5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Electrophysiological Evaluation and the Structure-Activity Relationships
2.3. Molecular Modeling
2.4. Prediction of Physicochemical, ADMET, and PAINS Profiles
3. Materials and Methods
3.1. Chemistry
3.1.1. General Remarks
3.1.2. Synthesis of Bis(isoxazoles) 3
3.2. Electrophysiological Evaluation
3.3. Molecular Modeling
3.4. Prediction of Physicochemical, ADMET, and PAINS Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, K.B.; Wollmuth, L.P.; Bowie, D.; Furukawa, H.; Menniti, F.S.; Sobolevsky, A.I.; Swanson, G.T.; Swanger, S.A.; Greger, I.H.; Nakagawa, T.; et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 2021, 73, 298–487. [Google Scholar] [CrossRef]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef]
- Brogi, S.; Campiani, G.; Brindisi, M.; Butini, S. Allosteric modulation of ionotropic glutamate receptors: An outlook on new therapeutic approaches to treat central nervous system disorders. ACS Med. Chem. Lett. 2019, 10, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Goodman, L.; Fourie, C.; Schenk, S.; Leitch, B.; Montgomery, J.M. AMPA receptors as therapeutic targets for neurological disorders. In Ion Channels as Therapeutic Targets, Part A; Donev, R., Ed.; Advances in Protein Chemistry and Structural Biology; Academic Press: Cambridge, MA, USA, 2016; Volume 103, pp. 203–261. [Google Scholar] [CrossRef]
- Partin, K.M. AMPA receptor potentiators: From drug design to cognitive enhancement. Curr. Opin. Pharmacol. 2015, 20, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Lauterborn, J.C.; Palmer, L.C.; Jia, Y.; Pham, D.T.; Hou, B.; Wang, W.; Trieu, B.H.; Cox, C.D.; Kantorovich, S.; Gall, C.M.; et al. Chronic ampakine treatments stimulate dendritic growth and promote learning in middle-aged rats. J. Neurosci. 2016, 36, 1636–1646. [Google Scholar] [CrossRef]
- Reuillon, T.; Ward, S.E.; Beswick, P. AMPA receptor positive allosteric modulators: Potential for the treatment of neuropsychiatric and neurological disorders. Curr. Top. Med. Chem. 2016, 16, 3536–3565. [Google Scholar] [CrossRef] [PubMed]
- Henley, J.M.; Wilkinson, K.A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 2016, 17, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Kunugi, A.; Tajima, Y.; Suzuki, N.; Suzuki, M.; Toyofuku, M.; Kuno, H.; Sogabe, S.; Kosugi, Y.; Awasaki, Y.; et al. Strictly regulated agonist-dependent activation of AMPA-R is the key characteristic of TAK-653 for robust synaptic responses and cognitive improvement. Sci. Rep. 2021, 11, 14532. [Google Scholar] [CrossRef]
- Suzuki, A.; Hara, H.; Kimura, H. Role of the AMPA receptor in antidepressant effects of ketamine and potential of AMPA receptor potentiators as a novel antidepressant. Neuropharmacology 2022, 222, 109308. [Google Scholar] [CrossRef]
- Golubeva, E.A.; Lavrov, M.I.; Radchenko, E.V.; Palyulin, V.A. Diversity of AMPA receptor ligands: Chemotypes, binding modes, mechanisms of action, and therapeutic effects. Biomolecules 2023, 13, 56. [Google Scholar] [CrossRef]
- Yelshanskaya, M.V.; Singh, A.K.; Sampson, J.M.; Narangoda, C.; Kurnikova, M.; Sobolevsky, A.I. Structural bases of noncompetitive inhibition of AMPA-subtype ionotropic glutamate receptors by antiepileptic drugs. Neuron 2016, 91, 1305–1315. [Google Scholar] [CrossRef]
- Stenum-Berg, C.; Musgaard, M.; Chavez-Abiega, S.; Thisted, C.L.; Barrella, L.; Biggin, P.C.; Kristensen, A.S. Mutational analysis and modeling of negative allosteric modulator binding sites in AMPA receptors. Mol. Pharmacol. 2019, 96, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Narangoda, C.; Sakipov, S.N.; Kurnikova, M.G. AMPA receptor noncompetitive inhibitors occupy a promiscuous binding site. ACS Chem. Neurosci. 2019, 10, 4511–4521. [Google Scholar] [CrossRef] [PubMed]
