The Neurotransmission Basis of Post-Traumatic Stress Disorders by the Fear Conditioning Paradigm
Abstract
:1. Introduction
2. Post-Traumatic Stress Disorders (PTSD)
3. Contextual Fear Conditioning (CFC)
4. Noradrenaline (NA)
5. Dopamine
6. Gamma-Aminobutyric Acid (GABA)
7. Glutamate
8. Acetylcholine
9. Serotonin
10. Glycine
11. Histamine
12. Purines
13. Signaling Pathways Associated with PTSD
14. Treatments for PTSD
15. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Solomon, E.P.; Heide, K. The biology of trauma: Implications for treatment. J. Interpers. Violence 2005, 20, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.B.; Smith, S.M.; Chou, S.P.; Saha, T.D.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Huang, B.; Grant, B.F. The epidemiology of DSM-5 posttraumatic stress disorder in the United States: Results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Soc. Psychiatry Epidemiol. 2016, 51, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Mowrer, O.H. On the dual nature of learning: A re-interpretation of “conditioning” and “problem-solving”. Harv. Educ. Rev. 1947, 17, 102–148. [Google Scholar]
- Keane, T.M.; Zimering, R.T.; Caddell, J.M. A behavioral formulation of posttraumatic stress disorder in Vietnam veterans. Behav. Ther. 1985, 8, 9–12. [Google Scholar]
- Graham, B.M.; Milad, M.R. The study of fear extinction: Implications for anxiety disorders. Am. J. Psychiatry 2011, 168, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Nader, K.; Schafe, G.E.; Le Doux, J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 2000, 406, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Foa, E.B.; Zinbarg, R.; Rothbaum, B.O. Uncontrollability and unpredictability in posttraumatic- stress-disorder-an animal-model. Psychol. Bull. 1992, 112, 218–238. [Google Scholar] [CrossRef]
- Grillon, C.; Southwick, S.M.; Charney, D.S. The psychobiological basis of posttraumatic stress disorder. Mol. Psychiatry 1996, 1, 278–297. [Google Scholar]
- Traina, G. Learning processes in elementary nervous systems. J. Integr. Neurosci. 2020, 19, 673–678. [Google Scholar] [CrossRef]
- Dunsmoor, J.E.; Murphy, G.L. Categories, concepts, and conditioning: How humans generalize fear. Trends Cogn. Sci. 2015, 19, 73–77. [Google Scholar] [CrossRef]
- Fenster, R.J.; Lebois, L.A.M.; Ressler, K.J.; Suh, J. Brain circuit dysfunction in post-traumatic stress disorder: From mouse to man. Nat. Rev. Neurosci. 2018, 19, 535–551. [Google Scholar] [CrossRef] [PubMed]
- Dbiec, J.; LeDoux, J. The Amygdala and the Neural Pathways of Fear, Post-Traumatic Stress Disorder; Humana Press: Totowa, NJ, USA, 2009; pp. 23–38. [Google Scholar]
- Li, X. Using the conditioned fear stress (CFS) animal model to understand the neurobiological mechanisms and pharmacological treatment of anxiety. Shanghai Arch. Psychiatry 2012, 24, 241. [Google Scholar] [PubMed]
- Logue, M.W.; van Rooij, S.J.H.; Dennis, E.L.; Davis, S.L.; Hayes, J.P.; Stevens, J.S.; Densmore, M.; Haswell, C.C.; Ipser, J.; Koch, S.B.J.; et al. Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biol. Psychiatry 2018, 83, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, M.K.; Laifer, L.M.; VanElzakker, M.B.; Offringa, R.; Hughes, K.C.; Staples-Bradley, L.K.; Dubois, S.J.; Lasko, N.B.; Hinojosa, C.A.; Orr, S.P.; et al. Diminished medial prefrontal cortex activation during the recollection of stressful events is an acquired characteristic of PTSD. Psychol. Med. 2018, 48, 1128–1138. [Google Scholar] [CrossRef]
