Genetic Background of Epilepsy and Antiepileptic Treatments
Abstract
:1. Introduction
2. Mutations in Genes Encoding Sodium Channel Subunits
2.1. SCN1A Gene Mutations
2.2. SCN2A Gene Mutations
2.3. SCN8A Gene Mutations
3. Mutations in Genes Encoding Potassium Voltage-Gated Channels
3.1. Mutations in KCNQ2 and KCNQ3 Genes
3.2. Mutations in KCNA1 and KCNA2 Genes
3.3. Mutations in KCNT1 and KCNT2 Genes
4. Genes Encoding GABAA Receptors
5. Mutations in Genes Encoding Ionotropic Glutamate Receptors
5.1. Mutations in Genes Encoding NMDA Receptors
5.2. Mutations in Genes Encoding AMPA Receptors
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perucca, P.; Perucca, E. Identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res. 2019, 152, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Gunjan, G.; Dabney-Smith, C.; Lorigan, G.A. The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183148. [Google Scholar]
- Dhiman, V. Molecular genetics of epilepsy: A clinician’s perspective. Ann. Indian Acad. Neurol. 2017, 20, 96–102. [Google Scholar] [CrossRef]
- Allen, N.M.; Weckhuysen, S.; Gorman, K.; King, M.D.; Lerche, H. Genetic potassium channel-associated epilepsies: Clinical review of the KV family. Eur. J. Paediatr. Neurol. 2020, 24, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Escayg, A.; MacDonald, B.T.; Meisler, M.H.; Baulac, S.; Huberfeld, G.; An-Gourfinkel, I.; Brice, A.; LeGuern, E.; Moulard, B.; Chaigne, D.; et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat. Genet. 2000, 24, 343–345. [Google Scholar] [CrossRef]
- Bunton-Stasyshyn, R.K.A.; Wagnon, J.L.; Wengert, E.R.; Barker, B.S.; Faulkner, A.; Wagley, P.K.; Bhatia, K.; Jones, J.M.; Maniaci, M.R.; Parent, J.M.; et al. Prominent role of forebrain excitatory neurons in SCN8A encephalopathy. Brain 2019, 142, 362–375. [Google Scholar] [CrossRef]
- Dravet, C.; Bureau, M.; Oguni, H.; Fukujama, Y.; Cokar, O. Severe myoclonic epilepsy in infancy. Adv. Neurol. 2005, 95, 71–102. [Google Scholar]
- Yu, F.H.; Mantegazza, M.; Westenbroek, R.E.; Robbins, C.A.; Kalume, F.; Burton, K.A.; Spain, W.J.; McKnight, G.S.; Scheuer, T.; Catterall, W.A. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 2006, 9, 1142–1149. [Google Scholar] [CrossRef]
- Claes, L.; Ceulemans, B.; Audenaert, D.; Smets, K.; Löfgren, A.; Del-Favero, J.; Ala-Mello, S.; Basel-Vanagaite, L.; Plecko, B.; Raskin, S.; et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum. Mutat. 2003, 21, 615–621. [Google Scholar] [CrossRef]
- Fukuma, G.; Oguni, H.; Shirasaka, Y.; Watanabe, K.; Miyajima, T.; Yasumoto, S.; Ohfu, M.; Inoue, T.; Watanachai, A.; Kira, R.; et al. Mutations of neuronal voltage-gated Na+ channel alpha 1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI(SMEB). Epilepsia 2004, 45, 140–148. [Google Scholar] [CrossRef]
- Schoonjans, A.S.; Lagae, L.; Ceulemans, B. Low-dose fenfluramine in the treatment of neurologic disorders: Experience in Dravet syndrome. Ther. Adv. Neurol. Disord. 2015, 8, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Cannabidiol in Dravet syndrome study group. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.; Scheffer, I.E.; Gunning, B.; Sanchez-Carpintero, R.; Gil-Nagel, A.; Perry, M.S.; Saneto, R.P.; Checketts, D.; Dunayevich, E.; Knappertz, V.; et al. Dose-ranging effect of adjunctive oral cannabidiol vs placebo on convulsive seizure frequency in Dravet syndrome: A randomized clinical trial. JAMA Neurol. 2020, 77, 613–621. [Google Scholar] [CrossRef]
