Effect of SARS-CoV-2 Infection and BNT162b2 Vaccination on the mRNA Expression of Genes Associated with Angiogenesis
Abstract
:1. Introduction
2. Results
2.1. mRNA Expression of HIF-1α, VEGFA, MMP-2, MMP-7, MMP-9, TIMP1, and ADAMTS1
2.2. Influence of Age, Gender, and Co-Existing Diseases on the mRNA Expression of All Studied Genes
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Blood Sample Collection and RNA Isolation
4.3. cDNA Synthesis mRNA
4.4. mRNA Expression Levels
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Center for Biotechnology Information (NCBI); National Library of Medicine; National Institutes of Health; Department of Health and Human Services. Variation Viewer. Available online: https://www.ncbi.nlm.nih.gov/variation/view/ (accessed on 1 September 2023).
- Shah, R.D.; Wunderink, R.G. Viral Pneumonia and Acute Respiratory Distress Syndrome. Clin. Chest Med. 2017, 38, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Elrobaa, I.H.; New, K.J. COVID-19: Pulmonary and Extra Pulmonary Manifestations. Front. Public Health 2021, 9, 711616. [Google Scholar] [CrossRef] [PubMed]
- De Miguel-Gómez, L.; Sebastián-León, P.; Romeu, M.; Pellicer, N.; Faus, A.; Pellicer, A.; Díaz-Gimeno, P.; Cervelló, I. Endometrial gene expression differences in women with coronavirus disease 2019. Fertil. Steril. 2022, 118, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Awwad, A.A.; Elhay, O.M.A.; Rabie, M.M.; Awad, A.E.; Kotb, F.M.; Maghraby, H.M.; Eldamarawy, R.H.; Dawood, Y.M.; Balat, M.I.; Hasan, A.I.; et al. Impact of Systemic Diseases on Olfactory Function in COVID-19 Infected Patients. Int. J. Gen. Med. 2022, 15, 5681–5691. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.; Schell, A.; Berkemann, M.; Jungbauer, F.; Zaubitzer, L.; Huber, L.; Warken, C.; Held, V.; Kusnik, A.; Teufel, A.; et al. Post-COVID-19 Impairment of the Senses of Smell, Taste, Hearing, and Balance. Viruses 2022, 14, 849. [Google Scholar] [CrossRef] [PubMed]
- El Jamal, S.M.; Pujadas, E.; Ramos, I.; Bryce, C.; Grimes, Z.M.; Amanat, F.; Tsankova, N.M.; Mussa, Z.; Olson, S.; Salem, F.; et al. Tissue-based SARS-CoV-2 detection in fatal COVID-19 infections: Sustained direct viral-induced damage is not necessary to drive disease progression. Hum. Pathol. 2021, 114, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Chiovato, L.; Rotondi, M. Interleukin-6, CXCL10 and Infiltrating Macrophages in COVID-19-Related Cytokine Storm: Not One for All But All for One! Front. Immunol. 2021, 12, 668507. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 931, 250–256. [Google Scholar] [CrossRef]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.N.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020, 5, e138999. [Google Scholar] [CrossRef]
- Delorey, T.M.; Ziegler, C.G.K.; Heimberg, G.; Normand, R.; Yang, Y.; Segerstolpe, Å.; Abbondanza, D.; Fleming, S.J.; Subramanian, A.; Montoro, D.T.; et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021, 595, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Target. Ther. 2021, 6, 255. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Kannan, M.; Ansari, A.W. Role of SARS-CoV-2-induced cytokines and growth factors in coagulopathy and thromboembolism. Cytokine Growth Factor Rev. 2022, 63, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Iba, T. COVID-19 coagulopathy: Is it disseminated intravascular coagulation? Intern. Emerg. Med. 2021, 16, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, M.I.; Marin-Corral, J.; Rodriguez, J.J.; Restrepo, V.; Cavallazzi, R. Cardiovascular Complications in Coronavirus Disease 2019—Pathogenesis and Management. Semin. Respir. Crit. Care Med. 2023, 44, 021–034. [Google Scholar] [CrossRef] [PubMed]
- Mentzer, S.J.; Ackermann, M.; Jonigk, D. Endothelialitis, Microischemia, and Intussusceptive Angiogenesis in COVID-19. Cold Spring Harb. Perspect. Med. 2022, 12, a041157. [Google Scholar] [CrossRef] [PubMed]
