; Baradaran, H.R.; Moradi, Y.; Khateri, S.; Friberg, E.; Khazaei, Z.; Gharahjeh, S.; Tehrani, S.; Sioofy-Khojine, A.-B.; et al. The effect of diabetes on the risk of endometrial Cancer: An updated a systematic review and meta-analysis. BMC Cancer 2019, 19, 527. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.A.; Azizia, M.M.; Hardiman, P.J. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Updat. 2014, 20, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Cote, M.L.; Ruterbusch, J.J.; Olson, S.H.; Lu, K.; Ali-Fehmi, R. The Growing Burden of Endometrial Cancer: A Major Racial Disparity Affecting Black Women. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.H.; Broaddus, R.R. Endometrial Cancer. N. Engl. J. Med. 2020, 383, 2053–2064. [Google Scholar] [CrossRef]
- Makker, V.; MacKay, H.; Ray-Coquard, I.; Levine, D.A.; Westin, S.N.; Aoki, D.; Oaknin, A. Endometrial cancer. Nat. Rev. Dis. Prim. 2021, 7, 88. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martín, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, 16–41. [Google Scholar] [CrossRef]
- de Anda-Jáuregui, G.; Hernández-Lemus, E. Computational Oncology in the Multi-Omics Era: State of the Art. Front. Oncol. 2020, 10, 423. [Google Scholar] [CrossRef]
- Heo, Y.J.; Hwa, C.; Lee, G.-H.; Park, J.-M.; An, J.-Y. Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes. Mol. Cells 2021, 44, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Mujammami, M.; Rafiullah, M.; Alfadda, A.A.; Akkour, K.; Alanazi, I.O.; Masood, A.; Musambil, M.; Alhalal, H.; Arafah, M.; Rahman, A.M.A.; et al. Proteomic Analysis of Endometrial Cancer Tissues from Patients with Type 2 Diabetes Mellitus. Life 2022, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- Sommella, E.; Capaci, V.; Aloisio, M.; Salviati, E.; Campiglia, P.; Molinario, G.; Licastro, D.; Di Lorenzo, G.; Romano, F.; Ricci, G.; et al. A Label-Free Proteomic Approach for the Identification of Biomarkers in the Exosome of Endometrial Cancer Serum. Cancers 2022, 14, 6262. [Google Scholar] [CrossRef] [PubMed]
- Raffone, A.; Troisi, J.; Boccia, D.; Travaglino, A.; Capuano, G.; Insabato, L.; Mollo, A.; Guida, M.; Zullo, F. Metabolomics in endometrial cancer diagnosis: A systematic review. Acta Obstet. Gynecol. Scand. 2020, 99, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Han, X. The Regulatory Role of Lipid Metabolism in Endometrial Cancer. J. Oncol. 2022, 2022, 6458877. [Google Scholar] [CrossRef] [PubMed]
- Capaci, V.; Arrigoni, G.; Monasta, L.; Aloisio, M.; Rocca, G.; Di Lorenzo, G.; Licastro, D.; Romano, F.; Ricci, G.; Ura, B. Phospho-DIGE Identified Phosphoproteins Involved in Pathways Related to Tumour Growth in Endometrial Cancer. Int. J. Mol. Sci. 2023, 24, 11987. [Google Scholar] [CrossRef]
- Freire-De-Lima, L.; Mendonça-Previato, L.; Gentile, L.B. Editorial: Cancer Metabolism: Current Knowledge and Perspectives. Front. Oncol. 2019, 9, 287. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, A.-H.; Miao, J.-H.; Sun, H.; Han, Y.; Yan, G.-L.; Wu, F.-F.; Wang, X.-J. Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Adv. 2019, 9, 37245–37257. [Google Scholar] [CrossRef]