- Hahn, C.D.; Jiang, Y.; Villanueva, V.; Zolnowska, M.; Arkilo, D.; Hsiao, S.; Asgharnejad, M.; Dlugos, D. A phase 2, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of soticlestat as adjunctive therapy in pediatricpatients with Dravet syndrome or Lennox-Gastaut syndrome (ELEKTRA). Epilepsia 2022, 63, 2671–2683. [Google Scholar] [CrossRef]
- Lagae, L.; Sullivan, J.; Knupp, K.; Laux, L.; Polster, T.; Nikanorova, M.; Devinsky, O.; Cross, J.H.; Guerrini, R.; Talwar, D.; et al. Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: A randomised, double-blind, placebo-controlled trial. Lancet 2019, 394, 2243–2254. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, R.; Stewart, A.; Van Poppel, K.; Klinger, S.; Hulihan, J.; Van Heusen, H.; Vaitkevicius, H.; Gasior, M. Intravenous ganaxolone in pediatric super-refractory status epilepticus: A single hospital experience. Epilepsy Behav. Rep. 2022, 20, 100567. [Google Scholar] [CrossRef] [PubMed]
- Yawno, T.; Miller, S.L.; Bennet, L.; Wong, F.; Hirst, J.J.; Fahey, M.; Walker, D.W. Ganaxolone: A new treatment for neonatal seizures. Front. Cell. Neurosci. 2017, 11, 246. [Google Scholar] [CrossRef]
- Sullivan, J.; Gunning, B.; Zafar, M.; Guerrini, R.; Gecz, J.; Kolc, K.L.; Zhao, Y.; Gasior, M.; Aimetti, A.A.; Samanta, D. Phase 2, placebo-controlled clinical study of oral ganaxolone in PCDH19-clustering epilepsy. Epilepsy Res. 2023, 191, 107112. [Google Scholar] [CrossRef]
- Berecki, G.; Howell, K.B.; Deerasooriya, Y.H.; Cilio, M.R.; Oliva, M.K.; Kaplan, D.; Scheffer, I.E.; Berkovic, S.F.; Petrou, S. Dynamic action potential clamp predicts functional separation in mild familial and severe de novo forms of SCN2A epilepsy. Proc. Natl. Acad. Sci. USA 2018, 115, E5516–E5525. [Google Scholar] [CrossRef]
- Syrbe, S.; Zhorov, B.S.; Bertsche, A.; Bernhard, M.K.; Hornemann, F.; Mütze, U.; Hoffmann, J.; Hörtnagel, K.; Kiess, W.; Hirsch, F.W.; et al. Phenotypic variability from benign infantile epilepsy to Ohtahara syndrome associated with a novel mutation in SCN2A. Mol. Syndromol. 2016, 7, 182–188. [Google Scholar] [CrossRef]
- Meisler, M.H.; Hill, S.F.; Yu, W. Sodium channelopathies in neurodevelopmental disorders. Nat. Rev. Neurosci. 2021, 22, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Yang, D.; Kim, S.H.; Kim, B.; Kim, H.D.; Lee, J.S.; Choi, J.R.; Lee, S.T.; Kang, H.C. The phenotype and treatment of SCN2A-related developmental and epileptic encephalopathy. Epileptic Disord. 2020, 22, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Plummer, N.W.; Galt, J.; Jones, J.M.; Burgess, D.L.; Sprunger, L.K.; Kohrman, D.C.; Meisler, M.H. Exon organization, coding sequence, physical mapping, and polymorphic intragenic markers for the human neuronal sodium channel gene SCN8A. Genomics 1998, 54, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Butler, K.M.; da Silva, C.; Shafir, Y.; Weisfeld-Adams, J.D.; Alexander, J.J.; Hegde, M.; Escayg, A. De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis. Epilepsy Res. 2017, 129, 17–25. [Google Scholar] [CrossRef]
- Makinson, C.D.; Dutt, K.; Lin, F.; Papale, L.A.; Shankar, A.; Barela, A.J.; Liu, R.; Goldin, A.L.; Escayg, A. An Scn1a epilepsy mutation in Scn8a alters seizure susceptibility and behavior. Exp. Neurol. 2016, 275 Pt 1, 46–58. [Google Scholar] [CrossRef]
- Gardella, E.; Marini, C.; Trivisano, M.; Fitzgerald, M.P.; Alber, M.; Howell, K.B.; Darra, F.; Siliquini, S.; Bölsterli, B.K.; Masnada, S.; et al. Thephenotype of SCN8A developmental and epileptic encephalopathy. Neurology 2018, 91, e1112–e1124. [Google Scholar] [CrossRef]
- Johannesen, K.M.; Liu, Y.; Koko, M.; Gjerulfsen, C.E.; Sonnenberg, L.; Schubert, J.; Fenger, C.D.; Eltokhi, A.; Rannap, M.; Koch, N.A.; et al. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications. Brain 2022, 145, 2991–3009. [Google Scholar] [CrossRef]