- Block, S.R.; Liberzon, I. Attentional processes in posttraumatic stress disorder and the associated changes in neural functioning. Exp. Neurol. 2016, 284, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Shalev, A.; Liberzon, I.; Marmar, C. Post-traumatic stress disorder. N. Engl. J. Med. 2017, 376, 2459–2469. [Google Scholar] [CrossRef] [PubMed]
- Admon, R.; Leykin, D.; Lubin, G.; Engert, V.; Andrews, J.; Pruessner, J.; Hendler, T. Stress-induced reduction in hippocampal volume and connectivity with the ventromedial prefrontal cortex are related to maladaptive responses to stressful military service. Hum. Brain Mapp. 2013, 34, 2808–2816. [Google Scholar] [CrossRef]
- Hinojosa, C.A.; Kaur, N.; VanElzakker, M.B.; Shin, L.M. Chapter 20—Cingulate subregions in posttraumatic stress disorder, chronic stress, and treatment. In Handbook of Clinical Neurology; Vogt, B.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 166, pp. 355–370. ISBN 9780444641960. [Google Scholar] [CrossRef]
- LeDoux, J.E. Emotion Circuits in the Brain. Annu. Rev. Neurosci. 2000, 23, 155–184. [Google Scholar] [CrossRef]
- Conte, C.; Baldi, E.; Bucherelli, C.; di Vito, R.; Petri, D.; Traina, G. Modulation of synapse-related gene expression in the cerebellum and prefrontal cortex of rats subjected to the contextual fear conditioning paradigm. Neurobiol. Learn. Mem. 2023, 203, 107776. [Google Scholar] [CrossRef]
- Maren, S. Neurobiology of Pavlovian Fear Conditioning. Annu. Rev. Neurosci. 2001, 24, 897–931. [Google Scholar] [CrossRef]
- Maren, S.; Quirk, G.J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 2005, 5, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Pape, H.-C.; Pare, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 2010, 90, 419–463. [Google Scholar] [CrossRef]
- Izquierdo, A.; Brigman, J.L.; Radke, A.K.; Rudebeck, P.H.; Holmes, A. The neural basis of reversal learning: An updated perspective. Neuroscience 2017, 345, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.C.; Jarome, T.J.; Cullen, P.K.; Orsi, S.A.; Kwapis, J.L.; Trask, S.; Pullins, S.E.; Helmstetter, F.J. GluR2 endocytosis-dependent protein degradation in the amygdala mediates memory updating. Sci. Rep. 2019, 9, 5180. [Google Scholar] [CrossRef] [PubMed]
- Charney, D.S. Psychobiologic Mechanisms of Posttraumatic Stress Disorder. Arch. Gen. Psychiatry 1993, 50, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Miserendino, M.J.D.; Sasanes, C.B.; Melia, K.R.; Davis, M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 1990, 345, 716–718. [Google Scholar] [CrossRef]
- Lamprecht, R.; LeDoux, J. Structural plasticity and memory. Nature Reviews. Neuroscience 2004, 5, 45–54. [Google Scholar] [CrossRef]
- Mahan, A.L.; Ressler, K.J. Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder. Trends Neurosci. 2012, 35, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, B.; Lorenzini, C.A.; Baldi, E.; Bucherelli, C.; Roberto, M.; Tassoni, G.; Brunelli, M. Time-dependent inhibition of hippocampal LTP in vitro following contextual fear conditioning in the rat. Eur. J. Neurosci. 2002, 15, 143–150. [Google Scholar] [CrossRef]
- Myers, K.M.; Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 2007, 12, 120–150. [Google Scholar] [CrossRef]
- Tronson, N.C.; Schrick, C.; Fischer, A.; Sananbenesi, F.; Pouysségur, J.; Radulovic, J. Regulatory mechanisms of fear extinction and depression-like behavior. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2008, 33, 1570–1583. [Google Scholar] [CrossRef]
- Maren, S. Seeking a spotless mind: Extinction, deconsolidation, and erasure of fear memory. Neuron 2011, 70, 830–845. [Google Scholar] [CrossRef] [PubMed]
- Orsini, C.A.; Maren, S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci. Biobehav. Rev. 2012, 36, 1773–1802. [Google Scholar] [CrossRef] [PubMed]