- Chen, Y.; Verbeek, F.J.; Wolstencroft, K. Establishing a consensus for the hallmarks of cancer based on gene ontology and pathway annotations. BMC Bioinform. 2021, 22, 178. [Google Scholar] [CrossRef]
- Dupree, E.J.; Jayathirtha, M.; Yorkey, H.; Mihasan, M.; Petre, B.A.; Darie, C.C. A critical review of bottom-up proteomics: The good, the bad, and the future of this field. Proteomes 2020, 8, 14. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Ciborowski, M.; Kisluk, J.; Kretowski, A.; Barbas, C. Mass spectrometry based proteomics and metabolomics in personalized oncology. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165690. [Google Scholar] [CrossRef] [PubMed]
- Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M.T.; Scarpa, A.; Donadelli, M.; Fiore, A. To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct. Target. Ther. 2023, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 2016, 16, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Hajaj, E.; Sciacovelli, M.; Frezza, C.; Erez, A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol. Cell 2021, 81, 3749–3759. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, J.B.; Yoon, H.; Ringel, A.E.; Jeanfavre, S.; Clish, C.B.; Haigis, M.C. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 2017, 358, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17, 1498–1503. [Google Scholar] [CrossRef]
- Saito, R.d.F.; Andrade, L.N.d.S.; Bustos, S.O.; Chammas, R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk between Cancer Cells and Immune Cells. Front. Immunol. 2022, 13, 768606. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhang, Y.; Xiong, F.; Zhang, S.; Gong, Z.; Yan, Q.; He, Y.; Wei, F.; Zhang, W.; Zhou, M. The role of alternative splicing in human cancer progression. Am. J. Cancer Res. 2021, 11, 4642–4667. [Google Scholar]
- Bai, S.W.; Herrera-Abreu, M.T.; Rohn, J.L.; Racine, V.; Tajadura, V.; Suryavanshi, N.; Bechtel, S.; Wiemann, S.; Baum, B.; Ridley, A.J. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol. 2011, 9, 54. [Google Scholar] [CrossRef]
- Baker, T.M.; Waheed, S.; Syed, V. RNA interference screening identifies clathrin-B and cofilin-1 as mediators of MT1-MMP in endometrial cancer. Exp. Cell Res. 2018, 370, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, R.; Seong, H.-A.; Ha, H. Dual roles of serine-threonine kinase receptor-associated protein (STRAP) in redox-sensitive signaling pathways related to cancer development. Oxidative Med. Cell. Longev. 2018, 2018, 5241524. [Google Scholar] [CrossRef] [PubMed]
- Reiner, J.E.; Datta, P.K. TGF-beta-dependent and -independent roles of STRAP in cancer. Front. Biosci. 2011, 16, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Bemlih, S.; Poirier, M.-D.; El Andaloussi, A. Acyl-coenzyme A: Cholesterol acyltransferase inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines. Cancer Biol. Ther. 2010, 9, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Lu, J.; Han, L.; Wang, X.; Man, Q.; Liu, S. Prognostic significance of two lipid metabolism enzymes, HADHA and ACAT2, in clear cell renal cell carcinoma. Tumor Biol. 2015, 37, 8121–8130. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kwak, H.; Ahn, K. Cytosolic aminopeptidases influence MHC class I-mediated antigen presentation in an allele-dependent manner. J. Immunol. 2009, 183, 7379–7387. [Google Scholar] [CrossRef] [PubMed]