- Fan, H.C.; Lee, H.F.; Chi, C.S. SCN8A encephalopathy: Case report and literature review. Neurol. Int. 2021, 13, 143–150. [Google Scholar] [CrossRef]
- Braakman, H.M.; Verhoeven, J.S.; Erasmus, C.E.; Haaxma, C.A.; Willemsen, M.H.; Schelhaas, H.J. Phenytoin as a last-resort treatment in SCN8A encephalopathy. Epilepsia Open 2017, 2, 343–344. [Google Scholar] [CrossRef]
- Morgan, L.A.; Millichap, J.J. Spectrum of SCN8A-related epilepsy. Pediatr. Neurol. Briefs 2015, 29, 16. [Google Scholar] [CrossRef]
- Wong, J.C.; Makinson, C.D.; Lamar, T.; Cheng, Q.; Wingard, J.C.; Terwilliger, E.F.; Escayg, A. Selective targeting of Scn8a prevents seizure development in a mouse model of mesial temporal lobe epilepsy. Sci. Rep. 2018, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Ademuwagun, I.A.; Rotimi, S.O.; Syrbe, S.; Ajamma, Y.U.; Adebiyi, E. Voltage gated sodium channel genes in epilepsy: Mutations, functional studies, and treatment dimensions. Front. Neurol. 2021, 12, 600050. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.H.; Aizenman, E. Voltage-gated potassium channels at the crossroads of neuron function, ischemic tolerance, and neurodegeneration. Transl. Stroke Res. 2013, 5, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Robbins, C.A.; Tempel, B.T. Kv1.1 and Kv1.2: Similar channels, different seizure models. Epilepsia 2012, 53, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, T.; Grunnet, M.; Olesen, S.P. The KCNQ1 potassium channel: From gene to physiological function. Physiology 2005, 20, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Edmond, M.A.; Hinojo-Perez, A.; Wu, X.; Perez Rodriguez, M.E.; Barro-Soria, R. Distinctive mechanisms of epilepsy-causing mutants discovered by measuring S4 movement in KCNQ2 channels. eLife 2022, 121, 295a. [Google Scholar]
- Anderson, J.H.; Tester, D.J.; Will, M.L.; Ackerman, M.J. Whole-exome molecular autopsy after exertion-related sudden unexplained death in the young. Circ. Cardiovasc. Genet. 2016, 9, 259–265. [Google Scholar] [CrossRef]
- Maljevic, S.; Lerche, H. Potassium channel genes and benign familial neonatal epilepsy. Prog. Brain Res. 2014, 213, 17–53. [Google Scholar]
- Naffaa, M.M.; Al-Ewaidat, O.A. Ligand modulation of KCNQ-encoded (KV7) potassium channels in the heart and nervoussystem. Eur. J. Pharmacol. 2021, 906, 174278. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z.-J.; Liu, L.; Xu, H.-Q.; Shi, Y.-W.; Yi, Y.-H.; He, N.; Liao, W.-P. Epilepsy-associated genes. Seizure 2017, 44, 11–20. [Google Scholar] [CrossRef]
- Richards, M.C. Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J. Med. Gen. 2004, 41, e35. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Ishii, A.; Shibata, M.; Ihara, Y.; Cooper, E.C.; Hirose, S. Characteristics of KCNQ2 variants causing either benign neonatal epilepsy or developmental and epileptic encephalopathy. Epilepsia 2019, 60, 1870–1880. [Google Scholar] [CrossRef]
- Miceli, F.; Carotenuto, L.; Barrese, V.; Soldovieri, M.V.; Heinzen, E.L.; Mandel, A.M.; Lippa, N.; Louise Bier David BGoldstein Cooper, E.C.; Cilio, M.R.; Taglialatela, M.; et al. A novel KV7.3 variant in the voltage-sensing S4 segment in a family with benign neonatal epilepsy: Functional characterization and in vitro rescue by β-hydroxybutyrate. Front. Physiol. 2020, 11, 1040. [Google Scholar] [CrossRef] [PubMed]