- Pirotte, B.; Francotte, P.; Goffin, E.; de Tullio, P. AMPA receptor positive allosteric modulators: A patent review. Expert Opin. Ther. Pat. 2013, 23, 615–628. [Google Scholar] [CrossRef]
- Ward, S.E.; Pennicott, L.E.; Beswick, P. AMPA receptor-positive allosteric modulators for the treatment of schizophrenia: An overview of recent patent applications. Future Med. Chem. 2015, 7, 473–491. [Google Scholar] [CrossRef]
- Kadriu, B.; Musazzi, L.; Johnston, J.N.; Kalynchuk, L.E.; Caruncho, H.J.; Popoli, M.; Zarate, C.A. Positive AMPA receptor modulation in the treatment of neuropsychiatric disorders: A long and winding road. Drug Discov. Today 2021, 26, 2816–2838. [Google Scholar] [CrossRef] [PubMed]
- Goffin, E.; Drapier, T.; Larsen, A.P.; Geubelle, P.; Ptak, C.P.; Laulumaa, S.; Rovinskaja, K.; Gilissen, J.; de Tullio, P.; Olsen, L.; et al. 7-Phenoxy-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides as positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors with nanomolar potency. J. Med. Chem. 2018, 61, 251–264. [Google Scholar] [CrossRef]
- Drapier, T.; Geubelle, P.; Bouckaert, C.; Nielsen, L.; Laulumaa, S.; Goffin, E.; Dilly, S.; Francotte, P.; Hanson, J.; Pochet, L.; et al. Enhancing action of positive allosteric modulators through the design of dimeric compounds. J. Med. Chem. 2018, 61, 5279–5291. [Google Scholar] [CrossRef]
- Lavrov, M.I.; Karlov, D.S.; Voronina, T.A.; Grigoriev, V.V.; Ustyugov, A.A.; Bachurin, S.O.; Palyulin, V.A. Novel positive allosteric modulators of AMPA receptors based on 3,7-diazabicyclo[3.3.1]nonane scaffold. Mol. Neurobiol. 2020, 57, 191–199. [Google Scholar] [CrossRef]
- Nazarova, A.A.; Sedenkova, K.N.; Karlov, D.S.; Lavrov, M.I.; Grishin, Y.K.; Kuznetsova, T.S.; Zamoyski, V.L.; Grigoriev, V.V.; Averina, E.B.; Palyulin, V.A. Bivalent AMPA receptor positive allosteric modulators of the bis(pyrimidine) series. Med. Chem. Commun. 2019, 10, 1615–1619. [Google Scholar] [CrossRef]
- Vasilenko, D.A.; Sadovnikov, K.S.; Sedenkova, K.N.; Karlov, D.S.; Radchenko, E.V.; Grishin, Y.K.; Rybakov, V.B.; Kuznetsova, T.S.; Zamoyski, V.L.; Grigoriev, V.V.; et al. A facile approach to bis(isoxazoles), promising ligands of the AMPA receptor. Molecules 2021, 26, 6411. [Google Scholar] [CrossRef]
- Lavrov, M.I.; Veremeeva, P.N.; Golubeva, E.A.; Radchenko, E.V.; Zamoyski, V.L.; Grigoriev, V.V.; Palyulin, V.A. Positive and negative AMPA receptor modulators based on tricyclic bispidine derivative: Minor structural change inverts the type of activity. Mendeleev Commun. 2022, 32, 360–363. [Google Scholar] [CrossRef]
- Giomi, D.; Cordero, F.M.; Machetti, F. 4.03—Isoxazoles. In Comprehensive Heterocyclic Chemistry III; Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., Taylor, R.J.K., Eds.; Elsevier: Oxford, UK, 2008; pp. 365–485. ISBN 978-0-08-044992-0. [Google Scholar] [CrossRef]
- Vitale, P.; Scilimati, A. Functional 3-arylisoxazoles and 3-aryl-2-isoxazolines from reaction of aryl nitrile oxides and enolates: Synthesis and reactivity. Synthesis 2013, 45, 2940–2948. [Google Scholar] [CrossRef]
- Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res. 2018, 27, 1309–1344. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Mishra, P. Synthesis, monoamine oxidase inhibitory activity and computational study of novel isoxazole derivatives as potential antiparkinson agents. Comput. Biol. Chem. 2019, 79, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.B.; Zyk, N.V. The main directions and recent trends in the synthesis and use of isoxazoles. Chem. Heterocycl. Comp. 2020, 56, 694–707. [Google Scholar] [CrossRef]