- Skripova, V.; Vlasenkova, R.; Zhou, Y.; Astsaturov, I.; Kiyamova, R. Identification of New Regulators of Pancreatic Cancer Cell Sensitivity to Oxaliplatin and Cisplatin. Molecules 2022, 27, 1289. [Google Scholar] [CrossRef]
- Demény, M.A.; Virág, L. The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks. Cancers 2021, 13, 2042. [Google Scholar] [CrossRef]
- Sun, Y.-L.; Patel, A.; Kumar, P.; Chen, Z.-S. Role of ABC transporters in cancer chemotherapy. Chin. J. Cancer 2012, 31, 51–57. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of Amino Acids in Cancer. Front. Cell Dev. Biol. 2021, 8, 603837. [Google Scholar] [CrossRef]
- Yin, J.; Ren, W.; Huang, X.; Deng, J.; Li, T.; Yin, Y. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front. Immunol. 2018, 9, 1697. [Google Scholar] [CrossRef] [PubMed]
- Francklyn, C. Aminoacyl-tRNA synthetases. Methods 2017, 113, 1–2. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Gong, J.; Wang, Y.; Qin, Z.; Jiang, Y.; Ma, H.; Jin, G.; Chen, J.; Hu, Z.; Guan, X.; et al. Potentially functional polymorphisms in aminoacyl-tRNA synthetases genes are associated with breast cancer risk in a Chinese population. Mol. Carcinog. 2015, 54, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Choi, J.W.; Lee, J.Y.; Kim, H.; Oh, Y.S.; Lee, J.W.; Tak, Y.K.; Song, J.M.; Razin, E.; Yun, S.H.; et al. Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. FASEB J. 2012, 26, 4142–4159. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Wang, X.; Yan, Q.; Zhang, S.; Li, Y. Knockdown of IARS2 suppressed growth of gastric cancer cells by regulating the phosphorylation of cell cycle-related proteins. Mol. Cell. Biochem. 2018, 443, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Ura, B.; Monasta, L.; Arrigoni, G.; Battisti, I.; Licastro, D.; Di Lorenzo, G.; Romano, F.; Aloisio, M.; Peterlunger, I.; Stabile, G.; et al. Phosphoproteins Involved in the Inhibition of Apoptosis and in Cell Survival in the Leiomyoma. J. Clin. Med. 2019, 8, 691. [Google Scholar] [CrossRef]
- Ura, B.; Scrimin, F.; Zanconati, F.; Arrigoni, G.; Monasta, L.; Romano, A.; Banco, R.; Zweyer, M.; Milani, D.; Ricci, G. Two-dimensional gel electrophoresis analysis of the leiomyoma interstitial fluid reveals altered protein expression with a possible involvement in pathogenesis. Oncol. Rep. 2015, 33, 2219–2226. [Google Scholar] [CrossRef]
- Ura, B.; Scrimin, F.; Arrigoni, G.; Athanasakis, E.; Aloisio, M.; Monasta, L.; Ricci, G. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration. Oncol. Rep. 2016, 35, 3094–3100. [Google Scholar] [CrossRef]
Cell Line Names | Number of Significant Metabolites | Metabolites Up/ Downregulated |