- Bocchio, M.; McHugh, S.B.; Bannerman, D.M.; Sharp, T.; Capogna, M. Serotonin, amygdala and fear: Assembling the puzzle. Front. Neural Circuits 2016, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Federighi, G.; Traina, G.; Bernardi, R.; Baldi, E.; Bucherelli, C.; Scuri, R. Contextual fear conditioning modulates the gene expression over time. Arch. Ital. Biol. 2018, 156, 40–47. [Google Scholar] [CrossRef]
- Federighi, G.; Traina, G.; Macchi, M.; Ciampini, C.; Bernardi, R.; Baldi, E.; Bucherelli, C.; Brunelli, M.; Scuri, R. Modulation of gene expression in contextual fear conditioning in the rat. PLoS ONE 2013, 8, e80037. [Google Scholar] [CrossRef]
- Kim, J.J.; Thompson, R.F. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trend Neurosci. 1997, 20, 177–181. [Google Scholar] [CrossRef]
- Sacchetti, B.; Baldi, E.; Lorenzini, C.A.; Bucherelli, C. Cerebellar role in fear-conditioning consolidation. Proc. Nat. Acad. Sci. USA 2002, 99, 8406–8411. [Google Scholar] [CrossRef]
- Albi, E.; Cataldi, S.; Baldi, E.; Bucherelli, C.; Ferri, I.; Sidoni, A.; Codini, M.; Conte, C.; Beccari, T.; Traina, G. Vitamin D receptor expression and acid sphingomyelinase activity in prefrontal region of a learning animal model. Arch. Ital. Biol. 2019, 157, 120–128. [Google Scholar] [CrossRef]
- Rebecca, C.; Hendrickson, M.A.R. Noradrenergic dysregulation in the pathophysiology of PTSD. Exp. Neurol. 2016, 284, 181–195. [Google Scholar] [CrossRef]
- Kothgassner, O.D.; Pellegrini, M.; Goreis, A.; Giordano, V.; Edobor, J.; Susanne Fischer, S.; Plener, P.L.; Huscsava, M.M. Hydrocortisone administration for reducing post-traumatic stress symptoms: A systematic review and meta-analysis. Psychoneuroendocrinology 2021, 126, 105168. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.M.; Szanton, S.L.; Page, G.G. Biological underpinnings of health alterations in women with PTSD: A sex disparity. Biol. Res. Nurs. 2005, 71, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Pineles, S.L.; Shipherd, J.C.; Mostoufi, S.M.; Abramovitz, S.M.; Yovel, I. Attentional biases in PTSD: More evidence for interference. Behav. Res. Ther. 2009, 47, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Eck, S.R.; Ordones, S.E. Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2018, 44, 129–139. [Google Scholar] [CrossRef]
- Cao, X.; Wang, L.; Cao, C.; Fang, R.; Chen, C.; Hall, B.J.; Elhai, J.D. Sex differences in global and local connectivity of adolescent posttraumatic stress disorder symptoms. J. Child Psychol. Psychiatry 2018, 60, 216–224. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Wiersielis, K.R.; Khantsis, S. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res. 2016, 1641, 177–188. [Google Scholar] [CrossRef]
- Ishida, Y.; Hashiguchi, H.; Takeda, R.; Ishizuka, Y.; Mitsuyama, Y.; Kannan, H.; Nishimori, T.; Nakahara, D. Conditioned-fear stress increases Fos expression in monoaminergic and GABAergic neurons of the locus coeruleus and dorsal raphe nuclei. Synapse 2002, 45, 46–51. [Google Scholar] [CrossRef]
- Neophytou, S.I.; Aspley, S.; Butler, S.; Beckett, S.; Marsden, C.A. Effects of lesioning noradrenergic neurones in the locus coeruleus on conditioned and unconditioned aversive behaviour in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 2001, 25, 1307–1321. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Catecholamines in Post-traumatic Stress Disorder: A Systematic Review and Meta-Analysis. Front. Mol. Neurosci. 2018, 11, 450. [Google Scholar] [CrossRef]
- Harley, C.W. Norepinephrine and the dentate gyrus. Prog. Brain Res. 2007, 163, 299–318. [Google Scholar] [CrossRef]