- Evarts, M.M.; Strong, Z.H.; Krische, M.J. Oxetane-, azetidine-, and bicyclopentane-bearing N -heterocycles from ynones: Scaffold diversification via ruthenium-catalyzed oxidative alkynylation. Org. Lett. 2023, 25, 5907–5910. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Kine, T.; Uenishi, H.; Maki, Y.; Kase, Y.; Takagi, M.; Maegawa, T. Regioselective synthesis of 3,4-disubstituted isoxazoles by using a chalcone-rearrangement strategy. Synlett 2023, 34, 1253–1258. [Google Scholar] [CrossRef]
- Duc, D.X.; Dung, V.C. Recent progress in the synthesis of isoxazoles. Curr. Org. Chem. 2021, 25, 2938–2989. [Google Scholar] [CrossRef]
- Sobenina, L.N.; Tomilin, D.N.; Gotsko, M.D.; Ushakov, I.A.; Mikhaleva, A.I.; Trofimov, B.A. From 4,5,6,7-tetrahydroindoles to 3- or 5-(4,5,6,7-tetrahydroindol-2-yl)isoxazoles in two steps: A regioselective switch between 3- and 5-isomers. Tetrahedron 2014, 70, 5168–5174. [Google Scholar] [CrossRef]
- Galenko, A.V.; Khlebnikov, A.F.; Novikov, M.S.; Pakalnis, V.V.; Rostovskii, N.V. Recent advances in isoxazole chemistry. Russ. Chem. Rev. 2015, 84, 335–377. [Google Scholar] [CrossRef]
- Morita, T.; Yugandar, S.; Fuse, S.; Nakamura, H. Recent progresses in the synthesis of functionalized isoxazoles. Tetrahedron Lett. 2018, 59, 1159–1171. [Google Scholar] [CrossRef]
- Vasilenko, D.A.; Sedenkova, K.N.; Kuznetsova, T.S.; Averina, E.B. Synthetic approaches to nitro-substituted isoxazoles. Synthesis 2019, 51, 1516–1528. [Google Scholar] [CrossRef]
- Dai, P.; Tan, X.; Luo, Q.; Yu, X.; Zhang, S.; Liu, F.; Zhang, W.-H. Synthesis of 3-acyl-isoxazoles and Δ2-isoxazolines from methyl ketones, alkynes or alkenes, and tert-butyl nitrite via a Csp3–H radical functionalization/cycloaddition cascade. Org. Lett. 2019, 21, 5096–5100. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Szostak, M. Recent developments in the synthesis and reactivity of isoxazoles: Metal catalysis and beyond. Adv. Synth. Catal. 2015, 357, 2583–2614. [Google Scholar] [CrossRef]
- Fuse, S.; Morita, T.; Nakamura, H. Step-by-step multifunctionalization of isoxazoles based on SEAr reactions and C–H direct arylations. Synthesis 2017, 49, 2351–2360. [Google Scholar] [CrossRef]
- Fuchibe, K.; Sakon, K.; Suto, K.; Eto, R.; Nakazono, S.; Ichikawa, J. Fluorine-activated and -directed allene cycloadditions with nitrile oxides and imine oxides: Synthesis of ring-fluorinated isoxazole derivatives. Org. Lett. 2023, 25, 7258–7262. [Google Scholar] [CrossRef]
- Song, W.; Liu, Y.; Yan, N.; Wan, J.-P. Tunable key [3+2] and [2+1] cycloaddition of enaminones and α-diazo compounds for the synthesis of isomeric isoxazoles: Metal-controlled selectivity. Org. Lett. 2023, 25, 2139–2144. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Lv, P.; Liu, Y. 4,5-Dihydro-1,2,4-oxadiazole as a single nitrogen transfer reagent: Synthesis of functionalized isoxazoles assisted by Sc(OTf)3 or Au(I)/Sc(OTf)3 synergistic catalysis. Org. Lett. 2023, 25, 4377–4382. [Google Scholar] [CrossRef]
- Volkova, Y.A.; Averina, E.B.; Vasilenko, D.A.; Sedenkova, K.N.; Grishin, Y.K.; Bruheim, P.; Kuznetsova, T.S.; Zefirov, N.S. Unexpected heterocyclization of electrophilic alkenes by tetranitromethane in the presence of triethylamine. Synthesis of 5-nitroisoxazoles. J. Org. Chem. 2019, 84, 3192–3200. [Google Scholar] [CrossRef] [PubMed]
- Averina, E.B.; Vasilenko, D.A.; Samoilichenko, Y.V.; Grishin, Y.K.; Rybakov, V.B.; Kuznetsova, T.S.; Zefirov, N.S. Chemoselective reduction of functionalized 5-nitroisoxazoles: Synthesis of 5-amino- and 5-[hydroxy(tetrahydrofuran-2-yl)amino]isoxazoles. Synthesis 2014, 46, 1107–1113. [Google Scholar] [CrossRef]
- Vasilenko, D.A.; Dronov, S.E.; Parfiryeu, D.U.; Sadovnikov, K.S.; Sedenkova, K.N.; Grishin, Y.K.; Rybakov, V.B.; Kuznetsova, T.S.; Averina, E.B. 5-Nitroisoxazoles in SNAr reactions: Access to polysubstituted isoxazole derivatives. Org. Biomol. Chem. 2021, 19, 6447–6454. [Google Scholar] [CrossRef]