- Spoto, G.; Saia, M.C.; Amore, G.; Gitto, E.; Loddo, G.; Mainieri, G.; Nicotera, A.G.; Di Rosa, G. Neonatal seizures: An overview of genetic causes and treatment options. Brain Sci. 2021, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, B.C.; Kubisch, C.; Stein, V.; Jentsch, T.J.; Bier, L.; Goldstein, D.B.; Cooper, E.C.; Cilio, M.R.; Taglialatela, M.; Sands, T.T. Moderate loss of function of cyclic-AMP-Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 1998, 396, 687–690. [Google Scholar] [CrossRef]
- Schwake, M.; Pusch, M.; Kharkovets, T.; Jentsch, T.J. Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J. Biol. Chem. 2000, 275, 13343–13348. [Google Scholar] [CrossRef]
- Miceli, F.; Millevert, C.; Soldovieri, M.V.; Mosca, I.; Ambrosino, P.; Carotenuto, L.; Schrader, D.; Lee, H.K.; Riviello, J.; Hong, W.; et al. KCNQ2 R144 variants cause neurodevelopmental disability with language impairment and autistic features without neonatal seizures through a gain-of-function mechanism. eBioMedicine 2022, 81, 104130. [Google Scholar] [CrossRef]
- Sands, T.T.; Balestri, M.; Bellini, G.; Mulkey, S.B.; Danhaive, O.; Bakken, E.H.; Taglialatela, M.; Oldham, M.S.; Vigevano, F.; Holmes, G.L.; et al. Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia 2016, 57, 2019–2030. [Google Scholar] [CrossRef]
- Cornet, M.C.; Morabito, V.; Lederer, D.; Glass, H.C.; Santos, S.F.; Numis, A.L.; Ferriero, D.M.; Sands, T.T.; Cilio, M.R. Neonatal presentation of genetic epilepsies: Early differentiation from acute provoked seizures. Epilepsia 2021, 62, 1907–1920. [Google Scholar] [CrossRef]
- Ziobro, J.M.; Eschbach, K.; Renée AShellhaas, R.A. Novel therapeutics for neonatal seizures. Neurotherapeutics 2021, 18, 1564–1581. [Google Scholar] [CrossRef]
- Al-Muhtasib NSepulveda-Rodriguez, A.; Vicini, S.; Forcelli, P.A. Neonatal phenobarbital exposure disrupts GABAergic synaptic maturation in rat CA1 neurons. Epilepsia 2018, 59, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Paulhus, K.; Ammerman, L.; Glasscock, E. Clinical spectrum of KCNA1 mutations: New insights into episodic ataxia and epilepsy comorbidity. Int. J. Mol. Sci. 2020, 21, 2802. [Google Scholar] [CrossRef] [PubMed]
- Baloh, R.W. Episodic ataxias 1 and 2. Handb. Clin. Neurol. 2012, 103, 595–602. [Google Scholar] [PubMed]
- Hassan, A. Episodic ataxias: Primary and secondary etiologies, treatment, and classification approaches. Tremor Other Hyperkinetic Mov. 2023, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Servettini, I.; Talani, G.; Megaro, A.; Setzu, M.D.; Biggio, F.; Briffa, M.; Guglielmi, L.; Savalli, N.; Binda, F.; Delicata, F.; et al. An activator of voltage-gated K+ channels Kv1.1 as a therapeutic candidate for episodic ataxia type 1. Proc. Natl. Acad. Sci. USA 2023, 120, e2207978120. [Google Scholar] [CrossRef] [PubMed]
- D’Adamo, M.C.; Liantonio, A.; Rolland, J.F.; Pessia, M.; Imbrici, P. Kv1.1 channelopathies: Pathophysiological mechanisms and therapeutic approaches. Int. J. Mol. Sci. 2020, 21, 2935. [Google Scholar] [CrossRef]
- Jen, J.C.; Wan, J. Episodic ataxias. Handb. Clin. Neurol. 2018, 148, 521–529. [Google Scholar]
- Niday, Z.; Tzingounis, A.V. Potassium channel gain of function in epilepsy: An unresolved paradox. Neuroscientist 2018, 24, 368–380. [Google Scholar] [CrossRef]
- Choi, K.D.; Choi, J.H. Episodic ataxias: Clinical and genetic features. J. Mov. Disord. 2016, 9, 129–135. [Google Scholar] [CrossRef]
- Méneret, A.; Roze, E. Paroxysmal movement disorders: An update. Rev. Neurol. 2016, 172, 433–445. [Google Scholar] [CrossRef]
- Syrbe, S.; Hedrich, U.B.; Riesch, E.; Djémié, T.; Müller, S.; Møller, S.R.; Maher, B.; Hernandez-Hernandez, L.; Synofzik, M.; Caglayan, H.S.; et al. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat. Gen. 2015, 47, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Döring, J.H.; Schröter, J.; Jüngling, J.; Biskup, S.; Klotz, K.A.; Bast, T.; Dietel, T.; Korenke, G.C.; Christoph, S.; Brennenstuhl, H.; et al. Refining enotypes and phenotypes in KCNA2-related neurological disorders. Int. J. Mol. Sci. 2021, 22, 2824. [Google Scholar] [CrossRef] [PubMed]