- Jo, Y.S.; Heymann, G.; Zweifel, L.S. Dopamine neurons reflect the uncertainty in fear generalization. Neuron 2018, 100, 916–925.e3. [Google Scholar] [CrossRef] [PubMed]
- Guarraci, F.A.; Frohardt, R.J.; Falls, W.A.; Kapp, B.S. The effects of intra-amygdaloid infusions of a D2 dopamine receptor antagonist on Pavlovian fear conditioning. Behav. Neurosci. 2000, 114, 647–651. [Google Scholar] [CrossRef]
- Guarraci, F.A.; Frohardt, R.J.; Kapp, B.S. Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res. 1999, 827, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Greba, Q.; Gifkins, A.; Kokkinidis, L. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Res. 2001, 899, 218–226. [Google Scholar] [CrossRef]
- Frick, A.; Björkstrand, J.; Lubberink, M.; Eriksson, A.; Fredrikson, M.; Åhs, F. Dopamine and fear memory formation in the human amygdala. Mol. Psychiatry 2022, 27, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch. Gen. Psychiatry 1991, 48, 648–654. [Google Scholar] [CrossRef]
- Blum, K.; Giordano, J.; Oscar-Berman, M.; Bowirrat, A.; Simpatico, T.; Barh, D. Diagnosis and Healing in Veterans Suspected of Suffering from Post-Traumatic Stress Disorder (PTSD) Using Reward Gene Testing and Reward Circuitry Natural Dopaminergic Activation. J. Genet. Syndr. Gene Ther. 2012, 3, 1000116. [Google Scholar] [CrossRef]
- Tessitore, A.; Hariri, A.R.; Fera, F.; Smith, W.G.; Chase, T.N.; Hyde, T.M.; Weinberger, D.R.; Mattay, V.S. Dopamine modulates the response of the human amygdala: A study in Parkinson’s disease. J. Neurosci. 2002, 22, 9099–9103. [Google Scholar] [CrossRef]
- Rossato, J.I.; Bevilaqua, L.R.; Izquierdo, I.; Medina, J.H.; Cammarota, M. Dopamine controls persistence of long-term memory storage. Science 2009, 325, 1017–1020. [Google Scholar] [CrossRef]
- Ardiel, E.L.; Giles, A.C.; Yu, A.J.; Lindsay, T.H.; Lockery, S.R.; Rankin, C.H. Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a C. elegans polymodal nociceptor. Learn. Mem. 2016, 23, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Makkar, S.; Zhang, S.; Cranney, J. Behavioral and Neural Analysis of GABA in the Acquisition, Consolidation, Reconsolidation, and Extinction of Fear Memory. Neuropsychopharmacology 2010, 35, 1625–1652. [Google Scholar] [CrossRef] [PubMed]
- Chebib, M.; Johnston, G.A. The ‘ABC’ of GABA receptors: A brief review. Clin. Exp. Pharmacol. Physiol. 1999, 26, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.A.; Westbrook, R.F. Contextual control over the expression of fear in rats conditioned under a benzodiazepine. Psychopharmacology 2001, 156, 92–97. [Google Scholar] [CrossRef]
- Akirav, I.; Haizel, H.; Maroun, M. Enhancement of conditioned fear extinction by infusion of the GABAa agonist muscimol into the rat prefrontal cortex and amygdala. Eur. J. Neurosci. 2006, 23, 758–764. [Google Scholar] [CrossRef]
- Yee, B.K.; Hauser, J.; Dolgov, V.V.; Keist, R.; Möhler, H.; Rudolph, U.; Feldon, J. GABAreceptors containing the alpha-5 subunit mediate the trace effect in aversive and appetitive conditioning and extinction of conditioned fear. Eur. J. Neurosci. 2004, 20, 1928–1936. [Google Scholar] [CrossRef]
- Dolfen, N.; Veldman, M.P.; Gann, M.A.; von Leupoldt, A.; Puts, N.A.J.; Edden, R.A.E.; Mikkelsen, M.; Swinnen, S.; Schwabe, L.; Albouy, G.; et al. A role for GABA in the modulation of striatal and hippocampal systems under stress. Commun. Biol. 2021, 4, 1033. [Google Scholar] [CrossRef]
- Averill, L.A.; Purohit, P.; Averill, C.L.; Boesl, M.A.; Krystal, J.H.; Abdallah, C.G. Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neurosci. Lett. 2017, 649, 147–155. [Google Scholar] [CrossRef]