- Vasilenko, D.A.; Dueva, E.V.; Kozlovskaya, L.I.; Zefirov, N.A.; Grishin, Y.K.; Butov, G.M.; Palyulin, V.A.; Kuznetsova, T.S.; Karganova, G.G.; Zefirova, O.N.; et al. Tick-borne flavivirus reproduction inhibitors based on isoxazole core linked with adamantane. Bioorg. Chem. 2019, 87, 629–637. [Google Scholar] [CrossRef]
- Averina, E.B.; Vasilenko, D.A.; Gracheva, Y.A.; Grishin, Y.K.; Radchenko, E.V.; Burmistrov, V.V.; Butov, G.M.; Neganova, M.E.; Serkova, T.P.; Redkozubova, O.M.; et al. Synthesis and biological evaluation of novel 5-hydroxylaminoisoxazole derivatives as lipoxygenase inhibitors and metabolism enhancing agents. Bioorg. Med. Chem. 2016, 24, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Sadovnikov, K.S.; Vasilenko, D.A.; Gracheva, Y.A.; Zefirov, N.A.; Radchenko, E.V.; Palyulin, V.A.; Grishin, Y.K.; Vasilichin, V.A.; Shtil, A.A.; Shevtsov, P.N.; et al. Novel substituted 5-methyl-4-acylaminoisoxazoles as antimitotic agents: Evaluation of selectivity to LNCaP cancer cells. Arch. Pharm. 2022, 355, e2100425. [Google Scholar] [CrossRef] [PubMed]
- Frydenvang, K.; Pickering, D.S.; Kastrup, J.S. Structural basis for positive allosteric modulation of AMPA and kainate receptors. J. Physiol. 2022, 600, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Kunugi, A.; Tajima, Y.; Kuno, H.; Sogabe, S.; Kimura, H. HBT1, a novel AMPA receptor potentiator with lower agonistic effect, avoided bell-shaped response in in vitro BDNF production. J. Pharmacol. Exp. Ther. 2018, 364, 377–389. [Google Scholar] [CrossRef]
- Laulumaa, S.; Hansen, K.V.; Masternak, M.; Drapier, T.; Francotte, P.; Pirotte, B.; Frydenvang, K.; Kastrup, J.S. Crystal structures of potent dimeric positive allosteric modulators at the ligand-binding domain of the GluA2 receptor. ACS Med. Chem. Lett. 2019, 10, 243–247. [Google Scholar] [CrossRef]
- Patel, N.C.; Schwarz, J.; Hou, X.J.; Hoover, D.J.; Xie, L.; Fliri, A.J.; Gallaschun, R.J.; Lazzaro, J.T.; Bryce, D.K.; Hoffmann, W.E.; et al. Discovery and characterization of a novel dihydroisoxazole class of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor potentiators. J. Med. Chem. 2013, 56, 9180–9191. [Google Scholar] [CrossRef] [PubMed]
- Spassov, D.S.; Atanasova, M.; Doytchinova, I. Inhibitor trapping in N-myristoyltransferases as a mechanism for drug potency. Int. J. Mol. Sci. 2023, 24, 11610. [Google Scholar] [CrossRef] [PubMed]
- Greger, I.H.; Watson, J.F.; Cull-Candy, S.G. Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 2017, 94, 713–730. [Google Scholar] [CrossRef]
- Twomey, E.C.; Sobolevsky, A.I. Structural mechanisms of gating in ionotropic glutamate receptors. Biochemistry 2018, 57, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Harms, J.E.; Benveniste, M.; Maclean, J.K.F.; Partin, K.M.; Jamieson, C. Functional analysis of a novel positive allosteric modulator of AMPA receptors derived from a structure-based drug design strategy. Neuropharmacology 2013, 64, 45–52. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Huang, J.; MacKerell, A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. WIREs Comput. Mol. Sci. 2013, 3, 198–210. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Roe, D.R.; Swails, J.M.; Case, D.A. PYTRAJ: Interactive Data Analysis for Molecular Dynamics Simulations; Rutgers University: New Brunswick, NJ, USA, 2016. [Google Scholar]
- Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; et al. Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information. J. Comput.-Aided Mol. Des. 2011, 25, 533–554. [Google Scholar] [CrossRef]
- ADMET Prediction Service. Available online: http://qsar.chem.msu.ru/admet/ (accessed on 1 September 2023).