- Alagoz, M.; Kherad, N.; Bozkurt, S.; Yuksel, A. New mutations in KCNT2 gene causing early infantile epileptic encephalopathy type 57: Case study and literature review. Acta Bioch. Pol. 2020, 67, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Takacs, D.S.; Hedrich, U.B.; Coorg, R.; Masters, L.; Glinton, K.E.; Dai, H.; Cokley, J.A.; Riviello, J.J.; Lerche, H.; et al. Kcna1 gain-of-function epileptic encephalopathy treated with 4-aminopyridine. Ann. Clin. Transl. Neurol. 2023, 10, 656–663. [Google Scholar] [CrossRef]
- Verdura, E.; Fons, C.; Schlüter, A.; Ruiz, M.; Fourcade, S.; Casasnovas, C.; Castellano, A.; Pujol, A. Complete loss of KCNA1 activity causes neonatal epileptic encephalopathy and dyskinesia. J. Med. Genet. 2020, 57, 132–137. [Google Scholar] [CrossRef]
- Rogers, A.; Golumbek, P.; Cellini, E.; Doccini, V.; Guerrini, R.; Wallgren-Pettersson, C.; Thuresson, A.C.; Gurnett, C.A. De novo KCNA1 variants in the PVP motif cause infantile epileptic encephalopathy and cognitive impairment similar to recurrent KCNA2 variants. Am. J. Med. Genet. Part A 2018, 176, 1748–1752. [Google Scholar] [CrossRef]
- Budelli, G.; Sun, Q.; Ferreira, J.; Butler, A.; Santi, C.M.; Salkoff, L. SLO2 channels are inhibited by all divalent cations that activate Slo1 K+ channels. J. Biol. Chem. 2016, 291, 7347–7356. [Google Scholar] [CrossRef]
- Lim, C.X.; Ricos, M.G.; Leanne MDibbens, L.M.; Heron, S.E. Kcnt1 mutations in seizure disorders: The phenotypic spectrum and functional effects. J. Med. Gen. 2016, 53, 217–225. [Google Scholar] [CrossRef]
- Borlot, F.; Abushama, A.; Morrison-Levy, N.; Jain, P.; Puthenveettil Vinayan, K.; Abukhalid, M.; Aldhalaan, H.M.; Almuzaini, H.S.; Gulati, S.; Hershkovitz, T.; et al. KCNT1-related epilepsy: An international multicenter cohort of 27 pediatric cases. Epilepsia 2020, 61, 679–692. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Bhatia, K.P.; Lopes-Cendes, I.; Fish, D.R.; Marsden, C.D.; Andermann, E.; Andermann, F.; Desbiens, R.; Keene, D.; Cendes, F. Autosomal Dominant Nocturnal Frontal Lobe Epilepsy. Brain 1995, 118, 61–73. [Google Scholar] [CrossRef]
- Heron, S.E.; Smith, K.R.; Bahlo, M.; Nobili, L.; Kahana, E.; Licchetta, L.; Oliver, K.L.; Mazarib, A.; Afawi, Z.; Korczyn, A.; et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Gen. 2012, 44, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Plouin, P.; Chiron, C.; Robain, O.; Dulac, O. Migrating partial seizures in infancy: A malignant disorder with developmental arrest. Epilepsia 1995, 36, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Gertler, T.; Bearden, D.; Bhattacharjee, A.; Carvill, G.; Adam, M.P.; Mirzaa, G.M.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Gripp, K.W.; et al. KCNT1-Related Epilepsy. In GeneReviews; University of Washington: Seattle, WA, USA, 2018. [Google Scholar]
- Mullen, S.A.; Carney, P.W.; Roten, A.; Ching, M.; Lightfoot, P.A.; Churilov, L.; Umesh Nair, U.; Li, M.; Berkovic, S.F.; Petrou, S.; et al. Precision therapy for epilepsy due to Kcnt1 mutations. Neurology 2017, 90, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Gururaj, S.; Palmer, E.E.; Sheehan, G.D.; Kandula, T.; Macintosh, R.; Ying, K.; Morris, P.; Tao, J.; Dias, K.R.; Zhu, Y.; et al. A de novo mutation in the sodium-activated potassium channel KCNT2 alters ion selectivity and causes epileptic encephalopathy. Cell Rep. 2017, 21, 926–933. [Google Scholar] [CrossRef]