- Pitman, R.K.; Rasmusson, A.M.; Koenen, K.C.; Shin, L.M.; Orr, S.P.; Gilbertson, M.W.; Milad, M.R.; Liberzon, I. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 2012, 13, 769–787. [Google Scholar] [CrossRef]
- Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 2012, 13, 22–37. [Google Scholar] [CrossRef]
- Averill, L.A.; Jiang, L.; Purohit, P.; Coppoli, A.; Averill, C.L.; Roscoe, J.; Kelmendi, B.; De Feyter, H.M.; de Graaf, R.A.; Gueorguieva, R.; et al. Prefrontal Glutamate Neurotransmission in PTSD: A Novel Approach to Estimate Synaptic Strength in Vivo in Humans. Chronic Stress 2022, 6, 24705470221092734. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.A.; Bremner, J.D.; Moghaddam, B.; Southwick, S.M.; Charney, D.S.; Krystal, J.H. Glutamate and post-traumatic stress disorder: Toward a psychobiology of dissociation. Semin. Clin. Neuropsychiatry 1999, 4, 274–281. [Google Scholar] [PubMed]
- Krystal, J.H.; Karper, L.P.; Seibyl, J.; Freeman, G.; Delaney, R.; Bremner, J.; Heninger, G.R.; Bowers, M.B., Jr.; Charney, D.S. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 1994, 51, 199–214. [Google Scholar] [CrossRef]
- Schauz, C.; Koch, M. Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning. Learn. Mem. 2000, 7, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Maksymetz, J.; Joffe, M.E.; Moran, S.P.; Stansley, B.J.; Li, B.; Temple, K.; Engers, D.W.; Lawrence, J.J.; Lindsley, C.W.; Conn, P.J. M1 Muscarinic Receptors Modulate Fear-Related Inputs to the Prefrontal Cortex: Implications for Novel Treatments of Posttraumatic Stress Disorder. Biol. Psychiatry 2019, 85, 989–1000. [Google Scholar] [CrossRef]
- Rafiq, S.; Batool, Z.; Liaquat, L.; Haider, S. Blockade of muscarinic receptors impairs reconsolidation of older fear memory by decreasing cholinergic neurotransmission: A study in rat model of PTSD. Life Sci. 2020, 256, 118014. [Google Scholar] [CrossRef]
- Wilson, M.A.; Fadel, J.R. Cholinergic regulation of fear learning and extinction. J. Neurosci. Res. 2017, 95, 836–852. [Google Scholar] [CrossRef]
- Hendricks, T.J.; Fyodorov, D.V.; Wegman, L.J.; Lelutiu, N.B.; Pehek, E.A.; Yamamoto, B.; Silver, J.; Weeber, E.J.; Sweatt, J.; Deneris, E.S. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 2003, 37, 233–247. [Google Scholar] [CrossRef]
- Brooks, L.R.; Enix, C.L.; Rich, S.C.; Magno, J.A.; Lowry, C.A.; Tsai, P.S. Fibroblast growth factor deficiencies impact anxiety-like behavior and the serotonergic system. Behav. Brain Res. 2014, 264, 74–81. [Google Scholar] [CrossRef]
- Traina, G.; Cocchi, M. Mast Cells, Astrocytes, Arachidonic Acid: Do They Play a Role in Depression? Appl. Sci. 2020, 10, 3455. [Google Scholar] [CrossRef]
- Fernandez, S.P.; Cauli, B.; Cabezas, C.; Muzerelle, A.; Poncer, J.C.; Gaspar, P. Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct. Funct. 2016, 221, 4007–4025. [Google Scholar] [CrossRef] [PubMed]
- Waider, J.; Popp, S.; Mlinar, B.; Montalbano, A.; Bonfiglio, F.; Aboagye, B.; Thuy, E.; Kern, R.; Thiel, C.; Araragi, N.; et al. Serotonin Deficiency Increases Context-Dependent Fear Learning Through Modulation of Hippocampal Activity. Front. Neurosci. 2019, 13, 245. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Inoue, T.; Izumi, T.; Nakagawa, S.; Koyama, T. SSR504734, a glycine transporter-1 inhibitor, attenuates acquisition and expression of contextual conditioned fear in rats. Behav. Pharmacol. 2010, 21, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Morinobu, S.; Iwamoto, Y.; Ueda, Y.; Takei, S.; Fujita, Y.; Yamawaki, S. Alterations in the hippcampal glycinergic system in an animal model of posttraumatic stress disorder. J. Psychiatr. Res. 2010, 44, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, Y.; Morinobu, S.; Takahashi, T.; Yamawaki, S. Single prolonged stress increases contextual freezing and the expression of glycine transporter 1 and vesicle-associated membrane protein 2 mRNA in the hippocampus of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 642–651. [Google Scholar] [CrossRef]
- Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci. 2003, 4, 121–130. [Google Scholar] [CrossRef]
- Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol. 2001, 63, 637–672. [Google Scholar] [CrossRef]
- Passani, M.B.; Cangioli, I.; Baldi, E.; Bucherelli, C.; Mannaioni, P.F.; Blandina, P. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur. J. Neurosci. 2001, 14, 1522–1532. [Google Scholar] [CrossRef]
- Provensi, G.; Passani, M.B.; Costa, A.; Izquierdo, I.; Blandina, P. Neuronal histamine and the memory of emotionally salient events. Br. J. Pharmacol. 2020, 177, 557–569. [Google Scholar] [CrossRef]
- Hersey, M.; Reneaux, M.; Berger, S.N.; Mena, S.; Buchanan, A.M.; Ou, Y.; Tavakoli, N.; Reagan, L.P.; Clopath, C.; Hashemi, P. A tale of two transmitters: Serotonin and histamine as in vivo biomarkers of chronic stress in mice. J. Neuroinflamm. 2022, 19, 167. [Google Scholar] [CrossRef] [PubMed]
- Domingos, L.B.; Hott, S.C.; Terzian, A.L.B.; Resstel, L.B.M. P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice. Neuropharmacology 2018, 128, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Torres-Rodríguez, O.; Rivera-Escobales, Y.; Castillo-Ocampo, Y.; Velazquez, B.; Colón, M.; Porter, J.T. Purinergic P2X7 receptor-mediated inflammation precedes PTSD-related behaviors in rats. Brain Behav. Immun. 2023, 110, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Ferrari, C.; Turner, L.; Mariani, N.; Enache, D.; Hastings, C.; Kose, M.; Lombardo, G.; McLaughlin, A.P.; Nettis, M.A.; et al. Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment- resistant depressed patients from drug-free and responsive patients in the BIODEP study. Transl. Psychiatry 2020, 10, 232. [Google Scholar] [CrossRef]
- Dunlop, B.W.; Wong, A. The hypothalamic-pituitary-adrenal axis in PTSD: Pathophysiology and treatment interventions. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 89, 361–379. [Google Scholar] [CrossRef]
- Schwabe, L.; Joëls, M.; Roozendaal, B.; Wolf, O.T.; Oitzl, M.S. Stress effects on memory: An update and integration. Neurosci. Biobehav. Rev. 2012, 36, 1740–1749. [Google Scholar] [CrossRef]
- Merz, C.J.; Hamacher-Dang, T.C.; Stark, R.; Wolf, O.T.; Hermann, A. Neural Underpinnings of Cortisol Effects on Fear Extinction. Neuropsychopharmacology 2018, 43, 384–392. [Google Scholar] [CrossRef]
- Nakataki, M.; Soravia, L.M.; Schwab, S.; Horn, H.; Dierks, T.; Strik, W.; Wiest, R.; Heinrichs, M.; de Quervain, D.J.-F.; Federspiel, A.; et al. Glucocorticoid administration improves aberrant fear processing networks in spider phobia. Neuropsychopharmacology 2016, 42, 485–494. [Google Scholar] [CrossRef]
- Amano, T.; Unal, C.T.; Paré, D. Synaptic correlates of fear extinction in the amygdala. Nat Neurosci. 2010, 13, 489–494. [Google Scholar] [CrossRef]
- Dejean, C.; Courtin, J.; Rozeske, R.R.; Bonnet, M.C.; Dousset, V.; Michelet, T.; Herry, C. Neuronal circuits for fear expression and recovery: Recent. advances and potential therapeutic strategies. Biol. Psychiatry 2015, 78, 298–306. [Google Scholar] [CrossRef]