- Madureira, G.; Soares, R. The misunderstood link between SARS-CoV-2 and angiogenesis. A narrative review. Pulmonology 2023, 29, 323–331. [Google Scholar] [CrossRef]
- Smadja, D.M.; Mentzer, S.J.; Fontenay, M.; Laffan, M.A.; Ackermann, M.; Helms, J.; Jonigk, D.; Chocron, R.; Pier, G.B.; Gendron, N.; et al. COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis 2021, 24, 755–788. [Google Scholar] [CrossRef]
- Nicholson, M.; Goubran, H.; Chan, N.; Siegal, D. No apparent association between mRNA COVID-19 vaccination and venous thromboembolism. Blood Rev. 2022, 56, 100970. [Google Scholar] [CrossRef]
- Cy, C.G.; Keat, C.T.; Kien, C.S.; Sim, G.A. A probable case of vaccine-induced immune thrombotic thrombocytopenia secondary to Pfizer Comirnaty COVID-19 vaccine. J. R. Coll. Physicians Edinb. 2022, 52, 113–116. [Google Scholar] [CrossRef]
- Cines, D.B.; Bussel, J.B. SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. N. Engl. J. Med. 2021, 384, 2254–2256. [Google Scholar] [CrossRef] [PubMed]
- García, J.B.; Ortega, P.P.; Fernández, J.A.B.; León, A.C.; Burgos, L.R.; Dorta, E.C. Acute myocarditis after administration of the BNT162b2 vaccine against COVID-19. Rev. Esp. De Cardiol. Engl. Ed. 2021, 74, 812–814. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Cavalotti, C.; Milazzo, A.; Pedrotti, P.; Soriano, F.; Schroeder, J.W.; Morici, N.; Giannattasio, C.; Frigerio, M.; Metra, M.; et al. Temporal relation between second dose BNT162b2 mRNA COVID-19 vaccine and cardiac involvement in a patient with previous SARS-CoV-2 infection. Int. J. Cardiol. Heart Vasc. 2021, 34, 100774. [Google Scholar] [PubMed]
- Witberg, G.; Barda, N.; Hoss, S.; Richter, I.; Wiessman, M.; Aviv, Y.; Grinberg, T.; Auster, O.; Dagan, N.; Balicer, R.D.; et al. Myocarditis after COVID-19 Vaccination in a Large Health Care Organization. N. Engl. J. Med. 2021, 385, 2132–2139. [Google Scholar] [CrossRef] [PubMed]
- Barda, N.; Dagan, N.; Ben-Shlomo, Y.; Kepten, E.; Waxman, J.; Ohana, R.; Hernán, M.A.; Lipsitch, M.; Kohane, I.; Netzer, D.; et al. Safety of the BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2021, 385, 1078–1090. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.Y.F.; Mok, A.H.Y.; Yan, V.K.C.; Wang, B.; Zhang, R.; Hong, S.N.; Chui, C.S.L.; Li, X.; Wong, C.K.H.; Lai, F.T.T.; et al. Vaccine effectiveness of BNT162b2 and CoronaVac against SARS-CoV-2 Omicron BA.2 infection, hospitalisation, severe complications, cardiovascular disease and mortality in patients with diabetes mellitus: A case control study. J. Infect. 2022, 85, e140–e144. [Google Scholar] [CrossRef] [PubMed]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 2022, 28, 410–422. [Google Scholar] [CrossRef]
- Mevorach, D.; Anis, E.; Cedar, N.; Bromberg, M.; Haas, E.J.; Nadir, E.; Olsha-Castell, S.; Arad, D.; Hasin, T.; Levi, N.; et al. Myocarditis after BNT162b2 mRNA Vaccine against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 2140–2149. [Google Scholar] [CrossRef]
- Le Vu, S.; Bertrand, M.; Jabagi, M.-J.; Botton, J.; Drouin, J.; Baricault, B.; Weill, A.; Dray-Spira, R.; Zureik, M. Age and sex-specific risks of myocarditis and pericarditis following COVID-19 messenger RNA vaccines. Nat. Commun. 2022, 13, 3633. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Fact Sheet for Healthcare Providers Administering Vaccine (Vaccination Providers). Emergency Use Authorization (EUA) of the NVX-CoV2373 COVID-19 Vaccine, Adjuvanted to Prevent Coronavirus Disease (COVID-19); Food and Drug Administration (FDA): Silver Spring, MD, USA, 2023.
- European Medicines Agency (EMA). Summary of Product Characteristics, (SmPC). 2022. Available online: https://www.ema.europa.eu/en/documents/product-information/nuvaxovid-epar-product-information_en.pdf (accessed on 10 October 2023).