- Inuzuka, L.M.; Macedo-Souza, L.I.; Della-Ripa, B.; Monteiro, F.P.; Ramos, L.; Kitajima, J.P.; Garzon, E.; Kok, F. Additional observation of a de novo pathogenic variant in KCNT2 leading to epileptic encephalopathy with clinical features of frontal lobe epilepsy. Brain Dev. 2020, 42, 691–695. [Google Scholar] [CrossRef]
- Mao, X.; Bruneau, N.; Gao, Q.; Becq, H.; Jia, Z.; Xi, H.; Shu, L.; Wang, H.; Szepetowski, P.; Aniksztejn, L. The epilepsy of infancy with migrating focal seizures: Identification of de novo mutations of the KCNT2 gene that exert inhibitory effects on thecorresponding heteromeric Kna1.1/KNA1.2 potassium channel. Front. Cell. Neurosci. 2020, 14, 1. [Google Scholar] [CrossRef]
- Takai, A.; Yamaguchi, M.; Yoshida, H.; Chiyonobu, T. Investigating developmental and epileptic encephalopathy using Drosophila melanogaster. Int. J. Mol. Sci. 2020, 21, 6442. [Google Scholar] [CrossRef]
- Ambrosino, P.; Soldovieri, M.V.; Bast, T.; Turnpenny, P.D.; Uhrig, S.; Biskup, S.; Döcker, M.; Fleck, T.; Mosca, I.; Manocchio, L.; et al. De novo gain-of-function variants in Kcnt2 as a novel cause of developmental and epileptic encephalopathy. Ann. Neurol. 2018, 83, 1198–1204. [Google Scholar] [CrossRef]
- Tiron, C.; Campuzano, O.; Pérez-Serra, A.; Mademont, I.; Coll, M.; Allegue, C.; Iglesias, A.; Partemi, S.; Striano, P.; Oliva, A.; et al. Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure 2015, 25, 65–67. [Google Scholar] [CrossRef]
- Gong, P.; Xianru, J.; Dan, Y.; Zhixian, Y. Case Report: Causative de Novo Variants of KCNT2 for Developmental and Epileptic Encephalopathy. Front. Gen. 2021, 12, 649556. [Google Scholar] [CrossRef]
- Gurrell, R.; Iredale, P.; Evrard, A.; Duveau, V.; Ruggiero, C.; Roucard, C. Pronounced antiseizure activity of the subtype-selective GABAA positive allosteric modulator darigabat in a mouse model of drug-resistant focal epilepsy. CNS Neurosci. Ther. 2022, 28, 1875–1882. [Google Scholar] [CrossRef] [PubMed]
- Absalom, N.L.; Ahring, P.K.; Liao, V.W.; Balle, T.; Jiang, T.; Anderson, L.L.; Arnold, J.C.; McGregor, I.S.; Bowen, M.T.; Chebib, M. Functional genomics of epilepsy-associated mutations in the GABAA receptor subunits reveal that one mutation impairs function and two are catastrophic. J. Biol. Chem. 2019, 294, 6157–6171. [Google Scholar] [CrossRef] [PubMed]
- Arain, F.M.; Boyd, K.L.; Gallagher, M.J. Decreased viability and absence-like epilepsy in mice lacking or deficient in the GABAA receptor α1 subunit. Epilepsia 2012, 53, e161–e165. [Google Scholar] [CrossRef]
- Hernandez, C.C.; Klassen, T.L.; Jackson, L.G.; Gurba, K.; Hu, N.; Noebels, J.L.; Macdonald, R.L. Deleterious rare variants reveal risk for loss of GABAA receptor function in patients with genetic epilepsy and in the general population. PLoS ONE 2016, 11, e0162883. [Google Scholar]
- Bialer, M.; Johannessen, S.I.; Kupferberg, H.J.; Levy, R.H.; Loiseau, P.; Perucca, E. Progress report on new antiepileptic drugs: A summary of the Sixth Eilat Conference (EILAT VI). Epilepsy Res. 2002, 51, 31–71. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.B.; Wollmuth, L.P.; Bowie, D.; Furukawa, H.; Menniti, F.S.; Sobolevsky, A.I.; Swanson, G.T.; Swanger, S.A.; Greger, I.H.; Nakagawa, T.; et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 2021, 73, 1469–1658. [Google Scholar] [CrossRef] [PubMed]
- Hanada, T. Ionotropic glutamate receptors in epilepsy: A review focusing on AMPA and NMDA receptors. Biomolecules 2020, 10, 464. [Google Scholar] [CrossRef]
- Xu, X.X.; Luo, J.H. Mutations of N-Methyl-D-Aspartate receptor subunits in epilepsy. Neurosci. Bull. 2017, 34, 549–565. [Google Scholar] [CrossRef]