---|---|---|
ANCA (type 1 metastatic)/ISHIKAWA (type 1 non-metastatic) | 67 | 2 up/65 down |
KLE (metastatic type 2)/HEC1A (non-metastatic type 2) | 82 | 76 up/6 down |
KLE (type 2 metastatic)/ANCA (type 1 metastatic) | 101 | 98 up/3 down |
HEC1A/(type 2 not metastatic)/ISHIKAWA (type 1 non-metastatic) | 37 | 23 up/14 down |
Metabolite | ANCA/ISHIKAWA | KLE/ANCA | KLE/HEC | HEC1A/ISHIKAWA |
---|---|---|---|---|
F.C. (p-Value) | F.C. (p-Value) | F.C. (p-Value) | F.C. (p-Value) | |
Xanthine | ↓0.015 (0.0054) | ↑15.43 (0.0002) | ↓0.566 (0.029) | ↓0.424 (0.037) |
N-Acetylaspartic acid | ↓0.089 (0.002) | ↑25.566 (7.29 × 10−8) | ↑8.726 (2.52 × 10−7) | ↓0.261 (0.004) |
Methyl-2-hydroxyisobutyric acid | ↓0.395 (0.0007) | ↑35.412 (0.0002) | ↑23.842 (0.0002) | ↓0.587 (0.011) |
FA 20:4 | ↓0.568 (0.040) | ↑2.179 (0.016) | ↑4.049 (0.005) | ↓0.305 (0.010) |
Butyryl carnitine | ↓0.249 (0.020) | ↑313.21 (2.27 × 10−5) | ↑13.505 (3.87 × 10−5) | ↓5.778 (0.019) |
Acetylcarnitine | ↓0.479 (0.010) | ↑223.24 (1.86 × 10−5) | ↑8.373 (4.47 × 10−5) | ↑12.796 (0.005) |
4-Aminobutyric acid | ↓0.147 (0.010) | ↑67.269 (1.05 × 10−5) | ↑4.152 (0.0001) | ↑2.387 (0.026) |
Cystathionine | ↓0.243 (0.018) | ↑56.262 (0.0002) | ↑27.491 (0.0002) | ↓0.498 (0.088) |
Glucosamine-6-phosphate | ↓0.098 (0.001) | ↑46.353 (2.92 × 10−5) | ↑17.422 (3.97 × 10−5) | ↓0.261 (0.005) |
S-Adenosylhomocysteine | ↓0.046 (0.002) | ↑7.161 (0.001) | ↑1.813 (0.011) | ↓0.182 (0.004) |
Threonine | ↓0.318 (0.004) | ↑4.604 (0.0004) | ↑2.124 (0.002) | ↓0.689 (0.049) |
Methionine sulfoxide | ↓0.468 (0.030) | ↓0.291 (0.041) | ↓0.064 (0.002) | ↑2.105 (0.022) |
Fumaric acid | ↓0.151 (0.002) | ↑18.938 (0.001) | ↑7.799 (0.001) | ↓0.368 (0.006) |
Indoleacetic acid | ↓0.631 (0.019) | ↑3.65 (0.002) | ↑2.054 (0.008) | N.P. |
Pyroglutamic acid | ↓0.151 (0.002) | ↑36.831 (1.35 × 10−5) | ↑4.940 (0.001) | N.P. |
Guanosine | ↓0.568 (0.040) | ↑22.307 (2.36 × 10−6) | ↑20.994 (4.99 × 10−6) | N.P. |
Nicotinamide | ↓0.225 (0.022) | ↑25.41 (1.9 × 10−5) | ↑4.376 (4.71 × 10−5) | N.P. |
Uric acid | ↓0.283 (0.007) | ↑10.992 (3.47 × 10−5) | ↑4.906 (8.05 × 10−5) | N.P. |
Vaccenic acid | ↓0.442 (0.012) | ↑4.891 (0.0004) | ↑3.773(0.001) | N.P. |
Glyceric acid | ↓0.184 (0.030) | ↑3.405 (0.002) | ↑1.967 (0.012) | N.P. |
Proline | ↓0.262 (0.001) | ↑13.604 (2.82 × 10−7) | ↑3.04 (1.76 × 10−5) | N.P. |
Methionine | ↓0.167 (0.030) | ↑25.05 (0.0002) | ↑5.857(0.002) | N.P. |
Norleucine | ↓0.212 (0.040) | ↑14.044 (0.001) | ↑2.588 (0.036) | N.P. |
Inosine | ↓0.206 (0.016) | ↑33.445 (1.15 × 10−6) | ↑10.470 (4.04 × 10−6) | N.P. |
Glucose phosphate | ↓0.092 (0.010) | ↑84.07 (2.86 × 10−9) | ↑14.375 (8.21 × 10−7) | N.P. |
Carnosine | ↓0.336 (0.008) | ↑15.182 (1.99 × 10−5) | ↑6.516 (4.11 × 10−5) | N.P. |
D-Ribose 5-phosphate | ↓0.146 (0.004) | ↑15.814 (0.0002) | ↑4.373 (0.0015) | N.P. |
Alanine | ↓0.248 (0.0003) | ↑6.261 (1.62 × 10−5) | ↑2.001(0.0002) | N.P. |
N-Acetylaspartylglutamic acid | ↓0.148 (0.037) | ↑67.34 (0.002) | ↑13.188 (0.003) | N.P. |
Uridine | ↓0.228 (0.016) | ↑22.381 (0.003) | ↑3.661 (0.003) | N.P. |