- European Medicines Agency (EMA). EU Risk Management Plan NUVAXOVID (COVID-19 Vaccine (Recombinant, Adjuvanted)). Available online: https://www.ema.europa.eu/en/documents/rmp-summary/nuvaxovid-epar-risk-management-plan_en.pdf (accessed on 10 October 2023).
- Food and Drug Administration (FDA). FDA Briefing Document Novavax COVID-19 Vaccine. In Proceedings of the Vaccines and Related Biological Products Advisory Committee Meeting, Online, 7 June 2022. [Google Scholar]
- Wang, Y.-W.; Liu, R.-B.; Huang, C.-Y.; Li, H.-Y.; Zhang, Z.-X.; Li, X.-Z.; Liu, J.-L.; Zhang, C.; Xiong, X.; Niu, Y.-M. Global, regional, and national burdens of myocarditis, 1990–2019: Systematic analysis from GBD 2019. BMC Public Health 2023, 23, 714. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, D.; Beetler, D.J.; Di Florio, D.N.; Musigk, N.; Heidecker, B.; Cooper, L.T., Jr. COVID-19, Myocarditis and Pericarditis. Circ. Res. 2023, 132, 1302–1319. [Google Scholar] [CrossRef] [PubMed]
- De Franciscis, S.; Gallelli, L.; Amato, B.; Butrico, L.; Rossi, A.; Buffone, G.; Caliò, F.G.; De Caridi, G.; Grande, R.; Serra, R. Plasma MMP and TIMP evaluation in patients with deep venous thrombosis: Could they have a predictive role in the development of post-thrombotic syndrome? Int. Wound J. 2016, 13, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Marín, F.; Roldán, V.; Climent, V.; García, A.; Marco, P.; Lip, G.Y. Is Thrombogenesis in Atrial Fibrillation Related to Matrix Metalloproteinase-1 and Its Inhibitor, TIMP-1? Stroke 2003, 34, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Malaponte, G.; Polesel, J.; Candido, S.; Sambataro, D.; Bevelacqua, V.; Anzaldi, M.; Vella, N.; Fiore, V.; Militello, L.; Mazzarino, M.C.; et al. IL-6-174 G>C and MMP-9-1562 C>T polymorphisms are associated with increased risk of deep vein thrombosis in cancer patients. Cytokine 2013, 62, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Hantoushzadeh, S.; Norooznezhad, A.H. Possible Cause of Inflammatory Storm and Septic Shock in Patients Diagnosed with (COVID-19). Arch. Med. Res. 2020, 51, 347–348. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Nappi, F.; Avtaar Singh, S.S. Endothelial Dysfunction in SARS-CoV-2 Infection. Biomedicines 2022, 10, 654. [Google Scholar] [CrossRef]
- Xu, S.-W.; Ilyas, I.; Weng, J.-P. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 2023, 44, 695–709. [Google Scholar] [CrossRef]
- Norooznezhad, A.H.; Mansouri, K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc. Res. 2021, 137, 104188. [Google Scholar] [CrossRef]
- Bernard, I.; Limonta, D.; Mahal, L.K.; Hobman, T.C. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses 2020, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Mentzer, S.J.; Kolb, M.; Jonigk, D. Inflammation and intussusceptive angiogenesis in COVID-19: Everything in and out of flow. Eur. Respir. J. 2020, 56, 2003147. [Google Scholar] [CrossRef] [PubMed]
- Capitão, M.; Soares, R. Angiogenesis and Inflammation Crosstalk in Diabetic Retinopathy. J. Cell. Biochem. 2016, 117, 2443–2453. [Google Scholar] [CrossRef] [PubMed]
- Jahani, M.; Dokaneheifard, S.; Mansouri, K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J. Inflamm. 2020, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Liu, W.; Li, X.; Zhao, P.; Shereen, M.A.; Zhu, C.; Huang, S.; Liu, S.; Yu, X.; Yue, M.; et al. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct. Target. Ther. 2021, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Serebrovska, Z.O.; Chong, E.Y.; Serebrovska, T.V.; Tumanovska, L.V.; Xi, L. Hypoxia, HIF-1α, and COVID-19: From pathogenic factors to potential therapeutic targets. Acta Pharmacol. Sin. 2020, 41, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Ragab, D.; Eldin, H.S.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Jahani, M.; Rezazadeh, D.; Mohammadi, P.; Abdolmaleki, A.; Norooznezhad, A.; Mansouri, K. Regenerative Medicine and Angiogenesis; Challenges and Opportunities. Adv. Pharm. Bull. 2020, 10, 490–501. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Woessner, J.F. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1991, 5, 2145–2154. [Google Scholar] [CrossRef]
- Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat. Rev. Cancer 2002, 2, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Da Silva-Neto, P.V.; do Valle, V.B.; Fuzo, C.A.; Fernandes, T.M.; Toro, D.M.; Fraga-Silva TF, C.; Basile, P.A.; de Carvalho, J.C.S.; Pimentel, V.E.; Pérez, M.M. Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress. Biomolecules 2022, 12, 604. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Du, M.; Lopez-Campistrous, A.; Fernandez-Patron, C. Agonist-Induced Activation of Matrix Metalloproteinase-7 Promotes Vasoconstriction Through the Epidermal Growth Factor–Receptor Pathway. Circ. Res. 2004, 94, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Akpek, M. Does COVID-19 Cause Hypertension? Angiology 2022, 73, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Samnegård, A.; Silveira, A.; Lundman, P.; Boquist, S.; Odeberg, J.; Hulthe, J.; Mcpheat, W.; Tornvall, P.; Bergstrand, L.; Ericsson, C.; et al. Serum matrix metalloproteinase-3 concentration is influenced by MMP-3−1612 5A/6A promoter genotype and associated with myocardial infarction. J. Intern. Med. 2005, 258, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Zucker, S.; Lysik, R.M.; Zarrabi, M.H.; Greenwald, A.R.; Gruber, B.; Tickle, S.P.; Baker, T.S.; Docherty, A.J. Elevated plasma stromelysin levels in arthritis. J. Rheumatol. 1994, 21, 2329–2333. [Google Scholar] [PubMed]
- Mattey, D.L.; Nixon, N.B.; Dawes, P.T. Association of circulating levels of MMP-8 with mortality from respiratory disease in patients with rheumatoid arthritis. Thromb. Haemost. 2012, 14, R204. [Google Scholar] [CrossRef]
- Sathyamoorthy, T.; Sandhu, G.; Tezera, L.B.; Thomas, R.; Singhania, A.; Woelk, C.H.; Dimitrov, B.D.; Agranoff, D.; Evans, C.A.W.; Friedland, J.S.; et al. Gender-Dependent Differences in Plasma Matrix Metalloproteinase-8 Elevated in Pulmonary Tuberculosis. PLoS ONE 2015, 10, e0117605. [Google Scholar] [CrossRef]
- Marriott, I.; Huet-Hudson, Y.M. Sexual Dimorphism in Innate Immune Responses to Infectious Organisms. Immunol. Res. 2006, 34, 177–192. [Google Scholar] [CrossRef]
- Smith, J.M.; Shen, Z.; Wira, C.R.; Fanger, M.W.; Shen, L. Effects of Menstrual Cycle Status and Gender on Human Neutrophil Phenotype. Am. J. Reprod. Immunol. 2007, 58, 111–119. [Google Scholar] [CrossRef]
- Kobusiak-Prokopowicz, M.; Kaaz, K.; Marciniak, D.; Karolko, B.; Mysiak, A. Relationships between Circulating Matrix Metalloproteinases, Tissue Inhibitor TIMP-2, and Renal Function in Patients with Myocarditis. Kidney Blood Press. Res. 2021, 46, 749–757. [Google Scholar] [CrossRef]
- Kondo, T.; Nagasaki, Y.; Takahashi, M.; Nakagawa, K.; Kuse, A.; Morichika, M.; Sakurada, M.; Asano, M.; Ueno, Y. An autopsy case of cardiac tamponade caused by a ruptured ventricular aneurysm associated with acute myocarditis. Leg. Med. 2016, 18, 44–48. [Google Scholar] [CrossRef]
- Desjardins, P.; Conklin, D. NanoDrop microvolume quantitation of nucleic acids. J. Vis. Exp. (JoVE) 2010, e2565. [Google Scholar]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2−ΔΔCT method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
Angiogenesis | ||||
---|---|---|---|---|
Gene | Protein | Gene Location | Function | Tissue mRNA Expression |
HIF-1α | Hypoxia-inducible factor 1 subunit alpha | 14q23.2 | The primary transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, it activates the transcription of over forty genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. HIF-1 thus plays an essential role in embryonic vascularization, tumour angiogenesis and pathophysiology of ischemic disease. | Detected in all tissue |