- Vyklicky, V.; Korinek, M.; Smejkalova, T.; Balik, A.; Krausowa, B.; Kaniakova, M.; Lichnerova, K.; Cerny, J.; Krusek, J.; Dittert, I.; et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 2014, 63 (Suppl. S1), S191–S203. [Google Scholar] [CrossRef]
- Xiang-Wei, W.; Kannan, V.; Xu, Y.; Kosobucki, G.J.; Schulien, A.J.; Kusumoto, H.; Moufawad El Achkar, C.; Bhattacharya, S.; Lesca, G.; Nguyen, S.; et al. Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain 2019, 142, 3009–3027. [Google Scholar] [CrossRef]
- Bertocchi, I.; Eltokhi, A.; Rozov, A.; Chi, V.N.; Jensen, V.; Bus, T.; Pawlak, V.; Serafino, M.; Sonntag, H.; Yang, B.; et al. Voltage-independent GluN2A-type NMDA receptor Ca2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice. Commun. Biol. 2021, 4, 59. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yuan, H.; Ortiz-Gonzalez, X.R.; Marsh, E.D.; Tian, L.; McCormick, E.M.; Kosobucki, G.J.; Chen, W.; Schulien, A.J.; Chiavacci, R.; et al. GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with NMDA receptor channel blockers. Am. J. Hum. Genet. 2016, 99, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Charsouei, S.; Jabalameli, M.R.; Karimi-Moghadam, A. Molecular insights into the role of AMPA receptors in the synaptic plasticity, pathogenesis and treatment of epilepsy: Therapeutic potentials of perampanel and antisense oligonucleotide (ASO) technology. Acta Neurol. Belg. 2020, 120, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Greger, I.H.; Watson, J.E.; Cull-Candy, S.G. Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 2017, 94, 713–730. [Google Scholar] [CrossRef]
- Coombs, I.D.; Ziobro, J.; Krotov, V.; Surtees, T.L.; Cull-Candy, S.G.; Farrant, M. A gain-of-function Gria2 variant associated with neurodevelopmental delay and seizures: Functional characterization and targeted treatment. Epilepsia 2022, 63, e156–e163. [Google Scholar] [CrossRef]
- Trivisano, M.; Santarone, M.E.; Micalizzi, A.; Ferretti, A.; Dentici, M.L.; Novelli, A.; Vigevano, F.; Specchio, N. GRIA3 missense mutation is cause of an x-linked developmental and epileptic encephalopathy. Seizure 2020, 82, 1–6. [Google Scholar] [CrossRef]
- Striano, P.; Minassian, B.A. From genetic testing to precision medicine in epilepsy. Neurotherapeutics 2020, 17, 609–615. [Google Scholar] [CrossRef]
- Yang, S.; Wang, B.; Han, X. Models for predicting treatment efficacy of antiepileptic drugs and prognosis of treatment withdrawal in epilepsy patients. Acta Epileptol. 2021, 3, 1. [Google Scholar] [CrossRef]
- Mohanraj, R.; Brodie, M.J. Measuring the efficacy of antiepileptic drugs. Seizure 2003, 12, 413–443. [Google Scholar] [CrossRef]
- Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021, 137, 104851. [Google Scholar] [CrossRef]
- Goodspeed, K.; Bailey, R.M.; Prasad, S.; Sadhu, C.; Cardenas, J.A.; Holmay, M.; Bilder, D.A.; Minassian, B.A. Gene therapy: Novel approaches to targeting monogenic epilepsies. Front. Neurol. 2022, 13, 805007. [Google Scholar] [CrossRef] [PubMed]
Gene | Syndrome | Functional Analysis | Type of Seizures | Treatment Used | Recommended Treatment | Reference |
---|---|---|---|---|---|---|
SCN1A | GEFS+ | GoF | febrile | STRP, VPA, CLB, TPM, CBD, STCL, FEN | STRP + VPA + CLB | [9,10,11,12,13,14,15] |
DEE | LoF | Tonic–clonic, myoclonic | ||||
SCN2A | BFNIS | GoF | partial, secondary generalized | PHT, CBZ, LEV, BDA, VPA | high-dose PHT | [20,21,22,31] |
DEE | GoF | nd | ||||
Episodic ataxia | GoF | nd | ||||
Autism spectrum disorder | LoF | nd | ||||
Intellectual disability, DEE | LoF | nd | ||||