- Radchenko, E.V.; Dyabina, A.S.; Palyulin, V.A.; Zefirov, N.S. Prediction of human intestinal absorption of drug compounds. Russ. Chem. Bull. 2016, 65, 576–580. [Google Scholar] [CrossRef]
- Radchenko, E.V.; Dyabina, A.S.; Palyulin, V.A. Towards deep neural network models for the prediction of the blood-brain barrier permeability for diverse organic compounds. Molecules 2020, 25, 5901. [Google Scholar] [CrossRef] [PubMed]
- Radchenko, E.V.; Rulev, Y.A.; Safanyaev, A.Y.; Palyulin, V.A.; Zefirov, N.S. Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components. Dokl. Biochem. Biophys. 2017, 473, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef] [PubMed]
- RDKit: Open-Source Cheminformatics Software. Available online: https://www.rdkit.org/ (accessed on 1 September 2023).
N | Base | Solvent | Reaction Time | Temperature | Yield 3e, % |
1 | Cs2CO3 | CH3CN | 7 days | 20 °C | 5 |
2 | K2CO3 | CH3CN/H2O | 48 h | 20 °C | 5 |
3 | DIPEA | CH3CN | 96 h | 20 °C | - |
4 | DIPEA | CH3CN | 2 h | 80 °C | 16 |
5 | Et3N | THF | 48 h | 20 °C | 15 |
6 | DIPEA | EtOH | 48 h | 20 °C | 36 |
7 | DIPEA | tBuOH | 48 h | 20 °C | 77 |
Compound | EWG | X-Linker-X | Yield |
3a | COOtBu | 84% | |
3b | COOMe | 85% | |
3c | CONH2 | 74% | |
3d | COOtBu | NHCH2CH2NH | 86% |
3e | COOtBu | NHCH2CH2CH2NH | 77% |
3f | COOtBu | NHCH2CH2CH2CH2NH | 88% |
3g | COOtBu | SCH2CH2S | 68% |
3h | COOtBu | SCH2CH2CH2S | 73% |
3i | COOiPr | SCH2CH2S | 55% |
3j | COOMe | SCH2CH2S | 68% |
Compound | Number of Neurons | Compound Concentration (M) and Current Amplitude (% to Control ± SD) | ||||||
---|---|---|---|---|---|---|---|---|
10−12 | 10−11 | 10−10 | 10−9 | 10−8 | 10−7 | 10−6 | ||
3a | 5 | – | 96 ± 4 | 90 ± 5 | 83 ± 4 | 79 ± 5 | 76 ± 5 | 56 ± 5 |
3b | 5 | – | – | 100 ± 1 | 100 ± 3 | 100 ± 2 | 100 ± 2 | 100 ± 3 |
3c | 5 | – | – | 100 ± 1 | 100 ± 3 | 100 ± 2 | 100 ± 2 | 100 ± 3 |
3d | 3 | 100 ± 3 | 100 ± 3 | 106 ± 4 | 120 ± 6 | 127 ± 6 | 119 ± 5 | 103 ± 3 |
3e | 3 | 100 ± 2 | 100 ± 3 | 89 ± 4 | 77 ± 6 | 71 ± 5 | 88 ± 4 | 97 ± 3 |
3f | 3 | 100 ± 4 | 95 ± 4 | 88 ± 6 | 78 ± 6 | 86 ± 5 | 92 ± 4 | 99 ± 2 |
3g | 4 | 125 ± 5 | 147 ± 6 | 156 ± 7 | 168 ± 7 | 134 ± 4 | 113 ± 4 | 105 ± 3 |
3h | 3 | 100 ± 2 | 116 ± 4 | 143 ± 5 | 153 ± 5 | 159 ± 6 | 142 ± 5 | 121 ± 4 |
3i | 4 | 100 ± 3 | 117 ± 4 | 118 ± 5 | 118 ± 5 | 120 ± 6 | 122 ± 6 | 109 ± 5 |
3j | 3 | 100 ± 3 | 139 ± 8 | 177 ± 10 | 163 ± 11 | 146 ± 8 | 141 ± 10 | 138 ± 9 |
I [22] | 4 | 141 ± 7 | 172 ± 9 | 152 ± 7 | 144 ± 5 | 129 ± 4 | 113 ± 4 | 105 ± 3 |
CTZ | 8 | 100 ± 3 | 145 ± 11 |
Compound | MW | LogPow | pSaq | LogBB | HIA | hERG pKi | hERG pIC50 | QED |
---|---|---|---|---|---|---|---|---|