VEGFA | Vascular endothelial growth factor A | 6p21.1 | Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis, and induces permeabilization of blood vessels. | Detected in all tissue |
MMP-2 | Matrix metalloproteinase 2 | 16q12.2 | It is a ubiquitous metalloproteinase that is involved in the remodelling of the vasculature, angiogenesis, tissue repair, tumour invasion, inflammation, and atherosclerotic plaque rupture, as well as degrading extracellular matrix proteins. Moreover, MMP-2 can also act on several nonmatrix proteins such as big endothelial one and beta-type CGRP promoting vasoconstriction. | Detected in all tissue |
MMP-7 | Matrix metalloproteinase 7 | 11q22.2 | This protein degrades casein, gelatins of types I, III, IV, and V, and fibronectin, whereas it activates procollagenase. Moreover, MMP-7 modulates the VEGF pathway in endothelial cells, degrading soluble VEGFR-1 and, in turn, promoting angiogenesis. MMP-7 also enhances endothelial cell proliferation. | Detected in all tissue |
MMP-9 | Matrix metalloproteinase 9 | 20q13.12 | MMP-9 plays an essential role in local proteolysis of the extracellular matrix and in leukocyte migration. MMP-9 also promotes endothelial cell migration and triggers the angiogenic switch by releasing VEGF. Moreover, MMP-9 may be associated with the development of vein thrombosis. | Group enriched (bone marrow, lymphoid tissue) |
TIMP1 | TIMP metallopeptidase inhibitor 1 | Xp11.3 | TIMP1 forms the complex with targets metalloproteinases, such as collagenases, and irreversibly inactivates them by binding to their catalytic zinc cofactor. Acts on MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, and MMP-16. TIMP1 regulates cell differentiation, migration, and cell death. TIMP1 is a well-documented inhibitor of apoptosis and blocks the endothelial cell response to angiogenic factors, e.g., basic fibroblast growth factor (bFGF). Moreover, TIMP1 may be associated with prothrombotic state. | Detected in all |
ADAMTS1 | ADAM metallopeptidase with thrombospondin type 1 motif 1 | 21q21.3 | ADAMTS1 cleaves aggrecan and a cartilage proteoglycan. It also has angiogenic inhibitor activity. | Detected in all |
Characters | COVID-19 Convalescents (n = 33) | Healthy People Vaccinated with One Dose of BNT162b2 (n = 35) | Convalescents Vaccinated with One Dose of BNT162b2 (n = 19) | |
---|---|---|---|---|
Number of women | 15 | 12 | 9 | |
Number of men | 18 | 23 | 10 | |
Age (mean ± SD) | 63.29 ± 8.62 | 67.37 ± 12.05 | 68.58 ± 6.70 | |
Co-existing diseases | Non | 22 | 9 | 5 |
Atherosclerosis | 2 | 2 | 1 | |
Diabetes | 5 | 6 | 4 | |
Hypertension | 9 | 24 | 13 | |
Stroke | 12 | 12 | 13 | |
Paresis | 10 | 11 | 10 | |
Hypercholesterolemia | 6 | 0 | 0 | |
Heart failure | 0 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wigner-Jeziorska, P.; Janik-Karpińska, E.; Niwald, M.; Saluk, J.; Miller, E. Effect of SARS-CoV-2 Infection and BNT162b2 Vaccination on the mRNA Expression of Genes Associated with Angiogenesis. Int. J. Mol. Sci. 2023, 24, 16094. https://doi.org/10.3390/ijms242216094
Wigner-Jeziorska P, Janik-Karpińska E, Niwald M, Saluk J, Miller E. Effect of SARS-CoV-2 Infection and BNT162b2 Vaccination on the mRNA Expression of Genes Associated with Angiogenesis. International Journal of Molecular Sciences. 2023; 24(22):16094. https://doi.org/10.3390/ijms242216094
Chicago/Turabian StyleWigner-Jeziorska, Paulina, Edyta Janik-Karpińska, Marta Niwald, Joanna Saluk, and Elżbieta Miller. 2023. "Effect of SARS-CoV-2 Infection and BNT162b2 Vaccination on the mRNA Expression of Genes Associated with Angiogenesis" International Journal of Molecular Sciences 24, no. 22: 16094. https://doi.org/10.3390/ijms242216094
APA StyleWigner-Jeziorska, P., Janik-Karpińska, E., Niwald, M., Saluk, J., & Miller, E. (2023). Effect of SARS-CoV-2 Infection and BNT162b2 Vaccination on the mRNA Expression of Genes Associated with Angiogenesis. International Journal of Molecular Sciences, 24(22), 16094. https://doi.org/10.3390/ijms242216094