Hydroxyphenyllactic acid | ↑2.073 (0.020) | ↑11.11 (0.0002) | ↑22.808(0.0002) | N.P. |
Hypoxanthine | ↓0.139 (0.011) | ↑5.459 (0.0001) | ↑6.753 (0.0002) | N.P. |
N-Acetyl-methionine | ↓0.09 (0.006) | ↑78.474 (0.0003) | ↑9.185 (0.001) | N.P. |
Adenosine diphosphate | ↓0.103 (0.030) | ↑178.687 (0.0001) | ↑20.871 (0.0002) | N.P. |
Carnitine | ↓0.162 (0.030) | ↑133.546 (0.0001) | ↑12.241 (7.74 × 10−5) | N.P. |
Cytidine | ↓0.167 (0.015) | ↑10.424 (0.006) | ↑3.583 (0.017) | N.P. |
Cytosine | ↓0.092 (0.030) | ↑18.731 (0.027) | ↑6.08 (0.041) | N.P. |
N-Acetylneuraminic acid | ↓0.282 (0.030 | ↑76.425 (0.0002) | ↑11.615 (0.0003) | N.P. |
Propionylcarnitine | ↓0.17 (0.020) | ↑193.523 (0.003) | ↑23.871 (0.003) | N.P. |
Fructose | ↓0.067 (0.007) | ↑64.354 (0.001) | ↑8.418 (0.002) | N.P. |
Phenylalanine | ↓0.19 (0.036) | ↑13.149 (0.001) | ↑3.138 (0.014) | N.P. |
N6-Acetyllysine | ↓0.3 (0.002) | ↑4.9365 (0.002) | ↑2.027 (0.017) | N.P. |
N-Acetylysine | ↓0.587 (0.021) | ↑4.792 (0.0004) | ↑3.335 (0.001) | N.P. |
5′-Methylthioadenosine | ↓0.367 (0.010) | ↑36.743 (3.68 × 10−5) | ↑6.792 (0.0001) | N.P. |
Cell Name | Number of Significant Proteins | Proteins Up/ Downregulated |
---|---|---|
ANCA (type 1 metastatic)/ISHIKAWA (type 1 non-metastatic) | 340 | 309 up/31 down |
KLE (metastatic type 2)/HEC1A (non-metastatic type 2) | 111 | 55 up/56 down |
KLE (type 2 metastatic)/ANCA (type 1 metastatic) | 234 | 122 up/112 down |
HEC1A (type 2 not metastatic)/ISHIKAWA (type 1 non-metastatic) | 81 | 40 up/41 down |
Genes Accession | ANCA/ISHIKAWA | KLE/ANCA | KLE/HEC | HEC1A/ISHIKAWA |
---|---|---|---|---|
F.C. (p-Value) | F.C. (p-Value) | F.C. (p-Value) | F.C. (p-Value) | |
CFL1 P23528 | ↓0.761 (0.005) | ↓0.676 (0.001) | ↓0.794 (0.019) | ↓0.851 (0.049) |
STRAP Q9Y3F4 | ↑2.074 (7.91 × 10−5) | ↑1.656 (0.038) | ↓1.963 (0.020) | ↓0.843 (0.044) |
ART3 Q13508 | ↑1.217 (0.031) | ↑1.474 (0.002) | ↑1.213 (0.024) | ↑1.215 (0.048) |
ACAT2 Q9BWD1 | ↑2.143 (5.73 × 10−7) | ↓0.205 (0.001) | ↓0.112 (0.039) | ↑1.82 (0.043) |
NPEPPS P55786 | ↑2.561 (5.25 × 10−5) | ↑1.62 (0.002) | ↑1.369 (0.0015) | ↑1.183 (0.032) |
EEF2 P13639 | ↓0.179 (2.87 × 10−5) | ↓0.765 (0.046) | ↓0.738 (0.026) | N.P. |
RTRAF Q9Y224 | ↑2.200 (0.0003) | ↓0.328 (0.006) | ↓0.354 (0.029) | N.P. |
PSMA5 P28066 | ↑1.696 (0.022) | ↓0.744 (0.044) | ↓0.672 (0.047) | N.P. |
IPO5 O00410 | ↑1.915 (0.026) | ↓0.343 (0.004) | ↓0.369 (0.005) | N.P. |
CNBP P62633 | ↑2.125 (0.003) | ↑1.847 (0.045) | ↑1.901 (0.035) | N.P. |
AP2B1 P63010 | ↑2.198 (0.0002) | ↓0.452 (0.005) | ↓0.422 (0.008) | N.P. |
CLTC Q00610 | ↑1.294 (0.003) | ↓0.698 (0.001) | ↓0.717 (0.002) | N.P. |
RUVBL2 Q9Y230 | ↑2.067 (6.17 × 10−6) | ↓0.559 (0.005) | ↓0.501 (0.019) | N.P. |
ARHGDIA P52565 | ↑1.769 (0.017) | ↑1.302 (0.002) | ↑1.47 (0.023) | N.P. |
SNRPB P14678 | ↓0.459 (0.011) | ↓0.671 (0.012) | ↓0.77 (0.030) | N.P. |
S100A11 P31949 | ↑1.785 (0.011) | ↓0.265 (0.005) | ↓0.249 (0.005) | N.P. |
ANP32E Q9BTT0 | ↑2.315 (8.1 × 10−8) | ↓0.153 (1.6 × 10−5) | ↓0.151 (0.002) | N.P. |