3a | 402.50 | 5.11 | 6.63 | −0.34 | 84 | 5.37 | 4.33 | 0.60 |
3b | 430.55 | 5.75 | 6.91 | −1.43 | 84 | 5.64 | 4.36 | 0.50 |
3c | 458.61 | 5.93 | 7.13 | −0.29 | 93 | 5.37 | 4.63 | 0.40 |
3d | 486.66 | 6.09 | 7.89 | −0.27 | 100 | 6.35 | 4.41 | 0.39 |
3e | 454.57 | 5.48 | 7.08 | −0.23 | 93 | 5.78 | 4.56 | 0.43 |
3f | 374.44 | 4.36 | 5.49 | −1.60 | 84 | 5.37 | 4.59 | 0.66 |
3g | 374.44 | 4.36 | 5.77 | −0.40 | 84 | 5.13 | 4.57 | 0.67 |
3h | 430.55 | 5.64 | 7.23 | −0.28 | 84 | 5.39 | 4.64 | 0.47 |
3i | 406.53 | 5.01 | 6.59 | 0.22 | 100 | 7.37 | 4.69 | 0.52 |
3j | 434.50 | 2.37 | 2.96 | −0.53 | 84 | 5.09 | 4.48 | 0.46 |
Name | Description |
---|---|
angleAB | Angle between the A and B planes (0 = parallel) |
heightFaceAB | Mean height of the plane center point over the other plane |
distFace | Distance between the face center points |
shiftFaceAB | Mean lateral shift between the face center point and the projection of the other face center point |
heightS_AB | Mean height of the plane S point over the other plane |
shiftSL_AB | Mean lateral shift between the projection of the face S point and the other face L point |
heightL_AB | Mean height of the plane L point over the other plane |
shiftLS_AB | Mean lateral shift between the projection of the face L point and the other face S point |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilenko, D.A.; Temnyakova, N.S.; Dronov, S.E.; Radchenko, E.V.; Grishin, Y.K.; Gabrel’yan, A.V.; Zamoyski, V.L.; Grigoriev, V.V.; Averina, E.B.; Palyulin, V.A. 5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors. Int. J. Mol. Sci. 2023, 24, 16135. https://doi.org/10.3390/ijms242216135
Vasilenko DA, Temnyakova NS, Dronov SE, Radchenko EV, Grishin YK, Gabrel’yan AV, Zamoyski VL, Grigoriev VV, Averina EB, Palyulin VA. 5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors. International Journal of Molecular Sciences. 2023; 24(22):16135. https://doi.org/10.3390/ijms242216135
Chicago/Turabian StyleVasilenko, Dmitry A., Nadezhda S. Temnyakova, Sevastian E. Dronov, Eugene V. Radchenko, Yuri K. Grishin, Alexey V. Gabrel’yan, Vladimir L. Zamoyski, Vladimir V. Grigoriev, Elena B. Averina, and Vladimir A. Palyulin. 2023. "5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors" International Journal of Molecular Sciences 24, no. 22: 16135. https://doi.org/10.3390/ijms242216135
APA StyleVasilenko, D. A., Temnyakova, N. S., Dronov, S. E., Radchenko, E. V., Grishin, Y. K., Gabrel’yan, A. V., Zamoyski, V. L., Grigoriev, V. V., Averina, E. B., & Palyulin, V. A. (2023). 5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors. International Journal of Molecular Sciences, 24(22), 16135. https://doi.org/10.3390/ijms242216135