- Maren, S.; Phan, K.L.; Liberzon, I. The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 2013, 14, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Hermann, A.; Stark, R.; Milad, M.R.; Merz, C.J. Renewal of conditioned fear in a novel context is associated with hippocampal activation and connectivity. Soc. Cogn. Affect. Neurosci. 2016, 11, 1411–1421. [Google Scholar] [CrossRef] [PubMed]
- Hauger, R.L.; Olivares-Reyes, J.A.; Dautzenberg, F.M.; Lohr, J.B.; Braun, S.; Oakley, R.H. Molecular and cell signaling targets for PTSD pathophysiology and pharmacotherapy. Neuropharmacology 2012, 62, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Girgenti, M.J.; Hare, B.D.; Ghosal, S.; Duman, R.S. Molecular and Cellular Effects of Traumatic Stress: Implications for PTSD. Curr. Psychiatry Rep. 2017, 19, 85. [Google Scholar] [CrossRef]
- Sinclair, D.; Fillman, S.G.; Webster, M.J.; Weickert, C.S. Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci. Rep. 2013, 3, 3539. [Google Scholar] [CrossRef] [PubMed]
- Reisman, M. PTSD treatment for veterans: What’s working, what’s new, and what’s next. Pharm. Ther. 2016, 41, 623–634. [Google Scholar]
- Jeffreys, M. Clinician’s Guide to Medications for PTSD. U.S. Department of Veterans Affairs. 2016. Available online: www.ptsd.va.gov/professional/treatment/overview/clinicians-guide-to-medications-for-ptsd.asp (accessed on 29 September 2023).
- Berger, W.; Mendlowicz, M.V.; Marques-Portella, C.; Kinrys, G.; Fontenelle, L.F.; Marmar, C.R.; Figueira, I. Pharmacologic alternatives to antidepressants in posttraumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 169–180. [Google Scholar] [CrossRef]
- Davidson, J. Treatment of posttraumatic stress disorder with venlafaxine extended release: A 6-month randomized controlled trial. Arch. Gen. Psychiatry 2006, 63, 1158–1165. [Google Scholar] [CrossRef]
Neurotransmitter | Role in CFC/PTSD | Refs. |
---|---|---|
Acetylcholine | Regulates CFC formation Increases under stress | [77,78,79,80] |
Dopamine | Contributes to fear learning Increases in stress condition | [53,54,55,56,57,58,59,60,61,62,63] |
GABA | Destroys consolidation of memories Reduced under stress | [64,65,66,67,68,69] |
Glutamate | Blocking its transmission prevents acquisition of reduced fear | [70,71,72,73,74,75,76] |
Glycine | Its reduction increases PTSD | [86,87,88] |
Histamine | Consolidates memory Contributes to stressful condition | [89,90,91,92,93] |
Noradrenaline | Increases CFC Increases in stressful condition | [42,43,44,45,46,47,48,49,50,51,52] |
Purine | Controls anxiety and fear | [94,95,96] |
Serotonin | Controls responses to anxiety and fear | [9,81,82,83,84,85] |
Hypothalamic-pituitary-adrenal axis (HPA) | Drives fear processing Regulates response to stress | [44,45,46,47,48,97,98,99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Traina, G.; Tuszynski, J.A. The Neurotransmission Basis of Post-Traumatic Stress Disorders by the Fear Conditioning Paradigm. Int. J. Mol. Sci. 2023, 24, 16327. https://doi.org/10.3390/ijms242216327
Traina G, Tuszynski JA. The Neurotransmission Basis of Post-Traumatic Stress Disorders by the Fear Conditioning Paradigm. International Journal of Molecular Sciences. 2023; 24(22):16327. https://doi.org/10.3390/ijms242216327
Chicago/Turabian StyleTraina, Giovanna, and Jack A. Tuszynski. 2023. "The Neurotransmission Basis of Post-Traumatic Stress Disorders by the Fear Conditioning Paradigm" International Journal of Molecular Sciences 24, no. 22: 16327. https://doi.org/10.3390/ijms242216327
APA StyleTraina, G., & Tuszynski, J. A. (2023). The Neurotransmission Basis of Post-Traumatic Stress Disorders by the Fear Conditioning Paradigm. International Journal of Molecular Sciences, 24(22), 16327. https://doi.org/10.3390/ijms242216327