PA2G4 Q9UQ80 | ↑1.271 (0.038) | ↑1.238 (0.037) | ↑1.323 (0.022) | N.P. |
PTMA P06454 | ↓0.855 (0.005) | ↑1.545 (0.001) | ↑1.459 (0.002) | N.P. |
RPN2 P04844 | ↑1.657 (0.035) | ↓0.331 (0.013) | ↓0.38 (0.028) | N.P. |
PCBP2 Q15366 | ↑1.930 (0.0004) | ↓0.462 (0.005) | ↓0.537 (0.001) | N.P. |
ANXA2 P07355 | ↑1.294 (0.016) | ↓0.613 (0.001) | ↓0.644 (0.007) | N.P. |
U2AF2 P26368 | ↑2 (7.06 × 10−5) | ↓0.222 (0.001) | ↓0.231 (0.039) | N.P. |
CAPS Q9ULU8 | ↑2.033 (1.71 × 10−8) | ↓0.428 (0.020) | ↓0.293 (0.038) | N.P. |
Pathway Name | p-Value |
---|---|
ABC transporters | 4.87 × 10−8 |
Alanine, aspartate and glutamate metabolism | 2.69 × 10−7 |
Mineral absorption | 1.42 × 10−6 |
Purine metabolism | 3.40 × 10−6 |
Central carbon metabolism in cancer | 4.53 × 10−6 |
Cysteine and methionine metabolism | 6.24 × 10−6 |
Aminoacyl-tRNA biosynthesis | 8.43 × 10−6 |
Protein digestion and absorption | 2.43 × 10−5 |
Synaptic vesicle cycle | 5.08 × 10−4 |
Glycine, serine and threonine metabolism | 5.08 × 10−4 |
Butanoate metabolism | 0.0030014 |
Valine, leucine and isoleucine biosynthesis | 0.0055171 |
Nicotinate and Nicotinamide metabolism | 0.0064624 |
Glyoxylate and dicarboxylate metabolism | 0.0064624 |
Lysine degradation | 0.011893 |
Pyrimidine metabolism | 0.013939 |
Endocrine and other factor-regulated calcium reabsorption | 0.026315 |
Phosphonate and phosphinate metabolism | 0.027938 |
Beta-alanine metabolism | 0.027938 |
Pentose phosphate pathway | 0.0296 |
Pyruvate metabolism | 0.033923 |
Phenylalanine metabolism | 0.040361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capaci, V.; Monasta, L.; Aloisio, M.; Sommella, E.; Salviati, E.; Campiglia, P.; Basilicata, M.G.; Kharrat, F.; Licastro, D.; Di Lorenzo, G.; et al. A Multi-Omics Approach Revealed Common Dysregulated Pathways in Type One and Type Two Endometrial Cancers. Int. J. Mol. Sci. 2023, 24, 16057. https://doi.org/10.3390/ijms242216057
Capaci V, Monasta L, Aloisio M, Sommella E, Salviati E, Campiglia P, Basilicata MG, Kharrat F, Licastro D, Di Lorenzo G, et al. A Multi-Omics Approach Revealed Common Dysregulated Pathways in Type One and Type Two Endometrial Cancers. International Journal of Molecular Sciences. 2023; 24(22):16057. https://doi.org/10.3390/ijms242216057
Chicago/Turabian StyleCapaci, Valeria, Lorenzo Monasta, Michelangelo Aloisio, Eduardo Sommella, Emanuela Salviati, Pietro Campiglia, Manuela Giovanna Basilicata, Feras Kharrat, Danilo Licastro, Giovanni Di Lorenzo, and et al. 2023. "A Multi-Omics Approach Revealed Common Dysregulated Pathways in Type One and Type Two Endometrial Cancers" International Journal of Molecular Sciences 24, no. 22: 16057. https://doi.org/10.3390/ijms242216057
APA StyleCapaci, V., Monasta, L., Aloisio, M., Sommella, E., Salviati, E., Campiglia, P., Basilicata, M. G., Kharrat, F., Licastro, D., Di Lorenzo, G., Romano, F., Ricci, G., & Ura, B. (2023). A Multi-Omics Approach Revealed Common Dysregulated Pathways in Type One and Type Two Endometrial Cancers. International Journal of Molecular Sciences, 24(22), 16057. https://doi.org/10.3390/ijms242216057