SCN8A | BFNIE, DEE | GoF | tonic | PHT, CBZ, TPM, LEV, VAL, PB | high-dose PHT | [27,28,29,30,31] |
EIEE13 | GoF | myoclonic | ||||
Autism spectrum disorder | LoF | myoclonic | ||||
Intellectual disability | LoF | tonic, clonic, autonomic |
Gene | Variant | Functional Analysis | Type of Seizures | Treatment Used | Recommended Treatment | References |
---|---|---|---|---|---|---|
KCNA1 | c.781G>A | nd | Focal | VPA | CBZ | [47] |
c.888G>T | GoF | Tonic, focal | 4-AP, LEV, OXC, VPA, LCM, PHT, CLB, VGB, KD | [64] | ||
p.Val368Leu | LoF | Tonic–clonic | OXC, PB | OXC | [65] | |
c.1213 C>T | nd | Clonic | PB, CLB, CBZ, ZNS, VPA | [66] | ||
c.1214C> T | nd | Generalized convulsive | PB; CBZ, LEV, PHT, LTG, VPA | AZA | ||
KCNA2 | c.1214C>T | LoF | Focal, myoclonic seizures, FDS, focal motor seizures, secondary generalized tonic–clonic | TPM, OXC, VPA, LEV | AZA | [20] |
c.788T>C | LoF | Myoclonic, myoclonic–atonic | PB, VPA, OXC, LEV, CBZ, CLB, LTG | CLB, LTG | ||
c.1214C>T | LoF | Focal, focal dyscognitive, focal motor seizures, | VPA, LEV | VPA, CLB, TPM | ||
c.1214C>T | LoF | febrile, focal motor seizures, secondary generalized tonic–clonic | OXC, VPA, CLB, STM, LEV, PRED | LEV | ||
c.894G>T | GoF | Generalized tonic–clonic, myoclonic | PB, PHT, VPA, CBZ, LTG, CLB, TPM, OXC, LCM, LEV | Nd | ||
c.890G>A | GoF | Generalized tonic–clonic, absences | PMD, VPA, LTG | LTG | ||
KCNQ2 | c.1678C>T | nd | Myoclonic seizures | PB, VGB | TPM | [22] |
c.917C>T | nd | Tonic | PB, CLB, LEV | VGB, ZNS, KD | ||
c.997C>T | nd | Tonic | PB | TPM | ||
c.601C>T | nd | Myoclonic | PB, CLB, LEV, PHT, TPM, VGB | PHT, OXC | ||
c.338C>T | nd | Tonic, clonic, autonomic | PB | OXC, high-dose steroids, KD | ||
c.773A>T | nd | Tonic, clonic, autonomic | CBD | LEV, KD | ||
c.638G>A | nd | Tonic, autonomic | LEV, PB | PGB, LEV, VPA, KD | ||
c.629G>A | nd | Tonic, clonic | PB, PHT, VPA, LEV | PHT, OXC | ||
c.637C>T | nd | Tonic | VPA, VGB, TPM | LTG | ||
c.794C>T | nd | Tonic | CBZ, CLB, LCM | LTG | ||
c.1118 + 1G>T | nd | Tonic, clonic | VPA, OXC | VPA, OXC | ||
KCNQ1 | c.817C>T | nd | Subsequent tonic–clonic | CBZ | [80] | |
KCNT1 | c.1283G>A | nd | FIAM, generalized tonic, generalized tonic–clonic | KD, QUIN, CBD | CLB, LRZ, PB | [69] |
c.2849G>A | nd | Generalized tonic, generalized tonic–clonic, FIANM | KD, CBD | LEV, PB | ||
KCNT2 | c.991T>A | nd | Epileptic spasm | PB, TPM | nd | [81] |
c.592C>G | nd | Focal, migrating | VPA, TPM, LTG, NZP | nd | ||
c.1690A>T | LoF | focal | VPA, LTG, LEV | nd | [77] | |
c.720T>A | nd | Focal seizures, myoclonus, epileptic spasm, tonic, atypical absence | TPM, NZP, LEV, LTG, VBG, ETX, LCM, KD | nd | [75] | |
c.569G>A, p. | GoF | Epileptic spasm, nocturnal tonic, and bilateral tonic–clonic | VPA, VBG, RUF, PRED, KD, STM | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowicz-Reutt, K.; Czernia, J.; Krawczyk, M. Genetic Background of Epilepsy and Antiepileptic Treatments. Int. J. Mol. Sci. 2023, 24, 16280. https://doi.org/10.3390/ijms242216280
Borowicz-Reutt K, Czernia J, Krawczyk M. Genetic Background of Epilepsy and Antiepileptic Treatments. International Journal of Molecular Sciences. 2023; 24(22):16280. https://doi.org/10.3390/ijms242216280
Chicago/Turabian StyleBorowicz-Reutt, Kinga, Julia Czernia, and Marlena Krawczyk. 2023. "Genetic Background of Epilepsy and Antiepileptic Treatments" International Journal of Molecular Sciences 24, no. 22: 16280. https://doi.org/10.3390/ijms242216280
APA StyleBorowicz-Reutt, K., Czernia, J., & Krawczyk, M. (2023). Genetic Background of Epilepsy and Antiepileptic Treatments. International Journal of Molecular Sciences, 24(22), 16280. https://doi.org/10.3390/ijms242216280